
• РАДИО И СВЯЗЬ •

ПРОГРАММИРОВАНИЕ
микроЭВМ

НА ЯЗЫКЕ
БЕЙСИК

СПРАВОЧНИК

Е.С. БАШМАКОВА
И.М.ВИТЕНБЕРГ

А.Б.ЛИБЕРОВ
А.Л.ПАШКОВ

ПРОГРАММИРОВАНИЕ
микроЭВМ

НА ЯЗЫКЕ
БЕЙСИК

ПОД РЕДАКЦИЕЙ
ПРОФЕССОРА

И. М. ВИТЕНБЕРГА

МОСКВА „РАДИО И СВЯЗЬ”
1991

ББК 32.973- 01
П78

УДК 681.3.06: 519.682.2: 681.322-181.48(03)

Рецензенты: кандидаты физ.-мат. наук Г. В. Сенин, Г. Г. Гнездилова

Редакция литературы по информатике и вычислительной технике

Программирование микроЭВМ на языке Бейсик: Справоч-
П78 ник /Е. С. Башмакова, И. М. Витенберг, А. Б. Лидеров, А. Л.

Пашков; Под ред. И. М. Витенберга. - М.: Радио и связь, 1991.
- 240 с.: ил.

ISBN 5-256-00762-9.

Описаны основные конструкции различных версии языка Бейсик, реа­
лизованных на ПЭВМ, а также основные средства языка: системные, графичес­
кие, звуковые и ввода-вывода. Приведены программы, иллюстрирующие
возможности языка для решения разнообразных задач. Описаны способы
отладки программ.

Для инженеров, программистов и преподавателей учебных заведений.

2404010000-079
П 046(01)91 151'91 ББК 32.973 —01

© Башмакова Е. С., Витенберг И. М., Лиде­
ров А. Б., Пашков А. Л., 1991.

Предисловие

Настоящий справочник ставит своей целью ознакомить читателя с основными правилами
программирования персональных ЭВМ (ПЭВМ) на языке Бейсик. В книге представлены
понятия языка, построение программ и приемы работы с программами.

Главы справочника несут различную нагрузку. В гл. 1, которая является вводной, со дер*
жатся сведения о языке программирования Бейсик для начинающих программистов, а также
обзорная информация, полезная опытным программистам.

Материал, приведенный в гл. 2 и 3, предназначен для программистов, впервые сталкива­
ющихся с языком Бейсик. В гл. 2 описаны синтаксические элементы программы, представле­
ние чисел и системы счисления, выполнение основных операций. В гл. 3 рассмотрены возмож­
ности языка для ввода данных в программу, вывода данных из программы, при работе с
оперативной памятью и портами ввода-вывода, организации циклов, выполнении условных и
безусловных переходов, использовании встроенных функций, а также при работе со строко­
выми переменными и организации подпрограмм.

Глава 4 ориентирована на пользователей, машины которых оснащены периферийными
устройствами. В ней подробно описываются команды и операторы работы с файлами, печатаю­
щим устройством, некоторые специфические команды и операторы для работы с клавиатурой
и экраном дисплея. Ряд инструкций применяется как в минимальных комплектах ПЭВМ, так
и при широком использовании внешних устройств; эти инструкции рассматриваются в не­
скольких главах. Например, операторы ввода информации с клавиатуры (INPUT, LINE INPUT,
INKEY$, INPUTS, GET и т. п.) и операторы вывода информации на печать (PRINT, PRINT
USING) рассматриваются в гл. 3, а команды вывода информации на экран дисплея LIST и на
печатающее устройство LLIST - в гл. 5.

В гл. 5, рассчитанной на программистов среднего уровня, содержится также информация
о возможности тестирования и отладки программ, исправления ошибок. При работе с програм­
мами можно вводить программу заново, изменять ее, вызывать уже созданные.

Глава 6 предназначена для программистов, использующих в своей работе графику и звук.
Глава 7 дает некоторое представление о возможности построения достаточно простых

программ, которые можно воспроизвести при изучении программирования.
Справочник построен по алфавитно-смысловому принципу. В начале каждой из основ­

ных глав приводится рисунок, играющий роль краткого обобщения содержания главы. Далее
в смысловом порядке описаны основные понятия и определения, а затем в алфавитном поряд­
ке — инструкции языка, представленные ключевыми словами. В гл. 4 и 6 для лучшего усвое­
ния материала описание инструкций разнесено по параграфам.

Авторы разделили информацию о ключевых словах по главам и частично по параграфам,
что, по их мнению, должно облегчить изучение языка программистом, впервые приступив­
шим к написанию программ. Для более подготовленного программиста в приложении 1 дан

3

перечень ключевых слов с указанием, в каких главах подробно рассмотрено назначение
инструкции, ее формат и особенности.

В справочник включена информация о десяти версиях языка Бейсик; перечень этих
версий приведен в первой главе. В приложении Ги в каждой главе содержатся сведения о
составе ключевых слов в каждой из версий.

В приложении 2 описывается внутреннее представление программ.
В каждой главе даны примеры, иллюстрирующие основные положения; в примерах

использованы версии языков MBASIC и Беисик-ПК8020, если дополнительно не оговорено.
В справочнике применяются термины "строковая переменная”, "строковая операция" и

т. п., так как понятие "строковый” существует во всех описанных версиях языка Бейсик.
При описании форматов инструкций в книге используются следующие специальные

символы:
[...] - необязательный параметр;
(...) - обязательный параметр;
(...) - возможность выбора из нескольких вариантов;
<...>— клавиша;
/ — признак "или”.
В тексте встречаются два символа: д ("солнышко”) и $ ("знак денежной единицы”) - они

синонимы, т. е. несут одинаковую смысловую нагрузку.
При подготовке справочника авторы пользовались в основном документацией фирм- и

заводов-изготовителей машин; в списке литературы приведены издания, которые могут
помочь более углубленному изучению языка.

Глава 1.

Язык Бейсик и его место в системах программирования

1.1. Основные характеристики и версии языка Бейсик

Язык Бейсик — это распространенный язык программирования высокого уровня для
микро* и персональных ЭВМ (ПЭВМ). Основные преимущества языка Бейсик:

простота создания и отладки программ;
диалоговый характер системы программирования на языке Бейсик, что позволяет прово*

дать все операции по разработке, отладке и выполнению программ с помощью видеотерми-
нального устройства;

широта распространения языка, что обеспечивает возможность использования ранее
разработанных программ, а также перенос программ на другие ЭВМ; ,

возможность включения в программу фрагментов на машинном языке.
Основной класс пользователей языка Бейсик — непрофессиональные программисты,

пользователи ЭВМ. Именно для облегчения работы таких пользователей и был разработан в
1965 г. в США, в Дартмутском колледже язык программирования, близкий по структуре и по
названиям операторов к языку Фортран и названный BASIC (Beginner’s All-purpose Symbolic
Instruction Code, т. e. многоцелевой мнемокод для начинающих). Язык был создан по заказу
фирмы General Electric в целях обеспечений легкого доступа к компьютеру в системе разделе­
ния времени для начинающих программистов. Поскольку авторы Бейсика создавали язык
для программистов-новичков, то основным требованием они считали простоту языка. Другим
требованием было упрощение общения человека с машиной. Нужна была система» которую
легко освоить и которой удобно пользоваться.

Для языка Бейсик характерны: простой, легко запоминающийся синтаксис языка; малое
число конструкций, которые необходимо освоить; однозначная семантика каждой конст­
рукции.

Основные конструкции языка — предложения. В Бейсик включены лишь самые необхо­
димые. Синтаксис языка простой — программа имеет строчную организацию, одна строка
программы — это одно предложение. Вил все* предложений одинаковый — начинается номе­
ром, за которым находится ключевое слово и другая необходимая информация. Выражения
составляются по обычным математическим правилам. В Бейсике можно работать со скалярами
и организовывать массивы, т. е. использовать лишь наиболее простые и часто употребляемые
структуры данных. Создатели Бейсика понимали, что присваивание воспринимается не прос­
то. Ключевое слово LET (Пусть) в качестве предложения присваивания облегчает понимание.
Чтобы не вводить новую синтаксическую единицу — метку, создатели языка решили при
переходах использовать номера строк, которые прежде всего нужны для редактирования
программы.

Интерактивный (диалоговый) язык Бейсик обеспечивает возможность работы програм­
мистов в режиме непосредственного взаимодействия с компьютером — в диалоговом режиме.
Пользователь общается с машиной с помощью видеотерминального устройства, с которого он

5

вводит текст своей программы, редактирует программы, находящиеся в памяти, запускает
программы на выполнение. Диалоговый режим замечателен тем, что компьютер немедленно
реагирует на все действия пользователя, может подсказать, если человек, не зная как посту­
пить в данной ситуации, обращается за помощью. В случае ошибки в программе пользователь
может исправить ее сразу после того, как получил сообщение об ошибке,и попытаться продол­
жить или начать сначала выполнение программы. Диалоговый режим особенно удобен для
разработки, тестирования и отладки программ, т. е. в процессе программирования.

Интерпретация обеспечивает простую диагностику ошибок: сообщения об ошибках
выдаются в терминах языка, на котором написана программа, а не в терминах прерываний и
адресов памяти машины. Платой за это удобство является замедление выполнения програм­
мы в 10 — 20 раз по сравнению с выполнением скомпилированного кода.

Предложения Бейсик-программы можно вводить в любой последовательности, а выпол­
няться они будут в порядке возрастания их номеров. Такой порядок могут нарушать лишь
предложения перехода. Чаще всего предложения нумеруются не подряд, а с шагом 10. Это
облегчает вставку новых строк в программу.

Таким образом, Бейсик — не только язык программирования, но и единая система авто­
матизации программирования, включающая в себя интерпретатор, редактор и средства отлад­
ки. При работе с Бейсик-системой пользователь связан только с программой на языке Бейсик.
Он набирает программу, вводя строки с номерами, и просит систему выполнить некоторые
действия. Его не интересует, как организовано выполнение его команд в компьютере.

Язык Бейсик позволяет широко использовать внешние устройства в качестве устройств
ввода-вывода и хранения информации. К таким устройствам относятся накопители на гибких
магнитных дисках (НГМД), накопители на кассетной магнитной ленте (НКМЛ), печатающее
устройство (ПУ), устройство отображения информации (дисплей), периферийные устройства
ввода-вывода информации, расширяющие возможности ЭВМ (манипуляторы типа "мышь”,
джойстик, световое перо и т. п.); к внешним устройствам можно отнести также локальные
вычислительные сети.

Язык Бейсик поддерживает работу двух основных классов графических устройств:
устройств ввода графической информации и устройств вывода. К первому классу относятся
манипуляторы "мышь", джойстик, графические планшеты разного типа. Сюда же относятся
такие менее распространенные в персональных ЭВМ устройства, как световое перо, трекболл,
сенсорный экран.

Разные версии языка Бейсик поддерживают работу с указанными в этом наборе устройст­
вами графического ввода-вывода (УГВВ) двумя способами:

созданием специальных инструкций для определенного класса УГВВ;
созданием универсальных инструкций для различных классов УГВВ.

Основным устройством вывода графической информации является графический дисплей
— графическое видеоконтрольное устройство (ГВКУ). К другим устройствам вывода относятся
печатающее устройство и графопостроитель (плоттер), предназначенные для получения "твер­
дой копии" изображения на экране графического дисплея, т. е. для переноса изображения на
бумагу или другой носитель.

Устройства ввода графической информации также в основном используются только при
совместной работе с графическим дисплеем.

Основными элементами при работе с ГКВУ являются графический экран и дисплейный
процессор.

До 1975 г. язык Бейсик был реализован практически на всех типах ЭВМ, существовавших
тогда в мире, и был наиболее распространенным диалоговым языком в системах с разделени­

6

ем времени. Рост популярности языка происходил одновременно с начавшимся в 1976 — 1978
1 г. массовым распространением микроЭВМ и базирующихся на их основе персональных ЭВМ
(ПЭВМ). Те и другие были ориентированы на однопользовательский диалоговый режим, и
язык Бейсик стал основным языком программирования.

В 1978 г. Международная организация по стандартизации ISO приняла стандарт на так
называемый "минимальный Бейсик" (Х3.60 - 1978). Этот стандарт, определивший минималь­
но необходимые языковые конструкции, стал основой, ядром многочисленных подмножеств
языка, разработанных различными фирмами. Можно выделить два основных направления
развития версий языка Бейсик и использующих его Бейсик-систем:

1. Бейсик-системы, встроенные в микроЭВМ, использующиеся в лабораторных, техноло­
гических и технических исследованиях. Особенно широко использовала язык Бейсик для
таких систем известная фирма Hewlett Packard (США). Бейсик-системы такого рода включают в
себя поддержку аппаратных особенностей используемого оборудования.

2. Универсальные Бейсик-системы диалогового типа, обеспечивающие разработку прог­
раммного обеспечения ПЭВМ и предоставляющие пользователю доступ к аппаратным средствам.

Поскольку в первые годы развития ПЭВМ базовый комплект поставки не включал, как
правило, накопителей на НГМД (это положение сохраняется и сейчас в бытовых ПЭВМ),
Бейсик-системы располагались в постоянном запоминающем устройстве (ПЗУ) или программи­
руемом ПЗУ (ППЗУ) и для них были характерны две особенности: малая емкость памяти
собственно системы (от 5 до 16 Кбайт) и включение в их состав всего необходимого программ­
ного обеспечения для управления аппаратными средствами ПЭВМ. Это приводило как бы к
сращиванию в одном ПЗУ самой Бейсик-системы и управляющих программ (драйверов)
устройств ввода-вывода.

Таким образом, в зависимости от набора аппаратных средств ПЭВМ и емкости памяти
ПЗУ число инструкций Бейсик-системы и их назначение могли сильно изменяться. Так воз­
никли основные версии языка Бейсик, реализованные в ПЭВМ различных фирм:

на базе МП 6502 ПЭВМ фирмы Commodore, например РЕТ, и фирмы Apple, например
Apple-II;

на базе МП TMS9900 ПЭВМ фирмы Texas Instruments, например TI-99;
на базе МП Z80 ПЭВМ фирмы Radio Shack, например TRS^O и фирмы Sinclair, напри­

мер ZX-80;
на базе МП 18080 ПЭВМ фирмы Intel, например MDS-800.
Многие версии языка Бейсик созданы фирмой Miciosoft, специализирующейся с 1975 г. на

разработке программных реализаций Бейсик-систем. Версия языка для Бейсик-системы, из­
вестная под именем MB ASIC, стала в конце 70-х - начале 80-х годов промышленным стандар­
том и ее разновидности были разработаны фирмой Microsoft для многих 8-разрядных микроЭВМ.

В 1981 г. для ПЭВМ фирмы IBM фирмой Microsoft была разработана новая версия языка
Бейсик, получившая название BAS1CA. Эта версия и ее дальнейшие разновидности (MSX-BASIC
и др.) стали промышленным стандартом для целого ряда 16-разрядных ПЭВМ.

Новые версии языка Бейсик включают в себя целый набор модулей, не определенных в
"минимальном Бейсике": модули работы с дисковыми файлами, модули выполнения графи­
ческих и звуковых инструкций. В последнее время широко обсуждался вопрос о новом
стандарте ISO на язык Бейсик, имеются проекты нового стандарта: проект стандарта ANSI от
1984 г. и стандарт ЕСМА-П6. Однако в этих документах предлагается создавать новые версии,
сильно отличающиеся от сложившихся, фактических стандартов на язык Бейсик, которым
удовлетворяют миллионы действующих на разных ПЭВМ программ. Поэтому в настоящем
издании ссылки на эти стандарты приведены не будут, но при создании новых версий языка
необходимо их изучение и использование.

7

1.2. Отечественные Бейсик-системы

Первой реализацией языка Бейсик в СССР стала система программного обеспечения для
ЭВМ типа М-220, разработанная в 1970 — 1971 гг. группой под руководством Ю. Л. Кеткова. В
дальнейшем были разработаны Бейсик-системы также и для БЭСМ-6. На всех отечественных
микро- и персональных ЭВМ существуют Бейсик-системы, аналогичные тем или иным зару­
бежным системам. Так, в микроЭВМ Искра-226 основой системного программного обеспече­
ния является Бейсик-2, аналогичный Бейсик-системе в ЭВМ WANG-220B. В ПЭВМ ЯАГАТЯ
имеется интерпретатор Бейсик-АГАТ, аналогичный системе BASIC Apple-П.

В микроЭВМ семейства ” Электроника” может работать Бейсик-система, аналогичная
системе BASIC PCKS для микроЭВМ фирмы DEC. В микроЭВМ на базе МП К580ИК80 (СМ1800,
ЕС7970 и т. п.), как правило, используется стандартная система MBAS1C.

В1987 г. начался выпуск комплекса учебной вычислительной техники (КУВТ) ”КОРВЕТ”.
Основным языком программирования является Бейсик. Бейсик-система КУВТ я КОРВЕТ” поз­
воляет работать с дисковыми файлами, имеет расширенный набор устройств ввода-вывода
(УВВ), может работать в локальной сети, имеет накопители на кассетной магнитной ленте.
Поскольку ПЭВМ, входящие в КУВТ ”КОРВЕТ” (ПК8020 и ПК8010), базируются на МП типа
К580ИК80А, а Бейсик-системы с указанными выше возможностями на МП такого типа не
существует, была разработана Бейсик-система с ядром MBAS1C и модулями собственной
разработки.

Семейство отечественных профессиональных ПЭВМ типа ЕС1840, ЕС 1841 и последующие
имеет Бейсик-систему, аналогичную системе BAS1CA.

Существует также отечественная реализация оригинальной версии языка BASIC/F, разра­
ботанная А. Е. Корчаком на Рижском производственном объединении VEF им. В. И. Ленина.

1.3. Основные отличия версий языка Бейсик

Ниже будут рассмотрены только основные отличия каждой из версий языка Бейсик;
более конкретные отличия, касающиеся инструкций (команд, операторов, функций) языка,
будут приведены в соответствующих главах при описании инструкций.

Рассмотрим версии языка, наиболее характерные для периода 1976 — 1986 гг. и часто
используемые в качестве основы для построения Бейсик-систем:

1. Бейсик ГОСТ 27787-88;
2. XYBASIC* (фирма Mark Williams);
3. Бейсик SINCLAIR ZX SPECTRUM+2 (фирма AMSTRAD CONSUMER ELECTRONICS -

Бейсик-Спектрум+2);
4. Бейсик Apple-11 (Бейсик-АГАТ);
5. Бейсик-TRS—80 (фирма Microsoft);
6. MBASIC ▼. 5.0 (фирма Microsoft);
7. Бейсик-КОРВЕТ (ПК8010) - Бейсик-ПК8010;
8. Бейсик-КОРВЕТ (ПК8020) - Бейсик-ПК8020; ’
9. MSX-BASIC (фирма Microsoft);
ТО. BASICA (фирма Microsoft) для PC IBM (аналогично ЕС1840).
Основные характеристики версий языка Бейсик, используемые в конкретных реализа­

циях машин и систем, представлены в табл. 1.1.

Полужирным шрифтом выделены названия версий языка Бейсик, используемые в дальнейшем
тексте.
8

Таблица 1.1

Номер версии
Характеристика ----------------

4 5 6 7 8 9 102 3

Число
арифметических
операций

9 6 6 6 8 8 8 8 8

Число
логических
операций

4 4 3 3 6 6 6 6 6

Число
строковых
функций

11 5 2 9 15 15 15 15 15

Число
арифметиче ски х
функций

12 13 4 15 15 15 15 15 15

Число
битовых
операций

7 - - — — — - — -

Использование
последова­
тельных
Файлов

4- - - + 4- — + 4-

Использование
файлов произ­
вольного
доступа

— — — 4- 4- — — 4- 4-

Число
операторов
работы с
памятью

11 7 4 7 8 9 9 10 10

Число
графических
операторов

- 3 8 4 — 10 10 10 10

Число
звуковых
операторов

— 2 — — — 3(») 1 3 3

Редактор Ком. Вс. Пер. Ком. Ком. Ком. Ком. Вс. Вс.

9

Окончание табл. 1.1

Номер версии
Характеристика 23456789 10

Наличие
операторов
работы с + ь + 4-
локальной
сетью

Наличие
функциональной
клавиатуры

Примечание. Ком. — командный редактор; Вс. — встроенный редактор; Пер. — перебор строки;
» — только в одной из модификаций

Объем и содержание языка в различных версиях, в том числе разработанных в одной
фирме, сильно отличаются. Это отличие затрагивает не только большую часть отдельных
инструкций языка, но связано с включением в более поздние версии целых классов новых
инструкций (графика, звук и т. п.). Поэтому естественным является стремление к стандартиза­
ции языка с обеспечением максимальной переносимости разработанного программного обес­
печения.

Работы по стандартизации языка Бейсик за рубежом наиболее активно ведутся в США
силами американской и международной организации по стандартизации ANSI и ISO. Однако,
на наш взгляд, эта работа не обеспечит переносимости большого числа (десятки миллионов
экземпляров) созданных и разрабатываемых промышленных программ для распространенных
ПЭВМ типа IBM PC, MSX и др. Кроме того, проекты нового стандарта пока находятся в стадии
предварительного обсуждения.

Используя результаты проведенного анализа, можно сформулировать основные требова­
ния к стандарту языка Бейсик:

реализация всех операторов стандартной версии языка на отечественных ПЭВМ;
возможность развигия языка;
учет зарубежных промышленных стандартов.

1.4. Основные концепции Государственного стандарта
языка Бейсик

Переносимых программ на языке Бейсик, удовлетворяющих определенным и достаточно
жестким требованиям, сравнительно немного. Вместе с тем существует потребность в создании
переносимого программного обеспечения на языке Бейсик для достаточно сложных задач.
Кроме того, стандартизация языка Бейсик должна обеспечить поддержку наиболее удачно
разработанных версий языка для разных по архитектуре и аппаратному обеспечению ПЭВМ.

С 1 июля 1989 г. введен в действие ГОСТ 27787—88 на язык программирования Бейсик.
Исходя из вышеназванных требований, стандарт языка Бейсик построен по схеме ’’Ядро

плюс модули”. Ядро содержит описание операторов и функций, обязательных к реализации на
всех ЭВМ, имеющих в составе программного обеспечения язык Бейсик, независимо от их

10

архитектуры и комплектации. Каждый модуль содержит описание операторов и функций,
реализация которых зависит от архитектуры и от комплектации ЭВМ, имеющих в составе
программного обеспечения язык Бейсик. Ядро составляет "минимальный Бейсик”, вторично
определенный стандартом Международной организации по стандартизации в 1984 г.

В стандарте рассматриваются следующие модули:
расширения основных средств;
графических средств;
работы с накопителями на магнитных дисках;
работы с накопителями на магнитных лентах;
командный.
По мере развития аппаратных и программных средств предусматривается пополнение

как состава каждого модуля, так и набора модулей в целом. Совокупность ядра и модулей
обеспечивает гибкость выбора фиксированного подмножества стандарта, в максимальной
степени удовлетворяющего конкретным потребностям пользователей и комплектации обору­
дования. Кроме того, ГОСТ на язык Бейсик согласован с готовящимся сейчас новым стандар­
том ISO языка Бейсик тоже за счет выбора подходящего подмножества стандарта.

По аналогии со стандартом "минимального Бейсика" в ядре описаны синтаксис и семан­
тика языковых конструкций, приведен перечень обнаруживаемых отклонений от стандарта,
обязательный для каждой соответствующей стандарту реализации, а также рекомендации по
истолкованию трудных для понимания фрагментов описания ядра. Таким образом, стандарт
языка Бейсик сделан закрытым, т. е. в него включены требования к поведению языкового
процессора при обработке отклонений от стандарта. Подобное требование позволит обеспечить
унификацию диагностики.

В ядре зафиксированы также свойства языка, которые не определяются стандартом или
засисят от реализации. Ясно, что использование таких свойств языка в программах снижает их
переносимость. Поэтому при описании стандарта в него включены рекомендации по обеспече­
нию переносимости программ для включенных в стандарт языковых конструкций.

В целом в стандарте описаны принципы формирования номенклатуры и состава моду­
лей, выработана адекватная русская терминология, учтены требования Государственной
системы стандартизации. Одним из критериев формирования состава модулей явилось обеспе­
чение преемственности и переносимости программного обеспечения, создаваемого на языке
Бейсик. В первую очередь это относится к реализации языка Бейсик для ПЭВМ, так как этот
тип ЭВМ является наиболее массовым и наиболее подверженным изменениям (по составу и
характеристикам). Установив заранее синтаксис и семантику операторов и функций, можно
ожидать, что программы, разработанные в настоящее время на некоторых ЭВМ, в будущем
смогут работать на всех ЭВМ.

При выборе модулей и определении их состава учитывалась также зависимость от состава
и характеристик периферийных устройств и характеристик самой ЭВМ.

1.5. Загрузка интерпретаторов и выход в операционную систему

Интерпретаторы рассматриваемых версий языка Бейсик занимают разную память, могут
работать в операционных системах СР/М, ISIS-1I, МикроДОС, MSDOS и СР/М-86, а также могут
быть встроенными в ППЗУ.

1.5.1. XYBASIC

Полный формат команды загрузки XYBASIC:
XYBASIC <возврат каретки>

11

Когда интерпретатор загружен, на экране появляется сообщение

XYBA6IC {version} REV n.m
COPYRIGHT 1978,1979,1980 BY MARK WILLIAMS COMPANY
CHICAGO
WIDTH?
END OF MEMORY?
xxxxx BYTES FREE
OK

xxxxx — количество свободных байтов.
Первая строка указывает на то, что вы используете версию n.m. XYBASICa. Сообщение

{version} может быть СР/М или 1SIS-1I, кроме того, если версия включает команды редактиро­
вания текста, в сообщении указывается EDIT, а если версия включает дисковые коман­
ды-DISK.

Вторая строка информирует о фирме-разработчике данной версии интерпретатора и о
лицензионной чистоте данного программного продукта.

Третья строка запрашивает длину строки терминала. Эта информация необходима для
организации форматированного вывода. Ответ должет быть десятичным числом (до 255), за
которым следует символ < возврат каретки>. Бели сразу вводится < возврат каретки>, то по
умолчанию принимается длина строки, равная 80 символам.

Четвертая строка запрашивает память для программы пользователя. Ответ должен быть
десятичным числом, которое является наибольшим адресом оперативной памяти в системе
компьютера, за которым следует < возврат кареткн>. Если необходимо зарезервировать
память для подпрограмм на машинном языке, нужно ввести максимальный адрес, который
может использовать интерпретатор XYBASIC. Если будет введен только < возврат каретки>,
то XYBASIC найдет и будет использовать наибольший допустимый адрес автоматически. В
СР/М и ISIS-II эта информация поступает из операционной системы.

Пятая строка сообщает, сколько байтов памяти остались свободными для программ и
переменных.

Для выхода из интерпретатора в операционную систему необходимо нажать клавиши
Ctrl—В.

1.5.2. &ейсик-Спектрум+2

После того как интерпретатор полностью загружен, появляется тестовый сигнал: на экра­
не телевизора присутствуют цветные полосы, а из динамика слышится постоянный тоновый
сигнал.

Для выключения тестового сигнала следует нажать клавишу RESET (Повторный запуск).
Тестовый сигнал исчезнет, а на экране появится начальное меню: 1—загрузчик магнитной
ленты; 2—Бейсик-128; 3—калькулятор; 4—Бейсик-48.

Начальное меню появляется на экране при включении компьютера либо после нажатия
клавиши RESET и предлагает выбор одной из четырех функций. Функции меню появляются
выделенными на экране с помощью полосы подсветки. Используя клавиши управления
курсором, выбирается функция ”Бейсик-128”. После этого выбор функции подтверждается
нажатием клавиши ENTER (Ввод).

Теперь компьютер переключился в режим "Бейсик-128”. Вы увидите заголовок в нижней
части экрана и мерцающий курсор в левом верхнем углу.

12

Для возврата в начальное меню необходимо использовать меню редактирования, которое
вызывается с помощью нажатия клавиши EDIT (Редактирование). Вновь с помощью клавиш
управления курсором и клавиши ENTER выбирается функция EXIT (Выход) для возврата в
начальное меню.

1.5.3. Бейсик-АГАТ

Для обращения к интерпретатору, находящемуся в ПЗУ, из программы "Системный
монитор** используются следующие команды:

*EOCOG или УПР-РЕГ

для обращения к интерпретатору без сохранения программы и состояния интерпретатора;

*£0036 или УПР-РЕГ-5
для обращения к интерпретатору с сохранением программы и состояния интерпретатора.

При наличии в ПЭВМ "АГАТ” дисковой операционной системы для обращения к интер­
претатору можно нажать клавишу СБРОС. При этом программа и состояние интерпретатора
сохраняются.

После загрузки интерпретатора на экране дисплея появляется приглашение к работе в
виде символа ”]” и мигающий курсор за ним.

1.5.4. Бейсик-TRS-BO

После включения компьютера в сеть на экране дисплея появляется сообщение MEMORY
SIZE? (Размер памяти?). Существует два варианта ответа на указанный запрос. Если предпола­
гается работа с программами на машинном языке, загружаемыми в специально отведенный
сегмент памяти, то ответ должен быть командой SYSTEM. Если предполагается работа с про­
граммами на языке Бейсик, следует нажать только клавишу ENTER (Ввод) без нажатия
каких-либо других клавиш. Это позволит при написании Бейсик-программы использовать всю
память (для 4К версии — 3284 байт; для 16К версии —15572 байт). _

После нажатия клавиши ENTER (Ввод) на экране появляется сообщение:

RADIO SHACK LEVEL II BASIC
READY
>_

В Бейсик-TRS—80 существуют 4 режима работы:
командный (Command) — в 4К версии это режим калькулятора;
программный (Execute) - выполнение командой RUN Бейсик-программ;

(В4К версии используются только эти режимы.)
редактирование (Edit) — только в 16К версии; позволяет редактировать строки программы;
машинный (Monitor) — позволяет загружать объектные файлы в память.

1.5.5. MBASIC v.5.0.

Для вызова интерпретатора необходимо ввести команду MBAS1C. Полный формат
команды:

MBASIC [спецификация файла] [/Егчисло файлов] [/Бсразмер записи]
[/ М: рабочая область] < возврат каретки >

13

спецификация файла — спецификация программного файла, который будет загружаться
и выполняться. Это строковая константа, не заключенная в кавычки;

/F: число файлов — максимальное число файлов, которые могут быть открыты в любое
время в течение работы интерпретатора. Каждый блок файла данных требует 166 байт памяти.
Если этот параметр опущен, то по умолчанию число файлов равно 3. Максимальное значение
параметра /F: —15;

/S: размер записи — максимальный размер записи для файлов произвольного доступа. По
умолчанию размер записи равен 128 байтам.

/М: рабочая область — максимальная память, которая может быть использована интерпре­
татором как рабочее пространство. Максимальное значение — 64 Кбайта. Если этот параметр не
указан, то используется вся доступная память.
Все числа в данных параметрах могут быть заданы в десятичном, восьмеричном и шестнад­
цатеричном представлении.

Когда интерпретатор загружен, на экране дисплея появляется сообщение:

BASIC-BO REV. 5.0.
ССР/М VersionJ
Copyright 1977, 78, 79, 80 (С) by Microsoft
Created:14—Jul-ВО
xxxxx Bytes free
Ok

xxxxx - количество свободных байтов.
Для выхода из интерпретатора в операционную систему используется команда SYSTEM.

1.5.6. Бейсик-КОРВЕТ

В КУВТ "КОРВЕТ” имеются два интерпретатора языка Бейсик: один размещен в постоян­
ной памяти (Бейсик-ПК8010), другой на диске (Бейсик-ПК8020).

Загрузка Бейсик-ПК8010. После включения питания подается короткий звуковой сигнал
и выдается сообщение:

опте и.m
После окончания ОПТС (оперативной проверки технических средств) выдается сообщение:

Бейсик КОРВЕТ в.п.т
Москва 19хх г.

Ок
пдп. - номер версии программного обеспечения;
хх - год.
Загрузка Бейсик-ПК8020. Для вызова интерпретатора языка Бейсик необходимо ввести

команду BASIC. Полный формат команды BASIC:

BASIC[спецификация файла][/F:числофайлов][/М:размер]

<возврат каретки>

спецификация файла - имя программы, которая будет загружаться и выполняться. Это
строковая константа, не заключенная в кавычки;

/F: число файлов — максимальное число файлов, которые могут быть открыты во время
работы интерпретатора. Каждый блок файла данных требует 166 байт памяти. Если этот пара­
метр не указан, то по умолчанию число файлов равнб 3. Максимальное значение /F: — 15.

14

/М: размер — максимальная память, которая может быть использована интерпретатором
как рабочее пространство. Если этот параметр не указан, то используется максимальная дос­
тупная память 48 Кбайт.
После загрузки интерпретатора на экране дисплея появляется сообщение:

Бейсик КОРВЕТ в.п.ш.
Москва
МикроДОС 19хх

Ок
п.ш. — версия программного обеспечения;
хх - год.
Для возврата в операционную систему используется команда SYSTEM.

1.5.7. MSX-BASIC

Программа MSX-BASIC расположена в постоянной памяти. Возможны два способа вызова
интерпретатора. Левый — если операционная система не загружена, и второй — если операцион­
ная система загружена.

Дисковый вариант MSX-BASIC. После загрузки операционной системы и появления
подсказки для входа в Бейсик-систему необходимо набрать команду BASIC, полный формат
которой выглядит так:

BASIC [спецификация файла] <возврат каретки>
спецификация файла - имя программного файла, который будет загружаться и выпол­

няться. Это строковая константа, не заключенная в кавычки.
После загрузки интерпретатора на экране дисплея появляется сообщение:

MSX BASIC version 1.0
Copyright 1983 by Microsoft
xxxxx Bytes free
Disk BASIC version 1.0
Ok

xxxxx - количество свободных байтов.
Для возврата в операционную систему необходимо набрать оператор CALL SYSTEM или

команду _SYSTEM.
MSX-BASIC в ПЗУ. После включения питания при отключенном дисководе и незагружен­

ной операционной системе на экране дисплея появляется сообщение:

MSX SYSTEM
version 1.О
Copyright 1983 by Microsoft

Затем после некоторого времени появляется запрос:

Enter date (M-D-Y):

который требует ввести дату начала работы с интерпретатором.
После ответа на экране появляется сообщение, аналогичное дисковой версии, и интерпре­

татор готов к работе.

15

1.5.8. Расширенный Бейсик IBM PC (ЕС 1840) - BASICA

Для вызова интерпретатора необходимо ввести команду BASICA. Полный формат ко­
манды BASICA:

BASICA [спецификация файла][/F: число файлов][/S: размер

записи][/С:буфер][/М:рабочая область]<возврат каретки>

спецификация файла — имя программного файла, который будет загружаться и выпол­
няться; это строковая константа, не заключенная в кавычки;

/F: число файлов — максимальное число файлов, которые могут быть открыты в любое
время в течение работы интерпретатора; каждый файл требует 188 байт памяти для блока
управления файлом плюс размер, заданный в параметре /S:; если параметр /F: не указан, то по
умолчанию число файлов равно 3; максимальное значение /F: равно 15;

/$:размер записи — размер записи для файлов произвольного доступа; параметр длины
записи в операторе OPEN не может превышать это значение; по умолчанию размер записи
равен 128 байт, максимальное значение, которое можно ввести — 32767; рекомендуется ис­
пользовать /S:512 при использовании файлов произвольного доступа;

/С: буфер - размер каждого буфера связи, максимальное значение — 32767; если этот
параметр не указан, то резервируется 256 байт для буфера приема и 128 - для буфера переда­
чи; при наличии линии высокой скорости передачи рекомендуется /С: 1024;

/М:рабочая область — максимальная память, которая может быть использована интер­
претатором как рабочая область, максимальное значение — 64 Кбайт; если этот параметр не
указан, то используется вся доступная память.
Все числа в данных параметрах могут быть заданы в десятичном, восьмеричном или шестнад­
цатеричном виде.

Когда интерпретатор загружен, на экране появляется сообщение:

The IBM Personal Computer Basic
Version A2.00 Copyright IBM Corp. 1981, 1982, 1983
xjum Bytes free

Ok

xxxxx— количество свободных байтов.
Для возврата в операционную систему используется команда SYSTEM.

1.6. Трансляторы языка Бейсик

Существуют два основных типа трансляторов языка Бейсик: интерпретирующего и ком­
пилирующего типов - интерпретаторы и компиляторы.

Интерпретатор непосредственно выполняет (интерпретирует) исходный текст програм­
мы, вводимый в ОЗУ либо с клавиатуры, либо с внешнего запоминающего устройства.

Компилятор языка Бейсик по функциям ничем не отличается от транслирующих систем
подобного типа с других языков.

Существуют также трансляторы промежуточного типа, называемые интерпретаторами
компилирующего типа.

В основном ПЭВМ оснащаются интерпретаторами, позволяющими реализовать все воз­
можности диалоговой системы программирования. Как было сказано выше, интерпретаторы
замедляют выполнение программы в 10 — 20 раз. Если в программе требуется работа с реаль-
16

ными объектами или необходимо многократно использовать разработанную программу, то
обычно создание программы проводят в два этапа: сначала разрабатывают и отлаживают
программу с помощью интерпретатора, а затем пропускают ее через компилятор, получая,
таким образом, перемещаемый объектный модуль.

Транслятор с языка Бейсик фирмы Microsoft, который обычно называется BASCOM,
представляет собой набор дополнительных транзитных программ, который может быть вклю­
чен в.стандартный набор транзитных программ операционных систем СР/М, МикроДОС или
MSDOS и может использоваться совместно с интерпретатором BASIC фирмы Microsoft (MBASIC,
BASICA и т. п.).

Набор программ BASCOM предоставляет средство, с помощью которого файлы с исход­
ным текстом программы на языке Бейсик могут быть преобразованы (оттранслированы) в
файлы, содержащие перемещаемый объектный код. Эти файлы с перемещаемым объектным
кодом могут быть далее объединены с другими файлами в процессе окончательной сборки и
создания файла с исполняемым машинным кодом.

В набор программ BASCOM входит файл BASCOM.COM, который содержит собственно
компилятор с языка Бейсик, а также библиотечные файлы. Для выполнения компиляции
файла вводится команда:

BASCOM имя файла.BAS
По завершении работы компилятора создается файл с расширением .REL, который содержит
перемещаемый объектный код исходной программы. Исполняемый машинный код получает­
ся после работы программы LINK-80.

Глава 2

Основные элементы языка Бейсик

2.1. Режимы работы

Когда интерпретатор готов к работе, на экран выводится подсказка. Это состояние назы­
вается уровнем команд.

В это время интерпретатор может быть использован в одном из двух режимов: в прямом
(командном) или в программном. Как правило, в рассматриваемых версиях признаком
готовности интерпретатора является сообщение ”0к”, только в Бейсик TRS-80 — это сообщение
•READY”, в XYBASIC - ”0К”, а в Бейсик-АГАТ - символ

Прямой (командный) режим - это режим непосредственных вычислений, он удобен
для отладки. Интерпретатор выполняет задание сразу после его введения. В этом режиме
оператор предварительно не определяется номером строки. Можно вывести на экран результа­
ты работы арифметических или логических операций и запомнить их для дальнейшего исполь­
зования, но сами задания не сохраняются после выполнения. Например:

PRINT 20*5
25

Ok
В программном режиме вводят и выполняют программы. Вводимая строка, которая

является частью программы, должна начинаться с номера. Затем строка запоминается как
часть программы в памяти. Программа может быть выполнена при введении команды RUN.
Например:

17

10 PRINT 20+5
RUN

25
Ok

Любая вводимая директива должна заканчиваться нажатией клавиши возврата каретки.

2.2. Формат программной строки

Программа задается в виде последовательности программных строк, которые описывают
алгоритм решения задачи.

В языке Бейсик программные строки имеют следующий формат:
ппшш оператор [: оператор...] < возврат каретки>
шшпп - номер строки.
В табл. 2.1. приведены минимальный и максимальный номера строк, которые можно

использовать при написании программ.
Операторы делятся на исполнительные и неисполнительные. Каждый оператор — это

ключевое (резервированное) слово, определяющее характер действия компьютера. Вслед за
ним располагается информация, необходимая для указанного действия. Ключевые слова
должны отделяться пробелами.

Таблица 2.1

Версия
Номер строки

минимальный максимальный

Стандарт >0 —

XYBASIC 1 65535

Бейсик-
Спектрум+2 1 9999

Бейсик-
АГАТ 0 (1) 3999(32767)

Бейсик-
TRS-80 0 65529

MBASIC 0 65529

Бейсик-
ПК8010 0 65529

Бейсик-
ПК8020 0 65529

MSX-BASIC 0 65529

BASICA 0 65529

18

Исполнительный оператор — это инструкция программы, которая сообщает интерпрета­
тору, что делать при выполнении программы (например, GOTO, PRINT).

Неисполнительный оператор - это оператор, который не вызывает у интерпретатора
никаких программных действий (например, REM, DATA).

В одной строке может быть несколько операторов, они должны разделяться двоеточием
(:), общее число символов в строке не должно превышать 255.

Как правило, любая система программирования накладывает ограничение на число строк
в программе. Объединение нескольких операторов в одной программной строке позволяет
разрабатывать программы, в которых число операторов может быть увеличено в несколько раз.

Вводимые в память компьютера программные строки упорядочиваются по возрастанию
номеров строк, что позволяет добавлять новые строки между введенными ранее или стирать
ненужные. По номеру строки осуществляется безусловный переход или вызов подпрограммы.
Сообщение об ошибке выводится с указанием номера строки, где данная ошибка произошла.

При составлении программ рекомендуется нумеровать строки с интервалом в пять,
десять или сто, что позволит, при необходимости, вставить в программу дополнительные
строки.

В рассматриваемых версиях языка, кроме Бейсик-Спектрум+2, имеются средства для
автоматической генерации номеров строк с заданным интервалом (команда AUTO) и средства
для перенумерации строк с определенного номера и с заданным интервалом (команда RE­
NUM). Версия Бейсик-Спектрум+2 осуществляет перенумерацию строк с помощью меню
встроенного редактора.

2.3. Синтаксические элементы программы

Основными элементами языка Бейсик являются выражения, операции и данные (рис. 2.1.).
Программа на языке Бейсик записывается с использованием следующих символов:
прописные и строчные буквы латинского алфавита от А до Z и, если реализовано, буквы

русского алфавита от А до Я (буквы русского алфавита могут использоваться только в строко­
вых константах и комментариях);

арабские цифры от 0 до 9;
специальные символы:

О
сн

ов
ны

е эле
м

ен
ты

 язы
ка

выражения

типы данных

основные конструкции языка (см рис. 2.2)

типы операций

отношения -
массивы

числовые'

строковые
арифметические
логические ■ функции NOT, AND, OR, XOR,

IMP, EQV

одинарной*
'точности
'двойной _
точности

юператор DIM

оператор OPTION BASE

.специальные символы

комментар!

строковые

_операторы DE Fl NT
DEFSNG
DEFDBL

оператор REM OEFSTR

Рис. 2.1
19

= Знак равенства или символ присваивания
+ Знак сложения
— Знак вычитания
* Знак умножения
/ Знак деления
~ Знак экспоненты (степени)
(Левая круглая скобка
) Правая круглая скобка
% Знак процента
Знак номера (или фунт)
$ Знак денежной единицы (или доллар)
! Восклицательный знак

. Точка
’ Апостроф
; Точка с запятой
: Двоеточие
& Амперсанд
@ Коммерческое "AND”
? Знак вопроса
< Знак "меньше чем”
> Знак "больше чем”
\ Знак целочисленного деления

Знак подчеркивания
” Двойные кавычки

, Запятая
символы пропусков: пробел и горизонтальная табуляция.
Синтаксическими элементами программы (рис. 2.2.) являются имена переменных,

ключевые (резервированные) слова, константы и ограничители (простые и составные).
В большинстве рассматриваемых версий при вводе программы с клавиатуры ключевые

словааложно записывать как прописными, так и строчными буквами. Интерпретатор переводит
их в строчные, если они не являются частью строки, заключенной в кавычки, комментарием
или данными. Интерпретатор Бейсик-Спектрум+2 переводит в строчные буквы только клю­
чевые слова.

Имя переменной — набор символов, определяющий переменную. Имя переменной
должно обязательно начинаться с буквы. Число символов, входящих в имя, зависит от версии
языка или интерпретатора машины. Состав символов, входящих в имя переменной, для
разных версий представлен в табл. 2.2.

Имя переменной определяет также и тип переменной с помощью специального символа,
замыкающего имя. Имена переменных, отличающиеся этим специальным символом, не
идентичны между собой, например А%, А$, А! и A# присваиваются разным переменным.
Специальные символы после имени переменной означают:

% — переменная ц злочисленная;
- переменная вещественная, двойной точности;
! — переменная вещественная, одинарной точности;
$ - переменная строковая.

Рис. 2.2
20

Таблица 2.2

Версия Число символов
в имени пере­
менной (без
специального
символа)

Примечание

Стандарт не менее
двух

Первый символ должен быть
буквой,остальные буквами
или цифрами

XYBASIC Любой длины,
запоминаются
первые восемь
символов

Первый символ должен быть
буквой, остальные - буквами
или цифрами. Ключевое слово
не может быть именем или
частью имени переменной.

Бейсик-
Спектрум+2

Любой длины Первый символ должен быть
буквой, другие буквами или
цифрами. Пробелы игнорирую­
тся и все буквы внутри пе­
реводятся в строчные.
Ключевое слово может быть
частью имени, если оно не
обрамлено пробелами. Имя
строки
буквы,
символ
вления

состоит из одной
за которой следует
$. Переменные упра-
в FOR...NEXT циклах

имеют имена длиной в одну
букву. Числовые массивы
имеют имена длиной в одну
букву, которая может совпа­
дать с именем простой пере­
менной. Строковые массивы
имеют имена длиной в одну
букву, за которой следует
символ $, и не могут совпа­
дать с именем переменной.

Бейсик-АГАТ Два символа Первый символ должен быть
буквой, второй буквой или
цифрой. Ключевое слово не
может быть именем или час­
тью имени переменной.

Бейсик-TRS-80 До 255 симво­
лов, но запо­
минаются пер­
вые два симво­
ла

Первый символ должен быть
буквой, остальные буквами
или цифрами. Ключевое слово
не может быть именем* или
частью имени переменной

21

Окончание табл, 2.2

MBASТС 40 символов Первый символ должен быть
буквой, остальные буквами,
цифрами или точкой. Ключе­
вое слово не может быть име­
нем или частью имени пере­
менной.

Бейсик*ПК8010 Любой длины,
но Запомина­
ются первые
два символа

Первый символ должен быть
буквой, остальные
цифрами. Ключевое
может быть именем
имени переменной

буквами или
слово не
или частью

Бейсик*ПК8020 Любой длины,
но запомина-
ются первые
два символа

Первый символ должен быть
буквой, остальные
цифрами. Ключевое
может быть именем
имени переменной

буквами или
слово не
или частью

MSX-BASTC Любой длины,
но запомина­
ются первые
два символа

Первый символ должен быть
буквой, остальные
цифрами. Ключевое
может быть именем
имени переменной

буквами или
слово не
или частью

ВЛ5ТСА Любой длины,
но запомина­
ются первые
сорок симво­
лов

Первый символ должен быть
буквой или цифрой, остальные
буквами или цифрами. Ключе­
вое слово может быть частью
имени или именем переменной.

В табл.* 2.3. представлена информация о наличии разных типов переменных в рассматри­
ваемых версиях.

Таблица 2.3

Специальные Тип переменной по
символы умолчанию

Версия

।

।I UIIIIIIII иII I II
W

Стандарт + + + + Числовая переменная
одинарной точности (!)

XYBASIC + + + Числовая переменная с
плаваюцей точкой (!)

Бейсик-
Спектрум+2

+ Числовая переменная

22

Окончание табл. 2.3

Специальные Тип переменной по
Версия символы умолчанию

$ % ! #

Бейсик- + > Числовая переменная с
АГАТ плавающей точкой

Бейсик- + +
TRS-80

4 + Числовая переменная
одинарной точности (!)

MBASIC + * + + То хе

^РЙ^ЧГ- ♦ »
LAOUiU

4- + -||-

Бейсик- + + + +
ПК3020

-II-

MSX-BASIC 4 + + 4 Числовая переменная
двойной точности (#)

BASICA + + + + Числовая переменная
одинарной точности (!)

Для задания типа переменной могут быть использованы операторы:
DEFINT — для целочисленных переменных;
DEFSNG — для переменных с плавающей точкой одинарной точности;
DEFDBL — для переменных с плавающей точкой двойной точности;
DEFSTR - для строковых переменных.
В табл. 2.4. указано наличие операторов описания типа переменной в рассматриваемых

версиях языка. Таблица 2.4

Версия DEFINT DEFSNG DEFDBL DEFSTR

Стандарт + 4 4 4

XYBASIC 4 4 4

Бейсик-
TRS-80 4 4 *- 4

MBASIC 4 4 ► 4

Бейсик-
ПК8010 + 4 4 4
Бейсик-
ПК8020 4 4 4 4

MSX-BASIC 4 4- 4 4

BASICA 4- 4 4 4
23

Окончание табл. 2.4

Примечание.В версии XYBASIC операторы записываются с пробелом: DEF INT, DEF SNG, DEF STR.

Ключевое слово — это слово с определенной смысловой нагрузкой. Оно является
инструкцией языка Бейсик и по этой инструкции интерпретатор выполняет определенные
действия.

Программа на языке Бейсик — это упорядоченная последовательность строк, включаю*
щих в себя номер строки и набор инструкций, состоящих из ключевых слов, за которыми
следуют параметры. Инструкции описывают операции, которые необходимо выполнить.
Операция определяется ключевым словом.

Инструкции в языке Бейсик делятся на команды, операторы и функции. Команды
определят-^ способ управления программой. Они управляют, исполняют или воздействуют на
программу. Операторы разрешают доступ, ввод-вывод иди обработку данных и определяют
конечный результат. Функции устанавливают значения математических операций, операций
обработки строки и операций, которые определяет сам пользователь. Функции являются
частью оператора. Ключевые слова должны отделяться от других синтаксических единиц
ограничителями или пробелами. Набор ключевых (резервированных) слов различен для
разных версий языка Бейсик и приведен в приложении 2.

Простые ограничители — это любые специальные символы, кроме символов $ %! и #.
Составные ограничители — образуются соединением двух специальных символов:
<> не равно; < = меньше или равно (не больше); > = больше или равно (не меньше)
Константы — используются для записи величин, которые не изменяются во время

выполнения программы.
Комментарий — это набор символов, следующий после оператора REM или ’. Может

включаться в текст программы, предназначен для записи пояснений к алгоритму задачи, не
влияет на выполнение программы.

2.4. Данные и их описание

Данные в языке Бейсик (рис. 2.3) подразделяются на два вида: константы и перемен­
ные. С каждым видом данных связано понятие типа.

Тип данных определяет внутреннее представление данных в памяти. Бейсик оперирует с
данными следующих типов: строковыми и числовыми — шестнадцатеричными, восьмерич­
ными, двоичными и десятичными с фиксированной и плавающей точкой одинарной и двой­
ной точности.

Строковые данные — набор данных в виде записей, образующих строки для обработки
текстов и вывода на печать. При работе со строковыми данными язык Бейсик позволяет:

присваивать строковое значение строковой переменной;
создавать строковые формы, которые образуют новые строки.

2.4.1. Константы

Константы - вещественные значения, не изменяемые во время выполнения программы.
Имеется два типа констант: строковые (символьные) и числовые.

Для каждого типа констант имеются свои правила записи. Последовательность символов,
образующих константу, определяет как значение, так и тип этой константы.

В табл. 2.5 показано наличие типов констант в разных версиях языка Бейсик.
24

Данные

Константы Переменные

в восьмеричной
форме

Таблица 2.5

в шестнадцатеричной
форме ₽ИС. 2.3

Номер версии
1 пн
НЫХ 1 2 3 4 5 6 7_ 8 9 10

Строковые 4 4 4 4 + 44 4 4 4

Десятичные
целые

4 4 4 4 4 4 4 4 4 4

Десятичные
с фиксирован­
ной точкой

4 4 4 4 4 4 4 4 + 4

Десятичные
с плавающей 4 4 4 + 4 4 4 4 4 4
точкой оди­
нарной точ­
ности

Десятичные с
плавающей точ­
кой двойной
точности

25

Окончание табл. 2.5

Номер версии
Тип переменных 123456789 10

Шестнадцате - + + + + + + + + + +
ричные

Восьмеричные + * + ♦ + +

Двоичные * + + +

Строковая константа — это последовательность символов (до 255), заключенная в
кавычки.

Кавычки не могут использоваться внутри строковой константы. В качестве строковых
констант могут применяться любые символы кода ASCII (КОИ-8), имеющие графическое
представление. В частности, можно использовать специальные символы (“+“,
и др.) цифры, прописные и строчные буквы латинского и русского алфавитов. Например:

PRINT "ПРОГРАММА PROGRAMM программа programm"
Чтобы включать в строковые данные кавычки или символы, не имеющие графического

представления, используется функция CHR$.
Числовая константа — положительное или отрицательное число. Числовые константы

могут быть целыми, с фиксированной или плавающей точкой. Целые числовые константы
могут быть записаны в десятичном, двоичном, восьмеричном и шестнадцатеричном форматах.
Целые константы запоминаются в двух байтах памяти. Целое десятичное число — число от
—32768 до +32767 включительно.

Например —12 или 27
Двоичное число - цифры в двоичной системе счисления. Двоичные константы имеют

лрефикс (табл. 2.6), за которым следует шестнадцать цифр (0 и 1).
Восьмеричное число — цифры в восьмеричной системе счисления. Восьмеричные

константы имеют префикс, за которым следует шесть восьмеричных цифр (0 - 7).
Шестнадцатеричное число — цифры в шестнадцатеричной системе счисления. Шестнад­

цатеричные константы имеют префикс (в Бейсик-Спектрум+2 - постфикс), за (перед) которым
следуют четыре шестнадцатеричные цифры (0 - 9 и буквы A-F).

Константы в двоичном, восьмеричном и шестнадцатеричном форматах запоминаются в
двух байтах и интерпретируются как целые числа. Константы имеют разное представление в
рассматриваемых версиях языка Бейсик (табл. 2.6).

Таблица 2.6

Номер версии
Тип константы -- -----------

Примечание. Данное представление только для дисковых версий языка Бейсик.

26

1 2 3 4 5 в 7 8 9 10

Шестнадцате­
ричная

&Н 9 h
постф.

$ ан(*) &н ан ан &Н АН

Восьмеричная &О(*) &о ЛО &о
или &

&О &О

Двоичная & BIN ав &В &В &В

Число с фиксированной точкой - положительное или отрицательное вещественное число,
т. е. число, содержащее точку на постоянном месте. Например:

—31.94,+ 78.02 или 541.77
Число с плавающей точкой — положительное или отрицательное число, представленное

в экспоненциальной форме. Константа с плавающей точкой состоит из знаковой фиксирован­
ной целой части (мантиссы), за которой следует буква Е и (необязательно) знаковое целое
число (экспонента). Константы с плавающей точкой в некоторых версиях языка Бейсик могут
быть одинарной Е и двойной D точности.
Константы одинарной точности могут быть записаны:

семью или меньше цифрами;
в экспоненциальной форме, используя букву Е;
с завершающим знаком!.

Константы двойной точности могут быть записаны:
восемью или больше цифрами;
в экспоненциальной форме, используя букву D;
с завершающим знаком #.
Например:
1Б13 или 3.5D—б
Диапазоны изменения чисел с плавающей точкой для разных версий представлены

в табл. 2.7.

Таблица 2.7

Версия Числа одинарной
точности

Числа двойной
точности

XYBASIC от -1.7Е38 до 1.7Е38 —

Бейсик-
Спектрум+2 от 4Е-39 до 1Е38 —

Бейсик-
АГАТ от 1Е-38 до 1Е+38 —

Бейсик-
TRS-80 от 1.7Е-38 до 1.7Е+38 от 1.7D-38 до 1.7D+38

MBASIС от 0.9Е-38 до 1.7Е+38 от 0.2D-38 до 1.7D+38

Бейсик
ПК8010 от 1.7Е-38 до 1.7Е+38 от 1.7D-38 до 1.7D+38

Бейсик
ПК8020 от 1.7Е-38 до 1.7Е+38 от 1.7D-38 до 1.7D+38

MSX-BASIC от ЮБ-64 до 10Е+64 от 10D-64 до 10D+64

BASICA от 1.7Е-38 до 1.7Е+38 от 1.7D-38 до 1.7D+38

27

2.4.2. Переменные

Переменная - это величина, к которой обращаются по имени и которая может принимать
различные значения.

Имена переменных — это ячейки памяти, содержащие значения этих переменных.
Имена могут определять значение переменной как константу или могут быть результатом
вычислений в программе. Перед тем как переменной присвоено какое-либо значение, значе­
ние переменной равно нулю.

Тип переменной определяет ее внутреннее представление. В языке Бейсик существует
два типа переменных: строковые и числовые.

Строковая переменная может занимать до 255 байт. Строковые значения присваиваются
переменным так же, как и числовые. Специальный символ идентифицирует строковую
переменную. Если строковой переменной не было присвоено значение, то считается, что ей
присвоена пустая строка. Новое значение строковой переменной может быть присвоено
оператором LET.

Например:

10 А$="STRING"
20 PRINT А$
30 А$="строка"
40 PRINT А$
RUN
STRING
строка

В этом примере значения, присваиваемые переменной А$, заключаются в кавычки.
Строковым переменным могут присваиваться и более сложные выражения. Если строковой
переменной будет присвоено числовое значение или числовой переменной - строковое, то
появится сообщение об ошибке.

Примеры строковых переменных:

STROKA$="Next line - следующая строка"
CHISLO$-'‘40*1.723Е+5"
NAMES="Александр Сергеевич Пушкин"

Для присвоения новых значений строковым переменным можно использовать также
операторы READ, DATA, INPUT и т. п.

Числовая переменная может быть целочисленной и вещественной. Целочисленные
переменные (2 байта) могут представляться в десятичном, двоичном, восьмеричном и шестнад­
цатеричном форматах. Вещественные переменные одинарной точности занимают 4 байта
памяти, двойной точности - 8 байт.

В языке Бейсик имеются переменные, а также наборы переменных, образующие массивы.
Массив — это упорядоченная последовательность величин, обозначенных одним именем

(или набор переменных), отличающихся индексом.
Отдельные величины, образующие массив, называются элементами массива.
Элементы массива определяются именем массива и индексом, заключенным в скобки, и

образуют переменные с индексом (индексированные переменные). Индекс указывает на
положение элемента в массиве. Элемент массива имеет столько индексов, какова размерность
массива. При обращении к массиву индекс может задаваться любым выражением. Отрица­
тельное значение индекса вызывает ошибку.

28

Язык Бейсик позволяет использовать массивы строковых переменных таким \:е обра­
зом, как и массивы числовых переменных. Например, DIM NAME$(50) определяет массив,
размещающий 51 строковую переменную, которые имеют имена NAME$(0), NAME$(1),
NAME$(50).

В версии языка Бейсик-Спектрум+2 имеются следующие особенности:
массивы моеут иметь несколько размерностей произвольной длины;
имя массива строковых переменных не может совпадать с именем строковой переменной.
Все строки в массиве имеют одинаковую фиксированную длину, которая задана как

дополнительная окончательная размерность в операторе DIM. Индексы начинаются с 1.
В остальных рассматриваемых версиях простые переменные и массивы могут иметь

одинаковые имена.
Во всех версиях, кроме Бейсик-Спектрум+2, минимальное значение индексов равно 0, а

не 1. В некоторых версиях имеется оператор OPTION BASE, позволяющий изменять мини­
мальное значение индексов.

Как под переменные, так и под массивы должна быть резервирована память, поэтому
необходимо сообщить, какие массивы будут использованы в программе, каков тип перемен­
ных и размер каждого массива. Описание массива осуществляется оператором DIM и должно
появляться в программе до первого обращения к элементу массива.

В версиях MBASIC, Бейсик-ПК8010, Бейсик-ПК8020, MSX-BASIC, BASICA, если описание
массива отсутствует, то по умолчанию максимальное значение каждого индекса равно 10.

Если во время выполнения программы оказывается мало памяти, то в некоторых
версиях используется оператор ERASE, удаляющий массивы из программы.

Размерность массивов и число элементов определяется количеством байтов свободной
памяти. В версии языка Бейсик-АГАТ используется не более трех размерностей.

2.5. Перевод чисел одной точности в числа другой точности

Если числовое значение одной точности присваивается числовой переменной другой
точности, то число будет запоминаться с точностью, описанной именем переменной. Например:

10 А%=23.42
20 PRINT А%
RUN

23
При этом, если любое значение более высокой точности присваивается переменной

меньшей точности, то осуществляется необходимое округление. Например:

10 С%=55.88
20 PRINT С%
RUN

56
Если число с меньшей точностью переводится в число с большей точностью, то получен­

ное в результате число не может быть более точным, чем число с меньшей точностью. Так, при
переводе числа А одинарной точности в B# двойной точности только первые шесть цифр B#
будут точными. Например:

10 А=2.04
20 В#=А
30 PRINT A;B#
RUN
2.04 2.03999991853027

29

При вычислении выражения все операнды в арифметических операциях или операциях
отношения переводятся в ту же точность, что и операнд с наибольшей точностью. Так, в
нижеприведенном примере арифметическая операция выполняется с двойной точностью, и
результат D# получается как число двойной точности. Например:

10 D#=6#/7
20 PRINT D#
RUN

.8571428571428571

Если в результате выполнения арифметической операции, выполняемой с двойной
точностью, должно быть получено число одинарной точности, то полученный результат округ­
ляется до числа одинарной точности. Например:

10 D=6#/7
20 PRINT D
RUN

.857143
Логические операции переводят свои операнды в целые числа и образуют целочисленный

результат. Операнды должны быть в диапазоне целых чисел, иначе появляется сообщение об
ошибке Underflow (Антипереполнение).

2.6. Выражения, типы операций

Выражения представляют собой компактную запись, указывающую, какие операции
надо производить над данными, чтобы получить требуемое значение. Порядок вычисления
выражения определяется приоритетом используемых операций.

В языке Бейсик выражение состоит из операндов, соединенных знаком арифметических,
логических операций или операций отношения и круглыми скобками. Операндами выраже­
ний являются любые переменные, числовые и строковые константы. Также в выражении
могут присутствовать встроенные функции.

В языке Бейсик используются следующие типы операций:
выполнение встроенных функций;
арифметические;
отношения;
логические.
Последовательность выполнения операций в порядке их приоритета связана с особеннос­

тями различных Бейсик-систем. Можно выделить четыре основных правила приоритета для
рассматриваемых версий:
1.(Бейсик-АГАТ, Бейсик-TRS-SO)

Самые внутренние круглые скобки
Встроенные функции
Возведение в степень
Унарный плюс или минус
Умножение и деление
Сложение и вычитание
Операции отношения
Логические операции NOT, AND, OR

2.(MBASIC, Бейсик-ПК8010, Бейсик-ПК8020,
MSX-BASIC, BASICA)
Самые внутренние круглые скобки
Арифметические функции
Относительные функции
Логические функции
Возведение в степень
Унарный плюс или минус
Умножение и деление
Целочисленное деление

3.(XYBASIC)
Самые внутренние круглые скобки
Встроенные функции
Унарный плюс или минус
Операция JOIN
Возведение в степень
Умножение, деление, целочисленное деление
и образование арифметического модуля MOD
Сложение и вычитание
Операции отношения

Логические операции NOT, AND, OR, XOR

Образование арифметического моду*
ля MOD
Сложение и вычитание
Операции отношения
Логические операции NOT, AND, OR,
XOR, IMP, EQV

4.(Бейсик-Спектрум+2)
Индексирование и расслоение
Встроенные функции
Внутренние скобки
Унарный плюс или минус
Возведение в степень
Умножение и деление

Сложение и вычитание
Операторы отношения в числовых выра­
жениях
Логические операции NOT, AND, OR

2.6.1. Арифметические операции

Таблица 2,8

Знак
операции

Операция Запись Пример

— Отрицание -X -3

Возведение в
степень

X*Y 2*3=8

♦ Умножение X*Y 5.4*1.25=6.75

/ Деление с пла­
вающей точкой

X/Y 4/0.2=20

\ Целочисленное
деление

X\Y 10\4=2
25.686\.99=26

MOD Образование X MOD Y 13 MOD 3.8=1
арифметического 25.68 MOD 6.99=5
модуля

+ Сложение X+Y 4+3.87=7.87

— Вычитание X-Y 4-3.87=0.13

JOIN Конкатенация
двух восьми­
битовых чисел

X JOIN Y 1 JOIN 2 = 258
#FF JOIN #FF=-1

31

При выполнении операции целочисленного деления операнды округляются до целых
чисел, которые должны лежать в диапазоне от —32768 до +32767. Частное от деления округляет­
ся до целого отбрасыванием дробной части.

Операция арифметического модуля вычисляет целое значение остатка целочисленного
деления.

Оператор JOIN осуществляет конкатенацию двух 8-битовых чисел в 16-битовое число.
Например, в результате конкатенации чисел 1 (двоичное 0000 0001) и 2 (двоичное 0000 0010)
получится число 258 (двоичное 0000 0001 0000 0010).

Разные версии языка Бейсик могут отличаться набором выполняемых арифметических
операций (табл. 2.9).

Таблица 2.9

--------- -- Арифметическая операция

Унарный
минус

* * / \ MOD + - JOIN

Стандарт + + + + + + + +

XYBASIC + + + + + + + + +

Бейсик-
Спектрум+2► * । + + + + +

Бейсик-
АГАТ + + + + + +

Бейсик-
TRS- 80 + + + + + +

MBASIC + + + + + + + +

Бейсик-
ПК8010 + + + + + + + +

Бейсик—
ПК8020 + + + + + + + +

MSX BASIC + + + + + + + +

BASICA + + + + + + + +

2.6.2. Операции отношения

Операции отношения используются для сравнения двух переменных. Результат срав-
нения ИСТИНА (-1) или ЛОЖЬ (0). В версии Бейсик-АГАТ ИСТИНА (1). В табл. 2.10 представ­
лены операции отношения.
32

Таблица 2.10

Знак операции Операция Пример

— Равенство X=Y

о Неравенство X<>Y

< Меньне X<Y

> Больне X>Y

< = Меньне или равно
(не больне)

X<=Y

> = Больие или равно
(не меньне)

X>=Y

2.6.3. Логические операции

Логические операции имеют дедо с комбинациями значений ИСТИНА-ЛОЖЬ. В резуль­
тате работы операции также получается или ИСТИНА, или ЛОЖЬ. Считается, что операнд
логического оператора или результат операции есть ИСТИНА, если он не равен нулю.

Рассмотрим логические операции в порядке приоритета: NOT — логическое отрицание;
AND — конъюнкция; OR — дизъюнкция; XOR — Исключающее ИЛИ; IMP — импликация;
EQV — эквивалентность.

NOT — операция логического отрицания аргумента. Изменяет значение аргумента на
противоположное.

X NOTX

И Л
Л И

AND — операция логического умножения двух аргументов (конъюнкция, И). В результа­
те выполнения операции получается значение ИСТИНА, если оба аргумента истинны, и ЛОЖЬ
— во всех остальных случаях.

X Y XANDY

ИИ И
ИЛ Л
ЛИ Л
Л Л Л

OR - операция логического сложения двух аргументов (дизъюнкция, ИЛИ). В результате
выполнения операции получится значение ЛОЖЬ, если оба аргумента ложны; в остальных
случаях результат принимает значение ИСТИНА.

33
2—6301

X Y XORY

И И и
ил и
ли и
л л л

XOR — операция логического Исключающего ИЛИ двух аргументов. Результатом выпол­
нения операции является ЛОЖЬ, если оба аргумента имеют одинаковые значения, в против­
ном случае результатом является значение ИСТИНА.

X Y XXORY

ИИ л
ил и
ли и
л л л

IMP — операция логической импликации двух аргументов. Результатом будет значение
ЛОЖЬ, если первый операнд имеет значение ИСТИНА, а второй - ЛОЖЬ; во всех остальных
случаях результатом будет значение ИСТИНА.

X Y XIMPY

ИИ И
ИЛ Л
ЛИ И
Л Л И

EQV — операция логической эквивалентности двух аргументов. Результатом выполнения
этой функции будет ИСТИНА, если оба аргумента истинны или ложны. В противном случае
результатом будет ЛОЖЬ.

X Y XEQVY

ИИ И
ИЛ Л
ЛИ Л
Л Л И

В табл. 2.11 представлены сведения о наличии логических операций в разных версиях
языка Бейсик.

Таблица 2.11

Версия NOT AND OR XOR IMP EQV

Стандарт

XYBASTC

Окончание табл. 2.11

Версия NOT AND OR XOR IMP EQV

Бейсик-
Спектрум42 4 4- 4-

Бейсик-
АГАТ + 4 4

Бейсик-
TRS 80 4 4 4-

MBASТС 4 4 4- 4- 4- 4-

Бейсик-
ПК8010 4 4 4- 4 4- 4

Бейсик-
ПК8020 4- 4 4 4 4- 4-

MSX-BASTC 4 4 4 4 4- 4-

BASIC 4 4 4 4 4- 4-

Логические операции выполняются путем преобразования их операндов в 16-битовые
знаковые целые числа в дополнительном коде в допустимом для каждой версии диапазоне.
Если операнд не лежит в этом диапазоне, то результат будет ошибочным. Логические операции
выполняются с целыми числами поразрядно (побитно), т.е. каждый бит результата зависит от
значения соответствующих битов двух операндов.

Логические операции могут применяться для программирования на уровне битов в
пределах байта. Например, оператор AND может быть использован для "маскирования” всех
битов, кроме одного, байта состояния машинного порта ввода-вывода. Оператор OR может
быть использован для "соединения” двух байтов при создании двоичного значения. Следую­
щие примеры демонстрируют, как работают логические операции.

63 AND 16 = 16
Так как числа 63 и 16 в двоичном коде представляются 111111 и 10000 соответственно, то

после выполнения логической операции AND будет получено двоичное число 10000, что соот­
ветствует числу 16, т.е. 111111 AND 10000 « 10000.

15 AND 14 = 14
-1 AND 8=8
4 OR 2 = 6
10 OR 10 = 10
-1 OR -2 = -1
NOT X = -(X+l)

Часто логические операции используются в условном операторе 1F. Например:
35

IF (A=l) OR (B=5) THEN GOTO 350
IF A=(B OR C) THEN GOSUB 800
IF ERR=13 AND ERL=400 THEN PRINT : GOTO 5000

2.7. Строковые операции

Строковые операции могут быть следующими: конкатенации; деления строки на части;
сравнения; выполнение встроенных функций.

Операция конкатенации (сцепления) обозначается символом плюс (+). В результате этой
операции образуется строка, левая часть которой равна первому операнду, а правая часть —
второму. Например:

10 С0$="Пример "
20 ТР$="задачи "
30 ST$=TP$+"Ha языке BASIC"
40 PRINT C0$+ST$
RUN
Пример задачи на языке BASIC
Ok

Операция деления строки на части присутствует только в версии языка Бейсик-Спект-
рум+2. В остальных версиях языка Бейсик этой цели служат встроенные функции, описанные
в гл. 3.

В версии Бейсик-Спектрум+2 для заданной строки ее подстрока состоит из нескольких
символов строки, следующих подряд. Следовательно, ”string” — эго подстрока строки "bigger
string”, а строки ”b string” и "bigger” не являются подстроками этой строки.

Для описания подстрок имеется понятие, называемое делением на части, и оно может
быть применено к произвольным строковым выражениям.

Общий формат:

строковое выражение (начало ТО конец)
начало и конец - целочисленные выражения.
По умолчанию начало равно 1, а конец — длине строки. Например:

"abcdef”(2 ТО 5) равно **bcde"
“abode f “(ТО 5) равно “abode"
“abodef “(2 TO) равно “bcdef“
“abcdef'(TO) равно “abode/"

Последнее выражение можно также записать в виде ”abcdef”O.
В другом формате деления на части опускается ключевое слово ТО и содержится только

одно число.

“abcdef"(3) равно “abcdef“(3 ТО 3) н равно “с".

Если значение начала больше значения конца, то результатом является пустая строка.
Таким образом, ”abcdef”(5 ТО 7) приводит к ошибке индекса, поскольку строка содержит
только 6 символов, однако выражения ”abcdef”(8 ТО 7) и ”abcdef”(l ТО 0) оба равны пустой
строке и поэтому допустимы,

36

Начало и конец не должны быть отрицательными, в противном случае появится сообще­
ние об ошибке ”В integer out of range” (В число вне диапазона).

Можно не только извлекать из строковых переменных подстроки, но также присваивать
значения подстрокам. Например:

10 LET a$="I love my Sinclair"
20 LET a$(ll TO 18)='Amstrad*****"
30 PRINT a$
RUN
I love my Amstrad*

Заметим, что поскольку подстрока а$(11 ТО 18) имеет длину, равную только восьми
символам, то только первые восемь символов (Amstrad*) используются в качестве ее значе­
ния; остальные четыре символа (****) отбрасываются.

Подстрока должна иметь такую же длину после присваивания значения, какую она
имела до присваивания, т.е., если присваиваемое значение больше длины строки, которой
присваивается значение, то лишние символы справа отсекаются, а если присваиваемое значе­
ние по длине короче длины строки, которой присваивается значение, то строка дополняется
пробелами.

Сложные строковые выражения должны быть заключены в скобки перед делением на
части. Например:

"abc"+ndef'*(l ТО 2) равна "abode9*
(”abc"+-def)(l ТО 2) равно "ab"

Строки можно сравнивать, используя операции отношения так же, как и числа. Строко­
вое сравнение выполняется посимвольным сравнением строк по кодам ASCII (КОИ-8). Если
все коды двух строк совпадают, то строки равны. Если коды различны, то строка с меньшим
кодом меньше. Если во время сравнения конец одной строки встретился раньше, то эта строка
меньше. Например:

”AA“<'AB"
'* F i 1 ename *' = " F11 ename *'

„С
Mkg">"KG“
"В$<"9/10/89- где В$='*8/10/89м

Все строковые константы, используемые в выражениях, должны быть заключены в
кавычки.

2.8. Описание инструкций
Таблица 2.12

Номер версии
Инструкция ---

123456789 10

DEFDBL
DEFINT

37

Окончание мбл. 2,12

Инструкция
Номер версии

1 2 3 4 5 6 7 8 9 го

DEFSNG + + + + + + +
DEFSTR + + + + + + +
DIM + + + + + + + + + +
ERASE + + + + + +
OPTION BASE + + +
REM + + + + + + + + + +

DEFINT, DEFSNG, DEFDBL, DEFSTR - операторы, описывающие тип переменных:
целочисленные (INT), одинарной точности (SNG), двойной точности (DBL), строковые (STR)

DEFthh буква[-буква], [,буква[-буква]]...

тип-INT, SNG, DBL, STR
Оператор DEF тип определяет, что переменные, имена которых начинаются с указанных букв,
будут переменными заданного типа. Данные операторы, если они используются в программе,
задаются в начале программы, перед использованием переменной. Например:

10 DEFINT X.D-H : DEFDBL L-P : DEFSTR A

В XYBASIC существуют только операторы DEF INT, DEF SNG, DEF STR, причем пробел
между ключевым словом DEF и типом обязателен.

DIM - определяет максимальную размерность массива, резервирует память для него
Формат 1 (кроме Бейсик-Спектрум+2).

DIM имя массива(список индексов) [,имя маесива(список

индексов)]...

Если имя элемента массива используется без предварительного объявления оператором DIM,
то максимальное значение его индекса равно 10. Если используется индекс, который больше
заданного максимального значения, то появляется сообщение об ошибке Subscript out of range
(Индекс вне диапазона).

Минимальное значение индекса по умолчанию равно 0. При необходимости оно может
быть установлено равным 1. Для этого используется оператор OPTION BASE. Например:

DIM Х(2,3,4),Y$(15)
Приведенный в примере оператор DIM определяет X как трехмерный массив с тремя

элементами по первому измерению, четырьмя элементами по второму и пятью элементами по
третьему; а также определяет YS как строковый массив из 16 элементов.
Формат 2 (только для Бейсик-Спектрум+2).

DIM имя массива(индексы)

Оператор DIM устанавливает все элементы числового массива равными нулю, а все элементы
строкового массива - пустыми.

ERASE — оператор очистки области памяти, отведенной под массивы

ERASE имя массива[,.имя массива]...

38

Исключает массивы из программы. Если во время выполнения программы оказывается мало
памяти, можно использовать оператор ERASE. После того, как массивы удалены, пространство
памяти, зарезервированное под массивы, можно использовать для других целей. Оператор
ERASE может быть использован также для переопределения размерности массива, так как при
попытке заново определить уже определенный массив возникает сообщение об ошибке
Duplicate definition of array (Двойное определение массива).

OPTION BASE - оператор, устанавливающий минимальное значение для индексов
массива

OPTION BASE n
n — О или 1.

Если п=1, то минимальное значение индекса массива равно 1, по умолчанию п=0. Оператор
должен выполняться перед описанием или перед первым обращением к какому-либо массиву.

REM — служит для внесения в текст программы комментариев

НЕМ комментарий
Оператор REM является неисполнительным оператором. После ключевого слова (remark —
замечание) может следовать любой латинский или русский текст, а также символы псевдогра­
фики. В некоторых версиях языка, например MSX-BASIC, BASICA, Бейсик-ПК8020, Бей­
сик-ПК 8010, MBASIC, ключевое слово REM может быть заменено апострофом (символ *).

Некоторые версии интерпретаторов автоматически заносят на место апострофа REM с
двоеточием (:) впереди, например в версиях Бейсик-ПК8020 и Бейсик-ПК8010. В версии
MSX-BASIC нет такой замены и в тексте программы стоят апострофы.

Г лава 3

Основы программирования на языке Бейсик

3.1. Общие рекомендации

При программировании на языке Бейсик необходимо учитывать три основные фактора,
характерные, впрочем, для всех языков программирования: понимание программы, емкость
используемой памяти, время выполнения программы.

В общем случае нельзя написать программу, в которой все эти три фактора оптимизирова­
ны, так как понимание программы находится в противоречии с двумя другими факторами.
Емкость используемой памяти и время выполнения программы также находятся в противоре­
чии друг с другом. Поэтому основные рекомендации при написании программ на языке
Бейсик следующие: при отладке программы широко использовать комментарии, каждый
оператор писать на отдельной строке, разделять пробелами ключевые слова, знаки операций и
операнды. При отладке программы желательно использовать операторы трассировки и отла­
дочную печать.

Когда программа отлажена, необходимо провести ее анализ и установить, какой из
факторов необходимо оптимизировать: память или время выполнения. Возможно и последо­
вательное улучшение обоих факторов, что приводит к итерационному процессу оптимизации
программы. Если программа многоразового использования, то проведение итерационного

39

процесса обязательно. При написании программы для решения одноразовой задачи оптимиза­
ция не обязательна, если время выполнения программы удовлетворяет программиста и
программа помещается в памяти ПЭВМ.

В любом случае желательно сохранять последний отладочный вариант программы. Он
служит для дальнейшей работы с программой, являясь исходным текстом программы.

Рекомендации по повышению скорости работы и одновременно уменьшению
объема программы:

убирать все ненужные операторы REM, оставляя лишь самые необходимые;
не использовать лишние пробелы между операторами и операциями;
использовать, если это возможно, несколько операторов в каждой программной строке,

так как каждый раз, когда вы вводите новый номер строки и заканчиваете ее нажатием
клавиши возврата каретки, объем программы увеличивается на 5 байт (2 байта — адрес
программной строки, 2 байта — ее номер и 1 байт — возврат каретки);

при присваивании опускать ключевое слово LET;
использовать целочисленные переменные, например в операторах FOR, ON, DIM, TAB,

так как целые числа занимают 2 байта, а числа одинарной точности — 4 байта, кроме этого
затрачивается время на округление чисел;

если подпрограмма всегда вызывается из одного места в программе, то следует использо­
вать оператор безусловного перехода GOTO, а не вызов подпрограммы, так как активный
оператор GOSUB занимает б байт памяти, а оператор GOTO памяти не требует;

при программировании выражений стараться меньше использовать скобки, так как
операции внутри скобок выполняются первыми и результат необходимо запоминать, а это
занимает память;

экономить размер массива, так как при определении массива резервируется память для
всех элементов массива, даже если массив весь не заполнен.

Рекомендации по уменьшению объема программы:
задавать сначала наиболее используемые переменные, когда переменная определена, она

размещается в верхней части таблицы переменных; следующая переменная будет расположе­
на ниже. При обращении к таблице переменных сокращается время поиска часто используе­
мой переменной;

использовать подпрограммы на внешних носителях, организуя их вызов в память на
место уже отработавшей подпрограммы, например с помощью оператора CHAIN.

Рекомендации по повышению быстродействия программы:
при работе с переменными, например строковыми или целочисленными, использовать

операторы DEFSTR или DEFINT, так как они ускоряют обработку переменных и нет необходи­
мости использовать специальные символы описания переменных;

если возможно, использовать переменные, а не константы, так как доступ к переменным
занимает меньше времени, чем перевод констант в число одинарной точности;

использовать подпрограммы на машинном языке, которые особенно эффективны в
наиболее часто исполняемых частях программы;

выносить из циклов, особенно внутренних, все вычисления и инвариантные к условиям
повторения фрагменты программы;

использовать эффективные вычислительные алгоритмы.

3.2. Ввод-вывод данных
Ввод данных в программу на языке Бейсик осуществляется несколькими способами

(рис. З.1.):
40

1. Данные могут быть заданы в самой программе или вычислены в ней с помощью
оператора присваивания LET,

2. Данные могут быть считаны с помощью оператора READ из таблицы данных, созданной
оператором DATA.

3. Данные могут быть введены в программу пользователя с клавиатуры во время выпол­
нения программы с помощью операторов UNPUT и LINE INPUT.

4. Символ может быть введен в программу пользователя с клавиатуры во время выпол­
нения программы с помощью функций INKEY д, INPUT д.

5. Данные могут быть введены в программу из файла данных-с помощью операторов
INPUT#, LINE INPUT# и функции INPUTд.

Первый способ, С помощью оператора LET присваивается значение выражения перемен­
ной, заданной в левой части. Так как слово LET необязательно, то для лучшего понимания
текста программы слово LET не указывают. Если задается

LET Х=14 или Х=14 ,

то значение переменной X будет равным 14. Переменные, заданные слева от знака равенства в
операторе присваивания, могут принимать любые значения. Выражение, стоящее справа от
знака равенства в операторе присваивания, может быть любым числом, любой переменной
или формулой (выражением), состоящей из чисел, переменных и знаков операций. Рассмот­
рим несколько примеров присваивания различных значений переменным.

100 1%=4
110 1%=1%+1
120 D$-"ПРИМЕР**
130 D$=D$+D$
140 Х=3
150 Y=5
160 Z=(X+Y)*X+2*(Y-X)

В программной строке 100 число 4 является значением переменной 1%.
В строке ПО знак + является знаком операции сложения в обычном математическом

понимании. В этом примере к значению переменной 1%, равному 4, прибавляется 1 и получен­
ное значение, равное 5, присваивается переменной 1%.

В строке 120 строка "ПРИМЕР” является значением строковой переменной D$.
В строке 130 знак + является знаком операции конкатенации (сцепления) строк, которая

создает строку, левая часть которой — первый операнд, а правая часть — второй операнд.
Строка "ПРИМЕР” будет сцеплена со строкой "ПРИМЕР”, и в результате будет получена новая
строка "ПРИМЕРПРИМЕР”. Таким образом, после выполнения программной строки 130 новым
значением строки D$ будет "ПРИМЕРПРИМЕР”.

В строках 140 и 150 переменной X присваивается значение, равное 3, а переменной Y —
равное 5. В строке 160 справа от знака равенства стоит формула. Значения Х=3 и Y-5 подстав­
ляются в эту формулу, производятся вычисления с учетом скобок и приоритета операций.
Полученный результат, равный 28, присваивается переменной Z. Таким образом, после
выполнения строки 160 число 28 является значением переменной Z.

Второй способ. Данные в программу вводятся с помощью операторов READ и DATA.
Оператор DATA позволяет вводить таблицы данных в программу, доступ к которым осущест­
вляется оператором READ.

41

Ключевые слова, используемые при программировании

------- Г"
Безусловный переход Ввод данных в программу

—оператор GOTO

—оператор ON ... GOTO

—оператор ON ... GOSUB

Условный переход

-IF...THEN... ELSE

“ IF ... GOTO ... ELSE

Организация цикла

- FOR ...NEXT

“WHILE... WEND

-оператор LET
-оператор READ

-оператор DATA

-оператор INPUT

-оператор LINE INPUT

-оператор INPUT # (см. гл. 4)

-оператор LINE INPUT #
(см. гл. 4)

—оператор RESTORE

-функция INKEYti

-функция INPUTS

-оператор SWAP

Выполнение встроенных
математических______
функций

—функция ABS

—функция ЕХР

—функция SQR

—функция SGN

—функция FIX

— функция LOG

— функция INT

—функция RND

-функция RANDOMIZE

—функция ATN

— функция COS

—функция SIN

—функция TAN

— оператор DEF FN

1
Вывод данных 1

1

Работа со строковыми
данными

-оператор PRINT —функция ASC

-оператор LPRINT —функция CHRB

-оператор PRINT USING —функция LEN

-оператор LPRINT USING —функция LEFT8

-функция TAB —функция RIGHT0
—функция SPC —функция или оператор

мшк
-функция SPACEX

IV! 1U У
“функция IN KEYS

-команда NULL — функция INPUTS
—оператор WIDTH — функция SPACED
—оператор WRITE — функция STRINGS
—функция POS — функция INSTR
— функция LPOS — функция FRE

Перевод переменных одного типа в другой Работа с подпрограммами Работа с ОЗУ и портами ввода-вывода

—функция VAL —оператор GOSUB .. . RETURN — функция INP

—функция STRQ —оператор RETURN — оператор OUT

—функция НЕХЙ — оператор CLEAR — функция РЕЕК

—функция ОСТЙ —функция USR — оператор РОКЕ

—функция CVI

—функция CVS

—функция CVD

—функция МК1$

—функция MKS&

—функция MKD3

—функция CINT

—функция CSNG

—функция CDBL

— оператор CALL

—оператор CHAIN

— оператор COMMON

—оператор DEF USR

— команда MERGE

— оператор WAIT

Рис. 3.1

При выполнении оператора READ считывается значение из оператора DATA и присваива­
ется переменной, заданной в операторе READ. Рассмотрим небольшую программу, данные в
которую вводятся с помощью операторов READ и DATA:

10 READ X
20 PRINT X;
30 GOTO 10
40 DATA 1,2,3,4

Выполнение этой программы происходит следующим образом:
выполняется программная строка 10. Указатель оператора READ стоит на первом элементе

таблицы данных, созданной оператором DATA. Считывается первый элемент, который присва­
ивается переменной X. Указатель оператора READ пересылается на следующий (второй)
элемент таблицы данных. Таким образом, после выполнения строки 10 значение переменной
X равно 1;

выполняется программная строка 20. Значение переменной X, равное 1, выводится на
экран. Точка с запятой после X указывает на то, что следующее число будет выведено на экран
в ту же строку в следующую позицию с учетом того, что перед и после числа выводится
пробел;

выполняется программная строка 30. Осуществляется переход на строку 10;
выполняется программная строка 10. Из таблицы данных считывается второй элемент,

который присваивается переменной X. Указатель оператора READ пересылается на третий
элемент таблицы. Таким образом, после выполнения строки 10, значение переменной X равно 2.

Далее последовательно выполняются строки 20,30, J 0, 20, 30, 10, 20, 30, а на экране будут
появляться числа 1 2 3 4.

При следующем выполнении строки 10 выдается сообщение об ошибке Out of data in 10
(Вне данных в 10), так как из таблицы данных считаны все элементы.

Чтобы избежать этой ошибки, необходимо либо программно проследить за соответствием
количества элементов в таблице данных числу обращений к оператору READ, либо в програм­
му вставить оператор RESTORE, который переопределяет указатель оператора READ на
первый элемент таблицы данных, созданной оператором DATA. А если в операторе RESTORE
указан номер строки, то указатель оператора READ устанавливается на первый элемент
оператора DATA, стоящего в этой строке.

Чтобы считать данные из таблицы элементов, созданной оператором DATA, необходимо
сделать следующее дополнение к программе:

25 IF Х=4 THEN RESTORE
RUN
1234123412341234

<CTRL-C>
ВЫХОД В 25
Ok

Для остановки выполнения программы нажимаются клавиши CTRL-C. Если программу
дополнить программными строками

25 IF Х=8 THEN RESTORE 50
50 DATA 5,6,7,8

то при выполнении программы на экран дисплея будут выводиться следующие числа.

12345678 5. 67856785
6 <CTRL-C>

44

Удобный способ определения последнего элемента в операторе DATA заключается в
следующем: поместить в оператор последним числом фиктивное число, намного превосходя­
щее числа, которые обрабатываются в программе. Фиктивное число должно выбираться очень
тщательно, чтобы его нельзя было спутать с обрабатываемыми данными. Рассмотрим следую­
щую программу:

10 DATA 8,4,5,7,-3,-8,4,1000
20 S=0
30 К=0
40 READ X
50 IF Х-1000 THEN GOTO 90
60 KvKM
70 S=S+X
80 GOTO 40
90 PRINT S,S/K,K
100 END

В этой программе необходимо найти сумму и среднее арифметическое значение чисел 8,
4, 5, 7, -3, —8 и 4. Число 1000 — фиктивное. Когда оно будет прочитано, программа напечатает
значение S (сумма), S/К (среднее арифметическое значение) н К (количество чисел), где К —
счетчик чисел, которые должны быть просуммированы. Значение счетчика меняется только
после того, как будет определено, что прочитано мефиктивное число, т. е. меньше 1600.
Фиктивное число может быть расположено в отдельном операторе DATA, чтобы можно было
изменять только обрабатываемые значения.

Оператор READ может одновременно читать несколько чисел. Из оператора DATA числа
читаются в том же порядке, в каком выполняются в программе операторы READ.

С помощью оператора READ из таблицы данных, созданной оператором DATA, можно
считывать как числовые, так и строковые данные, при этом необходимо учитывать, что тип
переменной, заданной в операторе READ, должен соответствовать типу константы в операторе
DATA, иначе появится сообщение об ошибке Type mismatch (Неверный тип).

, Оператор DATA можно располагать в любой части программу. Его можно разделить на
части. Рекомендуется не разбрасывать операторы DATA по программе. Лучше всего поместить
их все вместе в начале или недалеко от конца программы, но до выполнения оператора END.

Третий способ. Часто бывает необходимо вводить элементы данных в программу во
время выполнения. Для этой цели используются операторы ввода INPUT и LINE INPUT. Когда
в программе встречается оператор INPUT или LINE INPUT, выполнение программы приоста­
навливается, на экране появляется знак вопроса и программа ожидает ввода данных. Опера­
тор INPUT позволяет выводить на экран подсказку для пользователя. Вводимые данные
присваиваются переменным, заданным в операторе INPUT, и могут быть строковыми и
числовыми. При несоответствии типа вводимых данных и переменных в операторе INPUT на
экран выводится сообщение ?Redo from start (?Повторите ввод), и программа ожидает ввода
данных.

Может быть так, что какие-либо данные в программе будут меняться, например размер­
ность массива, начальное или конечное значение счетчика, в этих случаях очень удобно
применять оператор INPUT.

Следующая программа иллюстрирует этот случай.

10 INPUT "Размерность массива = ";N
20 DIM NAME$(N),MAS(N)
30 FOR 1=1 TO N

45

40 PRINT I,
50 INPUT **Фамилия " ;NAME$(I)
60 INPUT 'Оклад ”;MAS(I)
70 NEXT
80 PRINT
90 FOR 1=1 TO N
100 IF MAS(I) > 100 THEN PRINT I,NAME$(I),MAS(I)
110 NEXT
RUN
Размерность массива =? 5

1 Фамилия ? Иванов
Оклад ? 150

2 Фамилия ? Петров
Оклад ? 80

3 Фамилия ? Антонов
Оклад ? 175

4 Фамилия ? Смирнов
Оклад ? 105

5 Фамилия ? Кузнецов
Оклад ? 95

1 Иванов 150
2 Антонов 175
3 Смирнов 105

Ок

Если в программе необходимо вводить строки, то рекомендуется использовать оператор
LINE INPUT. Этот оператор присваивает строковой переменной строку текста любого содержа­
ния длиной до 255 символов. В отличие от INPUT оператор LINE INPUT не печатает знак
вопроса, если он не является частью строки подсказки.

Четвертый способ. Функция INPUTS позволяет вводить определенное пользователем
количество символов с клавиатуры или из файла данных. Если вводится больше символов,
чем было определено при задании функции, то лишние данные игнорируются, а если меньше,
то недостающими символами являются пробелы.

Функция INKEYS также позволяет влиять на выполнение программы с клавиатуры. Эта
функция вводит либо символ, считанный с клавиатуры, либо пустой символ, если не была
нажата никакая клавиша. Введенный символ не отображается на экране дисплея. Перед
использованием функции INKEY$ необходимо присвоить ей значение строковой переменной.
Следующие программные строки демонстрируют работу функции INKEY$:

100 PRINT **Нажмите клавишу <возврат каретки>“
110 'A$=INKEY$
120 IF A$=CHR$(&H0D) THEN GOTO 140
130 GOTO 110

В данном примере функция INKEYS позволяет продолжить, например, вывод на экран
информации после нажатия клавиши возврата каретки.

Удобно пользоваться функцией INKEY$ при чтении с экрана каких-либо директив,
например, в обучающих прикладных программах, в программных меню. Следующий пример
демонстрирует эту возможность.

46

100 PRINT 1;"СОЗДАТЬ ФАЙЛ*'
110 PRINT 2;"СТЕРЕТЬ ФАЙЛ"
120 PRINT 3;"ПЕРЕИМЕНОВАТЬ ФАЙЛ"
130 PRINT 4;"ОТРЕДАКТИРОВАТЬ ФАЙЛ"
140 PRINT 5;"КОНЕЦ РАБОТЫ"
150 SM$=INKEY$
160 IF SM$="“ THEN GOTO 150
l?0 SM=VAL(SM$)
180 ON SM GOSUB 220.300,400,500,600
190 PRINT "Вы ввели неправильный номер задания"
200 PRINT "Попробуйте еже раз"
210 GOTO 100
220 REM "1 Создать файл"

300 REM "2 Стереть файл"

400 REM "3 Переименовать файл"

500 REM "4 Отредактировать файл"

600 REM "5 Конец работы"
610 PRINT "Конец работы"
620 END

Пятый способ. В программу данные могут вводиться из файла данных, с помощью
операторов INPUT#, LINE INPUT# и функции INPUTS. Предположим, что ранее был создан
файл с последовательным доступом FILE.DAT. Следующая программа считывает данные из
этого файла, присваивает переменной X и сравнивает значение переменной с нулем. Если
значение X меньше нуля, то оно выводится на печатающее устройство.

10 OPEN "Г‘,В1,"FILE.DAT"
20 IF EOF(l) THEN END
30 INPUT *1,X
40 IF X<0 THEN LPRINT X ELSE GOTO 20

Если из файла данных требуется считывать длинный текст, то рекомендуется использо­
вать оператор LINE INPUT#.

Вывод данных — в языке Бейсик можно выводить на экран дисплея или на печатающее
устройство числа и текст.

Для вывода на экран используется оператор PRINT, а для вывода на печатающее устрой­
ство — оператор LPRINT. В дальнейшем будем рассматривать только оператор PRINT, так как
оператор LPRINT обладает аналогичными возможностями. Оператор PRINT можно использо­
вать для:

вывода на экран текущего значения переменных и констант

PRINT X,Y,Z
PRINT 1;-2,3.6
PRINT X,0,F$

47

выполнения вычислений и вывода на экран их результатов

PRINT I;EXP(I),SQR(I),I'2+I~4
PRINT 1/SIN(X+Y»Z)

вывода на экран текстовых сообщений

PRINT "ПРОГРАММА РЕШЕНИЯ КВАДРАТНОГО УРАВНЕНИЯ "
PRINT "КВАДРАТ ЧИСЛА";Y;“РАВЕН";Y*Y

Оператор PRINT без параметров выводит на экран пустую строку.
Оператор PRINT, обладая большой гибкостью, позволяет получить различные форматы

вывода на экран. Ниже описывается использование оператора PRINT в версии MBASIC;
использование операторов PRINT в других версиях представлено в 3.5.

Позиция каждого выведенного на экран элемента определяется знаком препинания в
списке выражений оператора PRINT. Экранная строка условно делится на зоны вывода по 14
символов каждая. Управление использованием эон производится с помощью запятых в
списке выражений. Запятая указывает на то, что следующее значение будет выводиться с
начала следующей зоны, а если все зоны вывода уже заполнены, то с начала первой зоны
следующей строки.

Точка с запятой в списке выражений указывает на то, что следующее значение будет
выводиться со следующей позиции с учетом пробелов при выводе чисел. Так, за числом
всегда следует пробел. Положительному числу предшествует пробел, а отрицательному числу
— знак минус. Строки, заключенные в кавычки, печатаются без изменений. Поэтому следую­
щие операторы дадут различные результаты. Например:

10 PRINT 1;2
20 PRINT
30 PRINT 10,20
40 PRINT "10","20"
RUN

1 2
12

10 20
10 20

Если запятая или точка с запятой заканчивают список выражений, то следующий опера­
тор PRINT (или INPUT) продолжит вывод в той же строке через соответствующее число
пробелов, в противном случае вывод продолжается со следующей строки. Например:

10 PRINT "А"
20 GOTO 10
RUN
А
А
А
А •

При изменении программной строки 10 на строку

10 PRINT "А",
48

получается

BUN
А А
А А
А А

А А
А А
А А

А А
А А
А А

А если изменить программную строку 10 иа строку
10 PRINT "А”;

получается

RUN
АААА/ШАААААА/ШАААААААААААААААААААААААААААААААААААА
АААААААААААААААШШАААААААААААААААААААААААААААААААА
АААААШтЛААА
ААААААААААААААААААААААААААААААААААААААА. . .

Оператор PRINT без параметров можно использовать для включения пустой строки, если
необходимо разделить полученные результаты, или для перехода на новую строку. Например:

10 FOR 1=1 ТО N
20 FOR J=1 ТО N
30 PRINT X(I,J);
40 NEXT J
50 PRINT
60 NEXT I

Программная строка 50 необходима для того, чтобы после печати значения Х(1,1) следую­
щее значение Х(2,1) начало печататься в следующей строке и т. д.

Для форматирования выходной строки в языке Бейсик существуют следующие средства:
функция ТАВ позволяет выводить информацию с заданной позиции строки дисплея;
функция SPC выводит заданное число пробелов в строке;
функция SPACES образует строку, состоящую из заданного числа пробелов;
команда NULL определяет число пустых символов, выводимых после возврата каретки,

т. е. задает левую границу экрана;
оператор WIDTH устанавливает ширину строки дисплея, т. е. задает правую границу

экрана;
оператор PRINT USING позволяет выводить строковые и числовые данные, используя

формат, заданный в операторе. Оператор PRINT USING определяет правую границу выравни­
вания, печатает знак + или — в начале или конце числа, печатает числа в экспоненциальной
форме и т. п.

Иногда в программе может потребоваться очистить экран перед выводом определенной
информации, для этой цели используется либо команда CLS, которая будет рассмотрена в гл.
б, либо оператор PRINT, заданный следующим образом:

PRINT CHR$(12)
где 12 (или &Н0С) — код очистки экрана. В разных ПЭВМ этот код может изменяться.

Для вывода данных на экран дисплея можно использовать и оператор WRITE. Различие
между операторами PRINT и WRITE в том, что оператор WRITE вставляет запятые между
элементами, заключает строки в кавычки и положительным числам не предшествует пробел.

49

3.3. Изменение последовательности выполнения программы
Безусловный переход — принудительное, без проверки каких-либо условий, изменение

последовательности выполнения программы.
Выполнение программы начинается с программной строки с наименьшим номером и

следует далее в порядке увеличения номеров строк. Часто бывает необходимо прервать
последовательное выполнение. Для этой цели используется оператор безусловного перехода
GOTO, передающий управление программной строке, номер которой указан за ним. Напри­
мер, если задан GOTO 100, то следующей будет выполняться программная строка с номером
100.

Оператор вычисляемого перехода ON ... GOTO позволяет использовать значение выраже­
ния для выбора номера строки программы из списка значений. Например, оператор ON VAR
GOTO 100, 200, 300, 400 передает управление программной строке 100, если значение VAR
равно 1, строке 200, если VAR равно 2 и т. д. Если значение переменной VAR - не целое число,
то оно округляется. Если значение переменной равно 0 или больше количества номеров строк
в списке, то будет выполняться следующая программная строка. Если значение переменной
отрицательное или больше 255, то выдается сообщение об ошибке. Программная строка 10 ON

VAR GOTO 100, 200, 300, 400 эквивалентна следующим программным строкам:
10 IF VAR-1 THEN GOTO 1ОО
20 IF VAR=2 THEN GOTO 200
30 IF VAR-3 THEN GOTO 300
40 IF VAR=4 THEN GOTO 400

Подпрограмма - часть программы, допускающая многократное обращение из разных
точек программы.

Подпрограммы, используемые в программах, написанных на языке Бейсик, могут быть
написаны на языке Бейсик или на языке ассемблера (машинном языке).

В языке Бейсик можно организовать программу так, что различные программные сегмен­
ты будут выступать в роли подпрограмм. Для обращения к таким подпрограммам использует­
ся оператор вызова подпрограммы GOSUB. Оператор возврата из подпрограммы RETURN
возвращает управление из подпрограммы обратно в вызывающую программу, после чего
программа продолжает выполняться с оператора, следующего за оператором GOSUB. Подпро­
грамма может содержать несколько операторов RETURN для возврата из разных точек
подпрограммы. В программе может быть любое количество подпрограмм. Подпрограмма
может обратиться к другой подпрограмме, но всегда должна возвращать управление вызыва­
ющей программе. Разрешается любая глубина вызова подпрограмм, однако необходимо
следить за тем, чтобы возврат из подпрограммы осуществлялся в той же последовательности,
что и вызов. Подпрограммы могут находиться в любом месте программы, но часто используе­
мые рекомендуется размещать в начале программы. Рассмотрим пример использования
оператора GOSUB на программе получения простых чисел.

10 REM “Программа получения простых чисел”
20 INPUT "СКОЛЬКО ВЫ ХОТИТЕ ПОЛУЧИТЬ ПРОСТЫХ ЧИСЕЛ

==> ”;N
30 DIM X(N)
40 X(l)r-1
50 X(2)=2
60 X(3)=3
70 X(4)=5
80 Y=5

50

90 1=3
100 GOSUB 500
110 Y=Y+2
120 GOSUB 500
130 Y=Y+4
140 IF I<N THEN GOTO 100
150 GOTO 600
500 REM "Подпрограмма"
510 FOR J=4 TO I
520 Z=X(J)
530 IF Z*Z>Y THEN GOTO 570
540 R=Y-INT(Y/Z)*Z
550 IF R=0 THEN RETURN
560 NEXT J
570 1=1+1
580 X(I)'Y
590 IF I<=N THEN RETURN
600 REM "Вывод полученного массива простых чисел

на экран"
610 PRINT "Следующий список содержит ";N;" простых

чисел"
620 PRINT
630 К=0
640 FOR 1=1 ТО N
650 PRINT ТАВ(7*К);Х(I);
660 К=К+1
670 IF К<9 THEN GOTO 700
680 К=0
690 PRINT
700 NEXT I
710 END

Если в программе обращаются к подпрограмме только один раз, то рекомендуется
использовать не оператор GOSUB, а оператор GOTO.

С помощью оператора вызова подпрограммы ON ... GOSUB можно обратиться к одной из
нескольких заданных подпрограмм. Переход осуществляется в зависимости от значения
выражения, стоящего после ключевого слова ON. Это значение определяет, какая подпро­
грамма будет вызываться. В списке после ключевого слова GOSUB может быть любое коли­
чество номеров строк. Некоторые из них могут повторяться. Если значение выражения не
является целым числом, то используется целая часть этого значения для определения, куда
должно быть передано управление.

В языке Бейсик отдельные программы, сохраненные на НГМД, можно использовать как
подпрограммы и вызывать из основной (корневой) программы. Для этой цели команды RUN,
LOAD, MERGE и другие используются в программном режиме. (Подробно эти команды
описаны в гл. 4.) Эти возможности реализуются при создании программ меню.

Например:

90 PRINT "Вызов игры по номеру"
95 PRINT
100 PRINT " ИГРЫ"
105 PRINT
110 PRINT " 1. ОТЕЛЛО (реверси) (человек-

компьютер) ”
51

120 PRINT " 2. ОТЕЛЛО (человек-человек)”
130 PRINT ” 3. МОРСКОЙ БОЙ”
140 PRINT ” 4. СКАЧКИ-
150 PRINT ” 5. НАРДЫ”
160 PRINT ” 6. ТРЕХМЕРНЫЕ КРЕСТИКИ-НОЛИКИ”
170 PRINT ” 7. КРОСС”
180 PRINT ” 0. КОНЕЦ ПРОГРАММЫ"
190 KK$-INKEY$: IF КК$="" THEN GOTO 190
200 IF КК$-" ” THEN GOTO 190
210 IF KK$-”0” THEN END
220 IF KK$="1" THEN NAME$=“OTHELLO.BAS"
230 IF KK$="2" THEN NAME$="OTHELLO1.BAS"
240 IF KK$=”3” THEN NAME$="BOJ.BAS"
250 IF KK$=”4" THEN NAME$="HORSE.BAS"
260 IF KK$="5" THEN NAME$="NARD.BAS"
270 IF KK$=”6" THEN NAME$="QUBIC.BAS"
280 IF KK$="7” THEN NAME$= “GROSS. BAS” ELSE GOTO

300
290 RUN NAMES
300 PRINT "Вы набрали неправильный номер задания-
305 PRINT "Введите еце раз"
310 GOTO 190

Эта программа позволяет перейти к выполнению любой из перечисленных игровых
программ. При нажатии клавиши с соответствующим номером игры происходит загрузка и
выполнение нужной программы с помощью команды RUN, заданной в программной строке
290. В вызываемых программах рекомендуется создавать возможность возврата в программу
МЕНЮ. В следующем примере для присоединения к основной программе отдельных подпро­
грамм используется команда MERGE также в программном режиме. Например:

too K$=INKEY$: IF K$- ” ' THEN GOTO 100
105 IF K$=“ “ THEN GOTO 1000
110 IF K$="A" OR K$~"a” THEN MERGE "PROGA.A"
120 IF K$=“B" OR K$=”L" THEN MERGE “PROGD.A"
130 IF Кф-"С" OR K$="c" THEN MERGE "PROGC.A"
140 IF K$ "D" OR K$“d" THEN MERGE “PROGD.A"
150 IF K$-"E" OR K$x"e"
160 GOTO 10

THEN MERGE "PROGE.A"

Необходимо помнить, что программы PROGA.A, PROGB.A, PROGC.A, PROGD.A и
PROGE.A должны быть сохранены в коде ASCII (КОИ-8), т. е. при записи этих программ на
диск в команде SAVE надо указать параметр А (см. гл. 4).

Формирование программы из отдельных модулей очень удобно для отладки. Из таких
программ можно создать свою библиотеку и формировать из этих модулей любые программы.
При задании имен программ можно указывать дисковод, на котором хранятся отдельные
программы.

Для работы с подпрограммами на языке ассемблера необходимо зарезервировать требуе­
мую память. Бейсик использует всю память, доступную от его начального адреса вверх (мак­
симально 64 Кбайт), поэтому только верхние адреса в памяти могут быть отведены для
подпрограмм. Чтобы зарезервировать память для подпрограмм, можно использовать один из
способов:

52

при вызове интерпретатора указать максимальное число байтов, которые могут быть
использованы как рабочее пространство, например:

BASIC /М:&Н8000

с помощью оператора CLEAR установить максимальное число байтов, которые могут быть
использованы интерпретатором, например:

CLEAR &Н8000

Когда вызывается подпрограмма на языке ассемблера, интерпретатор выделяет 16 бит
стековой памяти для работы этой подпрограммы. Если необходимо больше стекового про­
странства, то стек интерпретатора Бейсика должен быть сохранен и дополнительно должен
быть определен собственный стек подпрограммы на языке ассемблера. При возврате в Бей­
сик-программу, из которой осуществляется вызов, следует восстановить указатель стека
интерпретатора.

Подпрограмма на языке ассемблера может быть загружена в память с помощью системно­
го монитора, оператора РОКЕ, а также с помощью программы LINK после трансляции.

Так, относительно короткие программы могут быть закодированы на машинном языке*
прямо в интерпретаторе, для этого необходимо выполнить следующие действия:

ввести в операторы DATA шестнадцатеричные значения кодов каждого байта в формате,
определенном в каждой конкретной версии; если шестнадцатеричного представления в
данной версии нет, то можно задавать десятичные значения;

выполнить цикл, который считывает байты данных, и затем занести их в область, зарезер­
вированную ранее при вызове интерпретатора или оператором CLEAR.

Например:

1000 REM "NX - начальный адрес подпрограммы;
MX - конечный адрес подпрограммы на

машинном языке'*
1010 FOR IX=NX ТО MX
1020 READ JX
1030 POKE IX, JX
1040 NEXT
1050 SUBRTX=NX
1060 AX=2 : BX=3 : CX-0
1070 CALL SUBRTX(AX»BX,CX)
108,0 PRINT CX :REM ’С" - результат"

1900 DATA &H55,....

Для вызова подпрограмм, написанных на машинном языке, используются функциональ­
ный вызов USR и оператор CALL.

Условный оператор — оператор, осуществляющий проверку истинности выполнения
определенного условия и задающий альтернативные последовательности выполнения команд.

В языке Бейсик это позволяет делать оператор IF.

100 IF Ac>5 THEN GOTO 360 ELSE PRINT 5

53

Оператор IF имеет три части: часть IF (в примере IF А < > 5), часть THEN (в примере THEN
GOTO 360) и часть ELSE (в примере ELSE PRINT 5). Часть IF содержит логическую формулу, а
части THEN и ELSE - один или несколько операторов, разделенных двоеточием. Часть ELSE
может быть совсем опущена. При выполнении оператора IF сначала вычисляется логическая
формула. Если это значение истинно, то выполняется часть THEN, а если это значение ложно,
то часть ELSE, если она существует, или следующая программная строка. В данном примере
будет осуществлен переход на программную строку 360, если значение переменной А не равно
5. Если значение переменной А равно 5, то будет печататься 5 и выполняться следующая
программная строка.

10 INPUT ’’Введите число (0-19) ”;N
20 IF N<5 THEN PRINT "Должно быть больше"
30 IF N>5 THEN PRINT "Должно быть меньше"
40 IF N<>5 THEN GOTO 10
50 PRINT "Вы угадали число"
RUN
Введите число? 7
Должно быть меньше
Введите число? 4
Должно быть больше
Введите число? 5
Вы угадали число
Ок

В программной строке 10 осуществляется ввод числа в программу. В программной строке
20 проверяется условие: введенное число меньше 5? Если меньше, то печатается сообщение
"Должно быть больше". В строке 30 проверяется условие: введенное число больше 5? Если
больше, то печатается сообщение "Должно быть меньше". Программная строка 40 проверяет
введенное число на неравенство пяти. Если число не равно пяти, то осуществляется переход на
строку 10, и программа продолжает выполняться с начала. Если же введенное число равно
пяти, то печатается сообщение "Вы угадали число", и выполнение программы заканчивается.

В логической формуле части IF могут быть использованы операции отношения: равно, не
равно, меньше, больше, меньше или равно, больше или равно и логические операции: AND,
OR, XOR, NOT, EQV и IMP.

Переменные в логической формуле оператора IF могут быть как числовыми, так и
строковыми.

Цикл — программная реализация повторяющихся операций — многократно повторяемое
выполнение одной и той же последовательности инструкций в программе, используемых при
обработке регулярных массивов данных, вычислении рекурсивных соотношений и в других
эффективных вычислительных процедурах.

Условиями выхода из цикла могут являться достижение предельного адреса, обнуление
счетчика циклов, сходимость и другие условия.

В языке Бейсик существуют четыре способа организации циклов, которые будут рассмот­
рены для следующей задачи: создать таблицу натуральных чисел от единицы до ста, квадра­
тов, кубов и корней этих чисел и вывести результаты вычислений на печатающее устройство.

Первый способ,

10 LPRINT "ЧИСЛО",ТАВ(10);"КОРЕНЬ",ТАВ(20);
20 LPRINT "КВАДРАТ" , ТАВ(30); "КУБ"
21 LPRINT 1 ;ТАВ(10),SQR(1);ТАВ(20);1*2;ТАВ(30);1*3

54

22 LFRINT 2;TAD(10);SQR(2),TAD(20),2*2,TAB(30);2*3

120 LFRINT 100,TAD(10);SQR(100);TAB(20);100*2;TAB(
30),100*3

В программных строках 10 и 20 выводится на печатающее устройство заголовок таблицы.
В следующих строках вычисляются и выводятся на печатающее устройство само число, его
квадратный корень, квадрат и куб. Каждая программная строка обрабатывает конкретную
константу от 1 до 100.

Второй способ. При первом способе организации цикла каждое значение, которое надо
вычислить и напечатать, задается в программной строке как константа. Зададим эги значения
как переменные и будем присваивать этим переменным конкретные значения. Используя
условный оператор IF, который проверяет заданное условие, и оператор безусловного перехо­
да GOTO, создаем цикл.

10 LFRINT "ЧИСЛО”;ТАВ(10);"КОРЕНЬ";ТАВ(20);
20 LFRINT "КВАДРАТ";ТАВ(30);"КУБ"
30 Х=1
40 LFRINT X;TAB(10);SQR(X);ТАВ(20);Х*2;ТАВ(ЗО);Х*3
50 Х=Х+1
60 IF Х<=100 THEN GOTO 40

Таким способом для программирования этого же задания потребовалось 6 программных
строк. Программные строки 10 и 20 печатают заголовок таблицы. Программная строка 30
присваивает переменной X начальное значение, равное 1. Программная строка 40 вычисляет и
выводит на печатающее устройство число, его корень, квадрат и куб. Программная строка 50
увеличивает значение переменной X на 1. В программной строке 60 проверяется значение пере­
менной X: если оно меньше или равно 100, то осуществляется пере сод на программную строку
40, и переменная X с новым значением продолжает обрабатывать^?. А если значение перемен­
ной X больше 100, то выполнение программы прекращается.

Следующие два способа иллюстрируют автоматическую организацию цикла.
Третий способ. Создадим автоматический цикл, используя операторы FOR...NEXT.

10 LFRINT "ЧИСЛО";ТАВ(10);"КОРЕНЬ";ТАВ(20);
20 LFRINT "КВАДРАТ”;ТАВ(30);"КУБ"
30 FOR Х=1 ТО 100
40 LPRINT X;TAB(10);SQR(X);TAB(20);X*2;TAB(30);X*3
50 NEXT

Таким способом для программирования этого же задания потребовалось 5 программных
строк. Программные строки 10 и 20 выводят на печатающее устройство заголовок таблицы.
Программная строка 30 является заголовком цикла, в котором указывается начальное,
конечное значения счетчика цикла и шаг цикла. В этом примере шаг цикла, равный 1, задан
по умолчанию. Шаг цикла — это число, которое прибавляется к значению счетчика. Программ­
ные строки, следующие за оператором FOR, выполняются до тех пор, пока не встретится
оператор NEXT. Затем к содержимому счетчика прибавляется значение шага. Выполняется
проверка счетчика на конечное значение. И в зависимости от этого цикл повторяется или
заканчивается, и выполняются операторы, следующие за оператором NEXT. Таким образом,
программная строка 40, выполняющая вычисления квадрата, куба и корня и выводящая эти
значения на печать, выполнилась 100 раз. Переменная счетчика X увеличивается на 1 автома-

55

тически, и каждый раз программная строка 40 обрабатывает новое значение переменной X,
которая используется в этой строке для вычисления корня, квадрата и куба. Использование
переменной счетчика X в программной строке 40 разрешено, так как в этой строке не изменя­
ется само значение переменной X.

Четвертый способ. Создадим автоматический цикл, используя операторы WHILE...WEND.

10 LPRINT "ЧИСЛО”;ТАВ(10)‘КОРЕНЬ*’ ;ТАВ(20);
20 LPRINT. "КВАДРАТ" ; ТАВ(30); "КУБ"
30 Х-1
40 WHILE Х<=100
50 LPRINT X;ТАВ(10);SQR(X);ТАВ(20);Хл2;ТАВ(30);Х~3
60 Х=Х+1
70 WEND

Для программирования этого же примера таким способом потребовалось 7 программных
строк. Программные строки 10 и 20 выводят на печатающее устройство заголовок таблицы. В
программной строке 30 переменной X присваивается начальное значение, равное 1. Програм­
мная строка 40 является заголовком цикла. Программная строка 50 выполняет вычисления
корня, квадрата и куба числа и выводит их значение на печатающее устройство. В програм­
мной строке 60 значение переменной X увеличивается на 1. Программные строки или операто­
ры, расположенные между операторами WHILE и WEND, выполняется до тех пор, пока
заданное условие (а именно, X <= 100) истинно. Оператор WEND является концом цикла.

3.4. Встроенные функции

Встроенные функции — подпрограммы, обращение к которым в языке Бейсик стандар­
тизовано. При записи встроенных функций аргумент функции должен быть заключен в
скобки и записан после имени функции.

В качестве аргумента может быть использовано число, переменная или выражение.
Выражение может содержать обращение к другим функциям. Например:

10 INPUT X
20 PRINT X,SIN(X),COSU).TAN(X),1/TAN(X)
30 PRINT SIN(SQR(X)+1)

Эта программа выводит на экран число, его синус, косинус, тангенс, котангенс, а также
синус квадратного корня числа X плюс 1. Число X вводится с клавиатуры.

Следующая программа, использующая встроенные функции, находит числа I, J и К, для
которых 1*I+J*J=K*K.

10 N=100
20 FOR 1-1 ТО N-l
30 FOR J=I+1 TO N
40 K=SQR(1*1+J*J)
50 IF K<>INT(K) THEN GOTO 70
60 PRINT I,J,К
70 NEXT J,I
80 END

Встроенные функции в основном используются для математических преобразований, для
переводя переменных одного типа в другой и для преобразования строк (строковые функции).

56

Математические функции — к математическим функциям в языке Бейсик относятся тригоно­
метрические функции, абсолютное значение числа (ABS), экспонента числа (ЕХР), извлечение
квадратного корня (SQR), образование знака, целой части и натурального логарифма числа
(SGN, FIX и LOG соответственно) и определение самого большого целого числа меньшего или
равного аргументу (INT).

При решении некоторых задач, особенно статистических, игровых и обучающих, может
потребоваться, чтобы числа задавались случайным образом. Для получения случайных чисел
используется функция RND, которая генерирует псевдослучайные числа в диапазоне от 0 до 1.
При каждом выполнении программы будет генерироваться одна и та же последовательность
случайных чисел. В некоторых задачах требуется, чтобы последовательность генерировалась
каждый раз новая. Для этого рекомендуется сделать переменным аргумент функции RND или
вставить в программу оператор RANDOMIZE до первого обращения к функции RND, поэтому
лучше его вставлять в начало программы. Случайные числа рекомендуется использовать в
обучающих программах для задания начальных условий в различных вариантах, чтобы эти
условия были непредсказуемы для обучающихся с помощью этой программы.

Тригонометрические функции — язык Бейсик предоставляет возможность пользоваться
следующими тригонометрическими функциями: ATN — арктангенс числа; COS - косинус
угла; SIN — синус угла; TAN — тангенс угла.

Аргументы в тригонометрических функциях задаются в радианах. Для перевода граду­
сов в радианы их нужно умножить на л/180. Важно отметить, что при переводе из радиан в
градусы и обратно, чем точнее величина л, тем точнее будет выполнено преобразование. (Для
справки: более точное значение числа л = 3.14159265358.)

В языке Бейсик нет встроенных функций секанса, косеканса, котангенса и т. д., но их
можно вычислить, используя существующие в языке встроенные функции:
секанс - SEC(X) = 1/COS(X)
косеканс - CSC(X) = 1/SIN(X)
котангенс - COT(X)=1/TAN(X)
арксинус - ARCSIN(X)=ATN(X/SQR(1—Х*Х))
арккосинус - ARCCOS(X)=1.570796—ATN(X/SQR(1-Х*Х))
арксеканс - ARCSEC(X)=ATN(SQR(X*X-1))+(X< 0>3.141593
арккосеканс - ARCCSC(X)=ATN(1/SQR(X*X-1))+(X< 0)*3.141593
арккотангенс - ARCCOT(X)=1.570796-ATN(X)
гиперболический синус - SINH(X)=(EXP(X)-EXP(-X))/2
гиперболический косинус - COSH(X)=(EXP(X)+EXP(-X))/2
гиперболический тангенс - TANH(X)=(EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
гиперболический секанс - SECH(X)=2/(EXP(X)+EXP(-X))
гиперболический косеканс - CSCH(X)=2/(EXP(X)-EXP(-X))
гиперболический котангенс - СОТН(Х)=(ЕХР(Х)+ЕХР(-Х))/(ЕХР(Х)-ЕХР(-Х))
арксинус гиперболический - ARCSINH(X)=LOG(X+SQR(X*X+1))
арккосинус гиперболический - ARCCOSH(X)=LOG(X+SQR(X*X-1))
арктангенс гиперболический - ARCTANH(X)=LOG((l+X)/(l-X))/2
арксеканс гиперболический - ARCSECH(X)=LOG((1+SQR(1+SQR(1-X*X))/X)
арккосеканс гиперболический - ARCCSCH(X)=LOG((1+SGN(X)*SQR(1+X*X))/X)
арккотангенс гиперболический - ARCCOTH(X)=LOG((X+l)/(X-l))/2

Чтобы использовать эти функции, можно применить оператор DEF FN.
Например, для арксинуса гиперболического

DEF FNAS(X)-LOG(X+SQR(X*X+1))
57

с последующим обращением к наименованию функции, когда необходимо,
Z=FNAS(Y).

Перевод переменных одного типа в другой — преобразование типа данных, т. е. преобра­
зование последовательности символов в число или наоборот, изменение точности числовой
переменной и другие преобразования подобного типа в языке Бейсик осуществляются с
помощью встроенных функций:

CINT переводит числовой аргумент в целое число;
CSNG переводит числовой аргумент в вещественное число одинарной точности;
CDBL переводит числовой аргумент в вещественное число двойной точности;
CVI, CVS и CVD переводят строковые переменные в числа заданной точности;
MKI$, MKSS и MKDS переводят числа в строковые переменные.
Строковые функции. Для работы со строковыми данными используются следующие

встроенные функции:
ASC определяет код ASCII (КОИ-8) первого символа строковой переменной;

PRINT ASC("S"),АВС(МФ")
ВЗ 230

CHR$ определяет символ по заданному коду ASCII (КОИ-8);

CRLF$=CHR$ (13) +CHR$ (10)
PRINT CHR$(&H74)+CHR$(234)
tft

LEN вычисляет длину строки, т. е. число символов строковой пеоеменной;

PRINT LEN("BASIC-программа")
15

LEFTS определяет самые левые символы строковой переменной;

PRINT LEFT$(’BASIC-программа",5)
BASIC

RIGHTS определяет самые правые символы строковой переменной;

PRINT RIGHTS ("BASIC-программа”, 9)
программа

MIDS определяет часть строки в строке, начиная с заданной позиции;

PRINT MID$("ПРОГРАММА",4,5)
ГРАММ

VAL определяет числовое значение строковой переменной;

PRINT VAL("35")+VAL("15")
50

STRS вычисляет строковое значение числовой переменной;

PRINT STR$(35)*STR$(15)
3515

58

HEXS переводит число в шестнадцатеричную строку;

PRINT НЕХ$(42)
2А

OCTS переводит число в восьмеричную строку;

PRINT ОСТ$(42)
60

SPACES воспроизводит строку пробелов;

PRINT БГАСЕ$(5);“ПРОБЕЛ”;SPACES(5);“SPACE”
ПРОБЕЛ SPACE

STRINGS вычисляет символ, повторяемый заданное число раз;

PRINT STRINGS(5,42);“BASIC”,STRING(5, 47)
♦****BASIC/////

INSTR определяет позицию части строки в строке, начиная с заданной позиции;

PRINT INSTR(2,“ПРОГРАММА”,”Р”)
5

Перед использованием строковых данных для чистки строковых переменных и увеличе­
ния строкового пространства рекомендуется использовать оператор CLEAR в начале программы.
Функция FRE с любым строковым аргументом выполняет чистку неиспользованных областей
памяти, которые были однажды использованы для строковых переменных, и определяет
число свободных байтов.

3.5. Работа с оперативной памятью и портами ввода-вывода
Важнейшей особенностью языка Бейсик является включение в его состав инструкций работы с
оперативной памятью.

Функция РЕЕК и оператор РОКЕ используются соответственно для считывания и измене­
ния содержимого ячеек оперативной памяти.

Функция РЕЕК позволяет считывать содержимое любой ячейки оперативной памяти
в ПЭВМ.

10 INPUT “ ->“;N
20 PRINT N,PEEK(N),CHR$(PEEK(N))
3U N N+l
40 GOTO 20

Программная строка 10 устанавливает начальный адрес, заданный десятичным числом,
начиная с которого будет печататься содержимое ячеек. Программная строка 20 выводит на
печатающее устройство адрес (N), т. е. номер байта, содержимое которого необходимо прове­
рить; содержимое этого байта (PEEK(N)), выраженное десятичным числом; графический
символ (CHR$ (PEEK(N))), код которого находится по адресу N.

Изменяя значение N, можно выполнять эту программу для различных областей памяти.
Оператор РОКЕ позволяет заносить содержимое байта по заданному адресу памяти.

Запишем некоторую информацию в память, начиная с шестнадцатеричного адреса 6600.
59

10 N-&H6000
20 READ D
30 POKE N,D
40 N-N+l
50 IF N=&H600B THEN END
60 GOTO 20
70 DATA 80,69,69,75,45,65,45,66,79,79,33

Программа выполняется следующим образом. Программная строка 10 инициализирует
начальный адрес. Программная строка 20 считывает число из оператора DATA. Программная
строка 30 записывает значение D по адресу N. Программная строка 40 увеличивает адрес на 1.
Программная строка 50 заканчивает выполнение после того, как все данные из оператора
DATa будут записаны. Программная строка 60 возвращает управление для дальнейшего
считывания значений из оператора DATA. Программная строка 70 содержит данные, которые
будут записаны в память.

Следующая программа проверит, что записалось в память оператором РОКЕ.

200 FOR N=&H6000 ТО &Н600А
210 PRINT HEX$(N),PEEK(N)
220 NEXT
RUN
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
600А

80
69
69
75
45
65
45
66
79
79
33

Оператор POKE может быть использован для установки курсора в требуемую позицию.

Пор? ввода-вывода — это аппаратно-адресуемое устройство ввода-вывода, которому
могут быть переданы (или от него получены) данные.

Язык Бейсик позволяет непосредственно считывать и изменять содержимое ячеек
оперативной памяти, порта ввода-вывода, что позволяет писать программы управления на
языке Бейсик, а не на языке ассемблера.

В языке Бейсик имеются инструкции INP и OUT, аналогичные по своему действию
операторам IN и OUT языка ассемблера. Так, оператор OUT записывает числовые значения в
порт ввода-вывода, а функция INP определяет значение байта заданного порта. Необходимо
помнить, что номера портов в различных вычислительных машинах могут отличаться.

В языке Бейсик есть возможность приостанавливать выполнение программы, пока
обрабатывается состояние входного порта машины, т. е. пока входной порт машины не выра­
ботает определенного сигнала. Для этой цели используется оператор WAIT. Но необходимо
быть осторожным, так как с помощью оператора WAIT можно войти в бесконечный цикл, для
останова которого необходимо перезагружать вычислительную машину.
60

3.6. Описание инструкций
Таблица 3.1

Ключевое
слово

Номер версии

1 2 3 4 5 6 7 8 9 10

ABS 4 4 4- t 4 4 1 4- 4 4 4
ACS 4
ASC 4 4 4 4 4 4 4 4 4
ASN 4
АТ 4- i
ATN 4 4- 4 4 4 4 4 4 4 4
BCD 4'
BIN 4
BINS 4 4- 4 4
CALL 4 4- 4 4 4
CDBL 4 4 4 4 4 4
CHRS + 4 4 4- 4 4 4 4 4 4
CINT 4 4 4 4 4 4
CLEAR 4 4 4 4 4 4- 4 4 4
CLR 4-
COMMON 4
COS + 4 4 4 4 4 4- 4 4 4
CSNG 4 4 4 4 4 4
DATA 4 4 4 4 4 4 4 4 4 4
DEF FN + 4 4 4 4 4 4 4 4 4
DEF SEG 4
DEF USR 4 4 4 4 4 4 4
END 4 4 4 4 4 4 4 4 4
EXP < 4 4 4 4 4 4 4- 4 4 4
FIRST 4
FIX 4 4 4 4“ 4 4 4
FN 4 4 4 4 4 4 4 4 4 4
FOR 4 4 4 4 4 4 4 4 4 4
FRE 4 4 4 4 4 1 I 4 4
FEES 4
GET 4 +
GETS 4
GOSUB 4 4 4 4 4 4 4 4 4 4
GOTO 4 4 4 4 4 4- 4 4 4 4
BEXS 4 4 4 4 4 4
HIMEM 4
IF 4 4 4 4 4 4 4 4. 4 4
IN 4 4
INKEYS 4 4 4 4 4- 4 4. 4 4
INP + + 4 4
INPUT 4 4 4 4 4 4 4 4 4 4
INSTR 4 4 4 4 4 4 4 4
INT 4 4 4 4 4 4 4 4 4 4
JOIN 4
LAST 4

61

Продолжение табл, 3.1

Ключевое
слово 1 2 3

Номер версии
9 104 5 6 7 8

LEFTS ‘r + 4 4 4 4 F 4 4
LEN 4 I- ♦ 4 4 4 4 4 4 4
LET 4 4- 4 4 4 4 4 4 4 4
LINE INPUT+ 4 * 4 4 4 4
LINPUT 4
LN ♦
LOG 1 ♦ ♦ 4 4 4 4 4 4
LOMEM 4
LSBYTE 4
LSHIFT 4
MEM 4
MIDS + 4 4 4 4 4 4 ♦ +
MSBYTE 4
NEXT 4 4 4 4 4 4 4 4 4 4
NULL 4 4
OCTS 4 4 4 4 4 4
ON 4 4 4 4 4 4 4 4
OUT 4 4 4 4 4 4
PEEK 4 4 4 4 4 4 4 4 4 4
PI 4
POKE 4 4 4 4 4 4 4 4 4 4
POP 4
PRINT 4 4 4 4 4 4 4 4 4 4
RANDOM +

RANDOMIZE 4 4 4 4 4 4
READ 4 4 4 4 4 4 4 4 4 4
RESET 4 4 4 4

RESTORE 4 4 4 4 4 4 4 4 4 4
RETURN 4 4 4 4 4 4 4 4 4 4

RIGHTS 4 4 4 4 4 F 4 4 4
RND 4 4 4 4 4 4 4 4 4 4

ROTATE 4
RSHIFT 4
SCALL 4
SENSE 4
SET 4
SGN 4 4 4 4 4 4 4 4 4 4

SPACES 4 4 4 4 4 4

SPC 4 4 4 4 4 4 4

SQR 4 4 4 4 • 4 4 4 4 4 4

STR 4

STRS 4 4 4 4 4 4 4 4 4 4

STRINGS 4 4 4 4 4 4 4

SWAP 4 4 4 4 4

TAB + 4 4 4 4 4 4 4 4 4
TAN 4 4 4 4 4 4 4 4 4 4

TEST 4

62

Окончание табл. 3.1

Ключевое
слово

Номер версии
101 2 3 4 5 6 7 8 9

UNS +
USING + 4 4 4 4 4 4
USR 4 4 4 4 4 4 4 4
VAL 4 + 4 -4 4 4 4 4 4 4
VAL$ 4
VARPTR 4 4 4 4 4 4
WAIT 4 ¥ 4 4 4
WEND 4 4 4 4
WHILE + 4 4 4
WIDTH 4 4- 4- 4 4
WRITE 4 4 4

ABS — функция определения абсолютного значения числа X

Y=ABS(X)

X — числовое выражение.
Абсолютное значение всегда положительно или равно нулю. Например:

PRINT ABS(7*(-5))
35

Ok

ACS — функция вычисления арккосинуса числа X

Y=ACS(X)

X — числовое выражение.
Результат выполнения функции выдается в радианах. Если значение числа X не лежит в
диапазоне от —1 до +1, то выдается сообщение об ошибке Invalid argument (Неправильный
аргумент).

Например:
100 IF ACS(X)>0 THEN GOTO 300

ASC — функция определения кода ASCII (КОИ-8) первого символа строки Х$
Y=ASC(X$)

Результатом работы функции является числовое значение. Например:

10 X$-'*TEST"
20 PRINT ASC(X$)
RUN

84
Ok

ASN - функция вычисления арксинуса числа X
Y=ASN(X)

X — числовое выражение.

63

Результат выполнения функции выдается в радианах. Бели значение числа X не лежит в
диапазоне от — 1 до +1, то выдается сообщение об ошибке Invalid argument (Неправильный
аргумент).

Например:

10 FOR 1=1 ТО 1 STEP 0.01
20 PRINT ASN(I)
30 NEXT I

AT — параметр перемещения текущей позиции вывода на экран

PRINT АТ строка,столбец

INPUT АТ строка,столбец

Перемещает текущую позицию вывода на экран, т. е. позицию, в которую должен выводиться
следующий элемент, в заданные строку и столбец. Строки пронумерованы с 0 (начиная
сверху) до 21; столбцы пронумерованы с 0 (начиная слева) до 31. Можно использовать пара­
метр АТ, чтобы определить ту позицию вывода, в которой уже что-то напечатано. Новый
элемент будет выводиться на место старого. Используется только с операторами PRINT и
INPUT. Например:

PRINT АТ 11,16;'*"
Печатается символ * в центре экрана.

ATN — функция вычисления арктангенса числа X.
Y=ATN(X)

X - числовое выражение.

Результат выполнения функции вычисляется в радианах в диапазоне от —л /2 до л/2, где л =
= 3.141593. Выражение X может быть задано в любом числовом формате, но вычисление
функции ATN всегда выполняется с одинарной точностью. Для перевода радиан в градусы
результат умножается на 180/л. Например:

10 INPUT X
20 PRINT ATN(X)
RUN
?3

1.249046
Ok
10 PI=3.141593
20 RADIANS=ATN(1)
30 DEGREES=RADIANS*180/PI
40 PRINT RADIANS,DEGREES
RUN

.7853983 45
Ok

BCD - функция перевода целого двоичного числа в двоично-десятичное число

Y=BCD(выражение)

64

выражение— целочисленное выражение.
Двоично-десятичное представление — это представление, в котором каждые четыре бита
представляют десятичное число между 0 и 9. Так как XYBAS1C использует шестнадцатибито­
вые целые значения, то это значение может представлять четыре двоично-десятичные цифры
или шестнадцать двоичных цифр. Например, значение #1234 представляет 4660, если рассмат­
ривать в двоичном представлении, и 1234, если это значение рассматривать в двоично-десятич­
ном представлении.

Например:
10 А-17
20 PRINT BCD(A)
RON

0000000000010111
OK

ВШ — функция перевода целого числа из двоично-десятичного представления в двоич-
ное представление

Y=BIN(выражение)
выражение - целочисленное выражение.

Если выражение в функции BIN не является правомочным двоично-десятичным числом, то
появляется сообщение об ошибке FC (Functional Call — Функциональный вызов).

Например:

10 Axl?
20 PRINT BIN(А).
RUN

0000000000001011
OK

ВШ$ — функция, предназначенная для воспроизведения строки двоичных цифр, деся­
тичный эквивалент которых задан в качестве аргумента

Y$=BIN$(n)
п — числовое выражение, значение которого изменяется от —32768 до 65535.

При отрицательном значении аргумента справедливо тождество: BIN$(-n) = BIN$(65535-n).
Например:

PRINT BIN$(14)
1110

Ok

CALL - оператор вызова подпрограммы, написанной на машинном языке
Формат 1 (для версий XYBASIC, MBAS1C и BASICa).

CALL числовая переменная [(переменная[,переменная].. .)]

числовая переменная - имя числовой переменной. Значение переменной указывает
начальный адрес памяти подпрограммы:

переменная — имя переменной, которая передается как аргумент в подпрограмму на
машинном языке.
Формат 2 (для Бейсик-АГАТ).

CALL адрес

адрес — адрес подпрограммы.

3-6301
65

Формат 1. Оператор CALL - один из способов связывания программ на машинном языке.
Например:

110 OZ%=AH9000
120 CALL OZ%(A,B,C)

Для версии BASICA значение переменной указывает начальный адрес подпрограммы, вызы­
ваемой как смещение в текущем сегменте памяти (определенном последним оператором
DEF SEG). Например:

10 DEF SEG=&H8000
20 PROG-O
30 CALL PROG(ST$,CH)

CDBL — функция перевода числового выражения X в число двойной точности
Y=CDBL(X)

Например:

10 А-454.67
20 PRINT A,CDBL(A)
RUN

454.67 454.6699829101563

CHR$ — функция образования символьного эквивалента числового значения п, изме­
няющегося от 0 до 255

Y$=CHR$(n)
Функция CHR$ образует строку из одного символа п в коде ASCII (КОИ-8) и используется для
получения специального символа на экране или на печатающем устройстве.

Например:

PRINT CHR$(65);CHR$(32);CHR$(70)
A F
Ok

СШТ — функция перевода выражения X в целое число округлением дробной части
Y=CINT(X)

Если X не лежит в диапазоне целых чисел используемой версии языка Бейсик, то появляется
сообщение об ошибке Overflow (Переполнение).

Например:

PRINT CINT(45.67)
46

Ok
PRINT CINT(-2.89)
-3

Ok

CLEAR — оператор очистки данных

Формат 1 (для XYBAS1C, Бейсик-TRS-SO, Бейсик-ПК8010, Бейсик-ПК8020).

CLEAR [строковое пространство]

66

строковое пространство — размер памяти, разрешенный для строковых переменных.
Для версии XYBASIC по умолчанию 256 байт.

Формат 2 (для Бейсик-Спектрум+2).
CLEAR [максимальный адрес]

максимальный адрес — максимально допустимый адрес.

Формат 3 (для Бейсик-АГАТ).
CLEAR

Формат 4 (для MBASIC, BASICA).
' пт.ЕАЯ[. [максимальный адрес][, стековое пространство]]
максимальный адрес — счетчик байтов, который устанавливает максимальное число

байтов, доступных интерпретатору для запоминания программы и данных, т. е. максимально
доступный адрес памяти;

стековое пространство — число байтов, устанавливаемое для стекового пространства.
По умолчанию 1000 байт (512 байт для BASICA) или 1/8 часть доступной памяти, в зависимости
от того, что меньше.

Формат 5 (для MSX-BASIC).
CLEAR [строковое пространство[«максимальный адрес]]

строковое пространство — размер памяти, разрешенный для строковых переменных. По
умолчанию - 200 байт;

максимальный адрес — максимально допустимый адрес.
Оператор CLEAR устанавливает все числовые переменные в нуль и очищает строковые пере­
менные, закрывает все открытые файлы, устанавливает конец памяти и количество строково­
го или стекового пространства. Оператор CLEAR освобождает всю память, используемую для
данных, не стирая текущей программы. После работы команды CLEAR массивы не определе­
ны, числовые переменные принимают нулевые значения, строковые переменные очищаются, а
любая информация, определенная оператором DEF, включая DEF FN, DEF SEG, DEF USR,
DEFINT, DEFDBL, DEFSNG и DEFSTR, теряется.

Для формата 4 при необходимости зарезервировать память для-программы на машинном
языке, задается параметр максимальный адрес. При использовании большого количества
операторов GOSUB или циклов FOR...NEXT рекомендуется задать параметр стековое прост­
ранство. Например:

CLEAR
CLEAR,32768,2000

CLR — команда очистки данных
CLR

См. оператор CLEAR.

COMMON — оператор передачи переменных в программы, вызванные оператором CHAIN
COMMON переменная [.переменная]...

Оператор COMMON может появляться в любом месте программы, хотя рекомендуется, чтобы
он появлялся в начале. Одна и та же переменная не может появляться в двух и более операто­
рах COMMON. Переменные массива определяются наличием скобок () в имени переменной.
Если должны быть переданы все переменные, то в операторе CHAIN должен быть параметр
ALL, а оператор COMMON не указывается.

Например:

67

100 COMMON A,B,C,D(),G$
110 CHAIN ”A:PROG3",10

COS — функция определения косинуса числа X, заданного в радианах
Y=COS(X)

Чтобы перевести градусы в радианы, их надо умножить на л /180, где л я 3.141593. Вычисление
косинуса выполняется с одинарной точностью. Например:

10 X=2*COS(.4)
20 PRINT X
RUN

1.842122
Ok
10 PI=3.141593
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*P1/180
50 PRINT COS(READIANS)
RUN
-1
-1
Ok

CSNG — функция перевода числового выражения X в число одинарной точности

Y=CSNG(X)

Подобна функциям CINT и CDBL для перевода чисел в целое и двойной точности. Например:

10 А#=975.3421222#
20 PRINT A#,CSNG(А#)
RUN
975.342122 975.342

Ok

DATA — оператор, который запоминает числовые и строковые константы, подлежащие
считыванию оператором READ

DATA список констант
Константы в списке разделяются запятыми. Оператор DATA — неисполнительный оператор,
может быть расположен в любом месте программы и может содержать столько констант,
сколько их поместится на строке экрана дисплея. В программе может быть использовано
любое число операторов DATA.

Данные, которые содержатся в операторах DATA, могут считаться одним продолжаю­
щимся списком данных, невзирая на количество элементов в строке и на место, где располо­
жены строки.

Операторы READ имеют доступ к операторам DATA в порядке номеров строк. В списке
констант оператора DATA не допускаются выражения. Числовые константы могут быть заданы
в любом формате. Нет необходимости в операторе DATA заключать в кавычки строковые
константы, если они не содержат запятых, двоеточий, пробелов и символов русского алфавита.
Тип переменной, заданной в операторе READ, должен соответствовать типу констант в опера­
торе DATA, иначе появится сообщение об ошибке Sintax error (Синтаксическая ошибка).

68

Для того чтобы заново считать данные с начала списка операторов DATA, надо использо­
вать оператор RESTORE.

DEF FN — оператор определения и именования функции, определенной пользователем

DEF FN имя[(аргумент[»аргумент]...)]=определение
имя — имя действительной переменной. Это имя, которому предшествует FN, становится

именем функции (в Бейсик-Спектрум+2 имя может состоять только из одной буквы и сим­
вола ’$’);

аргумент — имя переменной в описании функции, которое будет заменено значением
при вызове функции (в Бейсик-Спектрум+2 количество аргументов не более одного);

определение — выражение, выполняющее операцию функции.
Определение функции ограничивается одной строкой. Аргументы, которые появляются в

выражении определения, служат только для определения функции, они не активизируют
программные переменные, которые имеют то же имя. Имя переменной, используемое в
описании функции, не должно появляться в списке аргументов. Если это сделано, то подстав­
ляется значение аргумента при вызове функции. Но может быть использовано текущее
значение переменной. Аргументы в списке соответствуют один к одному значениям, которые
передаются при вызове функции.

Тип функции определяет числовое или строковое значение, образуемое функцией. Если
тип определения не соответствует типу функции, то появляется сообщение об ошибке Туре
mismatch (Ошибочный тип). Если функция числовая, то значение выражения определения
переводится в число с точностью, описанной именем, перед возвратом в вызывающий опера­
тор. Оператор DEF FN должен быть выполнен для определения функции перед ее вызовом,
иначе появится сообщение об ошибке Undefined user function (Неопределенная функция
пользователя).

Функция может быть определена более одного раза. Действительным является самое
последнее выполненное определение. Допускается возможность определения рекурсивных
функций, т. е. функций, которые вызывают сами себя. Однако если не обеспечивается способ
остановки рекурсии, появляется сообщение об ошибке Out of memory (Вне памяти). Нельзя
использовать оператор DEF FN в прямом режиме.

Например:
10 Р1=3.141593
20 DEF FNarea(R)=PI*R*2
30 INPUT "РАДИУС ";RADIUS
40 PRINT "ПЛОЩАДЬ КРУГА ";FNarea(RADIUS)
RUN
РАДИУС ?2
ПЛОЩАДЬ КРУГА 12.56637
Ok

Строка 20 определяет функцию FNarea, которая вычисляет площадь круга с радиусом R.
Функция вызывается в строке 40.

Пример функции с двумя аргументами:

10 DEF FNmlld(X,Y)-X-(INT(X/Y)*Y)
20 A=FNmlld(7.4,4)
30 PRINT А
RUN
3.4

Ok
69

DEF SEG — оператор определения текущего сегмента памяти
DEF SEG=[адрес]

адрес — целочисленное выражение от 0 до 65535.

Инструкции BLOAD, BSAVE, CALL, PEEK, POKE, VARPTR и USR будут определять действи­
тельный физический адрес своей операции как смещение в заданном сегменте.

Если параметр адрес не указан, то значение устанавливается в сегмент данных (DS)
Бейсика. Это является начальным значением по умолчанию. Сегмент данных — это начало
рабочего пространства в памяти.

Если адрес задан, то он должен быть значением, выровненным на 16-байтовую границу.
Значение сдвигается влево на 4 бита (умножается на 16), чтобы сформировать адрес сегмента
для последующей операции. Интерпретатор не выполняет дополнительной проверки, чтобы
убедиться, что значение сегмента действительно. Слова DEF и SEG должны быть разделены
пробелом.

Если значение адреса лежит вне указанного диапазона, то появляется сообщение об
ошибке Illegal function call (Неверный функциональный вызов) и будет сохраняться предыду­
щее значение.

Например:

10 DEF SEG 'восстановить сегмент DS в Бейсике
20 DEF SEG=&H8000 'установить сегмент буфера

графического экрана
DEF USR — оператор определения начального адреса подпрограммы на машинном языке,

которая позднее вызывается функцией USR
Формат 1 (для Бейсик- АГАТ).

DEF 05В=адрес
Формат 2 (для Бейсик-TRS-80, MBASIC, Бейсик-ПК 8010, Бейсик-ПК8020, MSX-BASIChBASICA).

DEF USR[цифра]-адрес
цифра — любая цифра от 0 до 9;
адрес - целочисленное выражение от 0 до 65535.

Цифра соответствует номеру подпрограммы USR, чей адрес определяется. Если цифра не
указана, по умолчанию принимается DEF USRO. Значение адреса может задаваться в десятич­
ном и шестнадцатеричном форматах и является действительным начальным адресом подпро­
граммы USR. Для переопределения начального адреса подпрограммы в программе может
появляться любое число операторов DEF USR, так как разрешается доступ к стольким подпро­
граммам, сколько необходимо.

Например:

100 DEF USR0=&H9000

500 X-USR0(X+2)

END — оператор завершения программы
END

Заканчивает выполнение программы, закрывает все файлы и возвращает управление на
уровень команд. Оператор END может находиться в любом месте программы, но он не обяза­
телен. Оператор END отличается от оператора STOP: не вызывает сообщения break или stop
(выход или стоп); закрывает все файлы.

70

Например:
100 IF Р>100 THEN END ELSE GOTO 570

EXP — функция вычисления экспоненциального значения числа X, т. е. е х

Y=EXP(X)
Например:

10 Х=2
20 PRINT EXP(X-l)
RUN

2.718282
Ok

Аргумент X должен быть не больше определенного для каждой версии значения (например,
для MBASIC “ 87.3365), иначе возникнет переполнение.

FIRST и LAST - функции, которые определяют первый и последний адрес соответствен­
но, используемые для запоминания текущей XYBASIC-программы

Y=FIRST
Y-LAST

Например:

PRINT FIRST,LAST,LAST-FIRST+1

В этом примере на экран выдается начальный адрес программы, конечный адрес программы и
длина программы, расположенной в памяти.

FIX — функция определения целой части числового выражения X
Y=FIX(X)

При выполнении функции отбрасывается дробная часть числа справа от точки. Отличие
функции FIX от INT заключается в том, что функция FIX одинаково работает с положительны­
ми и отрицательными числами. Например:

PRINT FIX(58.75)
58

Ok
PRINT FIX(-58.75)
-58
Ok

FN — оператор, который вызывает функцию, определенную пользователем
У=ЕЫимя(аргумент)

Вызывает функцию, определенную пользователем в операторе DEF FN. Аргументы должны
быть заключены в скобки; даже если аргументов нет, скобки должны присутствовать.

См. оператор DEF FN.

(FOR...NEXT - оператор организации цикла

FOR переменная = выражение! ТО выражение2

[STEP выражениеЗ]

NEXT [переменная]

71

переменная — целочисленная или одинарной точности переменная, которая будет
использоваться как счетчик (в Бейсик-Спектрум+2 имя переменной должно быть из одной
буквы);

выражение! — начальное значение счетчика;
выражение! — конечное значение счетчика;
выражениеЗ — шаг цикла.

Программные строки, следующие за оператором FOR, выполняются до тех пор, пока не
встретится NEXT. Затем счетчик увеличивается на число, определенное выражением! в STEP.
Если шаг ие задан, то по умолчанию принимается равным единице. Затем выполняется
проверка.

Если значение счетчика не больше конечного значения выражения2, то опять начинают
выполняться программные строки, следующие за оператором FOR, и процесс повторяется. А
если значение счетчика больше конечного значения выражения!, то начинают выполняться
программные строки, следующие за оператором NEXT.

Если выражениеЗ отрицательно, то каждый раз в цикле значение счетчика уменьшается,
и цикл выполняется, пока значение счетчика больше конечного значения.

Циклы FOR...NEXT могут быть вложены, т. е. один цикл FOR...NEXT может находиться
(выполняться) внутри другого FOR...NEXT цикла.

Каждый вложенный цикл должен иметь свои имена переменных в качестве счетчика.
Оператор NEXT для внутреннего цикла должен выполняться раньше оператора NEXT для
внешнего цикла. Если вложенные циклы имеют одну точку конца, то в Бейсик-TRS-80,
MBASIC, Бейсик-ПК8010, Бейсик-ПК8020, MSX-BASIC и BASICA может быть использован один
оператор NEXT для всех переменных. Вид оператора NEXT

NEXT переменная!, переменная2, переменнаяЗ. ..

эквивалентен последовательности операторов:

NEXT переменная!

NEXT переменная2

NEXT переменнаяЗ

Переменная в операторе NEXT может быть не указана, в этом случае этот оператор NEXT будет
заканчивать самый последний FOR...NEXT цикл. Например:

10 J-10 : К-30
20 FOR 1=1 ТО J STEP 2
30 PRINT I; : К=К+10 : PRINT К
40 NEXT
RUN

1 40
3 50
5 60
7 70
9 80

Ok
72

PRE — функция определения количества свободных байтов после их предварительной
очистки

Y=FRE(X)

Y=FRE(X$)

Определяет число байтов памяти, не использованных интерпретатором. Так как строки в
языке Бейсик могут иметь переменную длину, то строковое пространство может стать фраг-
монтированным. Функция FRE с любым строковым значением вызывает очистку перед
указанием числа свободных байтов.

При очистке интерпретатор собирает все полезные данные и освобождает неиспользован­
ные области памяти, которые были однажды использованы для строк. Интерпретатор будет
автоматически делать очистку, когда она выполняется в неиспользованной рабочей области.
Можно периодически использовать FRE(00) для получения более короткой задержки при
каждой очистке. Аргументы в функции FRE фиктивные. Например:

PRINT FRE(O)
14542

Ok
FRE$ — функция определения неиспользованных байтов строкового пространства

Y-FRE$
Например:

10 CLEAR 256
20 PRINT FRE$
30 A$=,,DOG"
40 PRINT A$;FRE$
RUN

256
DOG 253

GET — функция определения кода введенного символа

Формат 1 (дляХУВАЗЮ).
Y=GET

Формат 2 (для Бейсик-АГАТ).
GET Х$

Формат 1. Определяет код ASCII введенного символа или 0, если символ не введен.
Функция GET позволяет проверить, был ли введен символ во время выполнения программы.

Например:

10 IF GET=20 THEN GOSUB 100
20 I-I+l
30 GOTO 10
100 PRINT I;
110 RETURN
RUN

46 100 126 169 183 201 AC
BREAK AT LINE 20
OK

73

Так как XYBASIC автоматически отсекает бит четности в любом считанном символе, то нельзя
с помощью GET получить код больше 127. И, конечно, не следует пытаться получить такие
символы, как Ctrl—С, которые имеют специальное значение в XYBASIC.

Формат 2. Ввод одного символа с клавиатуры. Все символы равноправны. На экране
введенный символ не отображается.

GETS — определяет строковое значение введенного символа
Y=GET$

Функция GETS позволяет проверить, был ли введен какой-либо символ во время выполне­
ния программы. Если символ введен, то функция GETS определяет строковое значение
введенного символа. Если символ не введен, то определяется пустая строка. Например:

10 IF GET$=“P“ THEN GOSUB 100
20 1=1+1
30 GOTO 10
100 PRINT I;
110 RETURN
RUN

57 113 181 193 369 AC
BREAK AT LINE 20
OK

GOSUB....RETURN — операторы перехода к подпрограмме, написанной на языке Бейсик,
и возврата из нее в текущую программу

GOSUB номер строки

RETURN

номер строки - номер первой строки подпрограммы.

Подпрограмма может вызываться любое число раз из самой программы или из другой подпро­
граммы. Такие вложения подпрограмм ограничиваются только доступной памятью. Оператор
RETURN заставляет Бейсик вернуться обратно из подпрограммы к оператору, следующему за
вызвавшим эту подпрограмму оператором GOSUB. Подпрограмма может содержать больше
одного оператора RETURN для возврата из различных точек подпрограммы.

Подпрограммы могут находиться в любом месте программы. Часто используемые под­
программы следует размещать в начале программы, чтобы ускорить ее выполнение. Для
перехода к различным подпрограммам в зависимости от значения выражения используется
оператор ON...GOSUB. *

Например:

10 GOSUB 40
20 PRINT “ВОЗВРАТ ИЗ ПОДПРОГРАММЫ" : END
40 PRINT “SUBROUTINE
50 PRINT “IN
60 PRINT PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
ВОЗВРАТ ИЗ ПОДПРОГРАММЫ
Ok

74

GOTO - оператор безусловного перехода

GOTO номер строки
Осуществляет безусловный переход из нормальной программной последовательности к
определенному номеру строки. Если номер строки — номер исполнительного оператора, то
выполняется этот оператор и следующие за ним, а если это неисполнительный оператор (такой,
как REM или DATA), то выполнение продолжается с первого исполнительного оператора,
встреченного после номера строки.

Оператор GOTO может быть использован в прямом режиме, чтобы заново ввести про­
грамму с описываемой точки, например при устранении ошибок.

5 DATA 5,7,12
10 READ R
20 PRINT "R="; R;
30 A-3.141*R*2
40 PRINT MAREA=“;A
50 GOTO 5
RUN
R= 5 AREA= 78.5
R= 7 AREA= 153.86
R= 12 AREA-- 452.16
ВНЕ DATA В 10
Ok

Для перехода к различным строкам в зависимости от значения выражения используется
оператор ON...GOTO.

НЕХ$ — функция, предназначенная для воспроизведения строки шестнадцатеричных
цифр, десятичный эквивалент которых п задан в качестве аргумента

Y$=HEX$(n)

п — числовое выражение от —32768 до 65535.

Значение п округляется до целого числа перед выполнением функции НЕХ$. При отрицатель­
ном значении п справедливо тождество НЕХ$(—п)=НЕХ$(65535—п). Например:

10 INPUT X
20 А$-НЕХ$(Х)
30 PRINT X,' DECIMAL IS " ,А$, "HEXADECIMAL"
RUN
732

32 DECIMAL IS 20 HEXADECIMAL
Ok
RUN
?15

15 DECIMAL IS F HEXADECIMAL
Ok

ШМЕМ: — оператор установки верхней границы памяти под переменные и строки,
используемые программой

Н1МЕМ:п
в — целочисленное выражение.

75

IF - оператор условного перехода
Формат 1 (для XYBASIC и Бейсик-АГАТ).

IF выражение THEN часть
часть — оператор или последовательность операторов, или номер строки для перехода.

Формат 2 (для Бейсик-Спектрум+2).

IF выражение THEN операторе:оператор.]

IF выражение THEN GOTO номер строки

Формат 3 (для Бейскк-TRS—80, MBASIC, Бейсик-ПК8010, Бейсик-ПК8020, MSX-BASIC и BASICA)

IF выражение THEN часть [ELSE часть]

1F выражение GOTO номер строки lELSE часть!

часть — оператор или последовательность операторов, или номер строки для перехода.
Принимает решение относительно программного потока, основанного на значении выражения.
Бели значение выражения — ИСТИНА (не нуль), то выполняется часть THEN (или часть GOTO).
Если значение выражения - ЛОЖЬ (нуль), то части THEN и GOTO игнорируются и выполняет­
ся часть ELSE, если она существует. Выполнение продолжается со следующего за оператором
IF исполнительного оператора.

Операторы IF...THEN...ELSE могут быть вложены. Вложение ограничивается только
длиной строки дисплея. Например:

IF X>Y THEN PRINT "БОЛЬШЕ" ELSE IF Y>X THEN PRINT
"МЕНЬШЕ" ELSE PRINT "РАВНЫ"

Если оператор содержит неодинаковое количество частей THEN и ELSE, то каждая часть ELSE
соответствует части THEN, закрывая ближайший оператор IF. Например:

IF А=В THEN IF В=С THEN PRINT "А=--С" ELSE PRINT
"A<>С"

Не будет печататься А< > С, когда А< > В.
Если в прямом режиме за оператором IF следует номер строки, то это имеет тот же

эффект, как если бы номеру предшествовал оператор GOTO.

Ш - функция, определяющая байт, считанный из порта
Формат 1 (для Бейсик-Спектрум+2).

Y=IN п
п - адрес порта.

Формат 2 (для XYBASIC).

Y=IN (п)

п — номер порта.

76

Формат 1. Результат вводится на уровне процессора с порта n (0<=n<=FFFFh). Число п
загружается в пару регистров ВС и выполняется команда ассемблера IN А, (С). Например:

10 FOR п=0 ТО 7
20 А--254«-256*(255-2 ~п)
30 PRINT AT 0,0; IN A: GOTO 30
40 NEXT

Адреса 254+256*(255—2~п) при значениях п от 0 до 7 используются для опроса клавиатуры
(8 полурядов по 5 клавиш).

Формат 2. Систем? XYBASIC выбирает значение из порта с номером п и присваивает его
переменной Y. Номер порте может задаваться выражением. Например:

10 Y=IN (12) JOIN IN (13)
20 IF Y=#FFFF THEN 10
30 FOR 1=0 TO 15
40 IF TEST (X,I)=0 THEN PRINT "~GBIT #";T]
50 NEXT I

INKEY$ — функция, предназначенная для "опроса* клавиатуры
YS-INKEYS

Опрашивает клавиатуру на нажатие какой-либо клавиши и вводит символ, клавиша которого
нажата. Если никакая клавиша не нажата, то вводится пустая строка.

При использовании INKEYS символы не высвечиваются на экране, все символы переда'
ются в программу за исключением кода CTRL—С.

Нажатие клавиши возврата каретки при определении ответа, используя INKEY$, будет
передавать символ возврата каретки в программу. Необходимо присвоить значение перемен­
ной INKEYS строковой переменной перед использованием символа любым оператором или
функцией языка Бейсик. Например:

110 PRINT "Нажмите любую клавишу для продолжения"
120 A$=INKEY$: IF А$="" THEN 120
210 КВ$=INKEYS
220 IF LEN(KB$)=2 THEN KBS=RIGHTS(KBS,1)

ШР - функция, определяющая байт, считанный из порта

Y=lNP(n)
п — номер порта — выражение от 0 до 255.

Функция INP дополнительная к оператору OUT.
Например:

150 A=INP(255)
INPUT — оператор ввода с клавиатуры

Формат 1 (для XYBASIO.
INPUT["напоминание"]список переменных

список переменных —имена строковых и/или числовых переменных, разделенные
запятыми.
Формат 2 (для Бейсик-Спектрум+2).

1Ш?иТпоследовательность элементов

77

Формат 3 (для Бейсик-АГАТ, Бейсик-TRS—80, Бейсик-ПК8010, Бейсик-ПК8020 hMSX-BASIC).
INPUT["напоминание";]список переменных

список переменных — имена числовых и/или строковых переменных, разделенные
запятыми.
Формат 4 (для MB ASIC и В A SIC А).

INPUT [;]["напоминание";] список переменных
список переменных — имена числовых и/или строковых переменных, разделенные

запятыми.

Осуществляет ввод с клавиатуры во время выполнения программы.
Когда выполняется оператор INPUT, программа делает остановку, на экране появляется

знак вопроса, указывающий, что программа ожидает данные. Бели задана строка напомина­
ния, то она высвечивается перед знаком вопроса (?). Затем требуемые данные вводятся с
клавиатуры.

Вводимые данные присваиваются переменным, заданным в списке. Число элементов
данных должно соответствовать числу переменных в списке. Тип каждого вводимого элемен­
та должен соответствовать типу, определенному именем переменной. Нет необходимости
заключать в кавычки строковые данные.

Формат 1, Если на запрос оператора INPUT вводится больше элементов данных, чем
указано в операторе, то появляется сообщение EXCESS IGNORED, лишние данные игнориру­
ются и выполнение программы продолжается.

Если вводится меньше элементов данных или тип вводимых данных не соответствует
типу определенных переменных, то появится сообщение REDO? и дается попытка повторить
ввод. Так продолжается до тех пор, пока не будет задан правильный ответ.

Формат 2. Элементом оператора INPUT может быть любой из следующих:
элемент оператора PRINT, не начинающийся с буквы (пусто, числовое выражение,

строковое выражение, функция управления АТ, функция управления ТАВ);
имя переменной;
LINE (при этом обязательно имя строковой переменной).
Элементы оператора INPUT могут быть разделены запятыми, точками с запятой и апост­

рофами аналогично оператору PRINT.
Все, что выводится с помощью оператора INPUT, помещается в нижней части экрана,

которая функционирует в некотором смысле независимо от верхней части экрана.
В отличие от других версий, в версии Бейсик-Спектрум+2 значение переменной может

быть выведено на экран в строке напоминания. Если элемент оператора INPUT начинается с
буквы, то он должен быть переменной, значение которой необходимо ввести. Однако это
ограничение можно обойти заключением соответствующей переменной в скобки. Любое
выражение, которое начинается с буквы, заключается в скобки, если оно должно быть напеча­
тано как часть строки напоминания.

Например:

LET my age=INT(RND*100):INPUT("I am";my age;".");
"How old are you?",your age

Здесь переменная ’my age’ (см. гл. 2) заключена в скобки, поэтому ее значение выводится на
экран. Переменная ’your age’ не заключена в скобки, так что требуется ввести ее значение.

Элементами оператора INPUT могут быть элементы оператора PRINT. Например:

10 INPUT "This is line l",a$;AT 0,0;"This is line
0 ", a$

78

Если в операторе INPUT перед именем вводимой строковой переменной поставить
ключевое слово LINE в следующем виде:

INPUT LINE а$
то строковые кавычки не будут выводиться (хотя обычно они выводятся для строковой

переменной). Ключевое слово LINE нельзя использовать для числовых переменных, так как
ввод воспринимается как строка литералов без кавычек. Механизм STOP (если первый
символ при вводе есть STOP, то программа останавливается с ошибкой Н) не будет работать.
Для останова вместо этого надо нажать клавишу "курсор вниз".

Оператор INPUT LINE работает подобно оператору LINE INPUT в других версиях.
Формат 3. Если на запрос оператора INPUT вводится больше или меньше элементов

данных или тип данных не соответствует типу переменной, то на экране дисплея появляется
сообщение ?Redo from start (?Повторите ввод). Присваивание введенных значений не выполня­
ется до тех пор, пока не будет задан правильный ответ.

Если на запрос оператора INPUT вводится больше элементов данных, то появится сообще­
ние ?Extra ignored (?Лишние данные), лишние данные игнорируются и выполнение программы
продолжается.

Если вводится меньше элементов данных, то до тех пор, пока не будет введено необхо­
димое число данных, будут появляться два знака вопроса (??).

Формат 4. Если сразу после оператора INPUT следует точка с запятой, то во входных
данных не появляется символ возврата каретки, определенный пользователем. Например:

10 INPUT X
20 PRINT X;" SQUARED IS ";Х*2~: END
RUN
?5
5 SQUARED IS 25
Ok

INSTR — функция, предназначенная для определения позиции строки У$ в строке Х$

Z=INSTR([n,]X$,Y$)

п — числовое выражение от 1 до 255;
Х$, Y$ — строковые переменные, строковые выражения или строковые константы.

Определяет номер позиции начала строки Y$ в строке Х$. Необязательное смещение п устанав­
ливает номер позиции для начала просмотра. Функция INSTR определяет 0 в случаях

n>LEN(X$);
Х$ - пустая строка;
Y$ — не может быть найдена.

Если Y$ пустая строка, то 1NSTR определяет п или 1. Если п вне диапазона, возвращается
сообщение об ошибке.

Например:

10 A$='*ABCDEB"
20 В$-'В"
30 PRINT INSTR(A$,B$);INSTR(4,А$,В$)
RUN

2 6
Ok

ШТ — функция определения целой части числового выражения X
Y=INT(X)

Определяет целое число, которое меньше или равно значению выражения X. Для положитель­
ных значений X функция INT работает так же, как функция FIX, т. е. отбрасывает дробную
часть числа справа от точки. Для отрицательных значений X функция INT воспроизводит
целое число, которое меньше или равно числу слева от точки. Например:

PRINT INT(99.89)
99

Ok
PRINT INT(-12.11)
-13.
Ok

LEFTS — функция выделения самых левых символов строки Х$
Y$=LEFT$(X$,n)

п — в диапазоне от 0 до 255.

Выделяет п самых левых символов строки Х$. Если п больше длины строки, то повторя­
ется вся строка Х$. Если п=0, то образуется пустая строка. Например:

10 А$="BASIC program”
20 B$=LEFT$(A$,5)
30 PRINT B$
RUN
BASIC
Ok

LEN - функция определения длины строки
Y=LEN(X$)

Вычисляет количество символов в строковой переменной Х$. Например:

Х$=”ВОСА RATION, FL” : PRINT LEN(X$)
15

Ok

LET — оператор присваивания
[LET] переменная - выражения

Слово LET необязательно. Например:

110 LET D=12 или 110 D=12
120 LET Е-12-2 120 E-12-2
130 LET F$=”STROKA“ 130 F$=”STROKA“
140 LET SUM=(D+E)/5 140 SUM=(D+E)/5

Если числовые значения присваиваются строковый: переменным или строковые значения
числовым переменным, то появляется сооб/цение об ошибке Type mismath (Ошибочный тип).

LINE INPUT - оператор ввода строковой переменной с клавиатуры
Формат 1 (для Бейсик-TRS—80, Бейсик-ПК8010, Бейсик-ПК8020, MSX-BASIQ.

LINE INPUT ["напоминание”;] строковая переменная

80

напоминание — строковая константа, которая появляется на экране перед вводом
данных.
Формат 2 (для MBASIC и BASICA).

LINE INPUT [;][**напоминание”;] строковая переменная
напоминание — строковая константа, которая появляется на экране перед вводом

данных.

Формат 1. Присваивает строку данных строковой переменной без использования разгра­
ничителей. Знак вопроса не печатается, если он не является частью строки напоминания. Все
введенные данные от конца напоминания до возврата каретки присваиваются строковой
переменной. Действие оператора LINE INPUT можно остановить нажатием клавиш CTRL—С.
Интерпретатор возвратится на уровень команд, появится подсказка Ок. Для возобновления
выполнения программы вводится команда CONT.

Формат 2. Если сразу за LINE INPUT следует точка с запятой, то возврат каретки, введен­
ный пользователем, не делает перевода строки и возврата каретки на экране.

LINPUT — оператор ввода строки символов с клавиатуры
LINPUT строковая переменная

См. формат 1 оператора LINE INPUT.

LN — функция, вычисляющая натуральный логарифм
Y=LN(X)

Для вычисления логарифма по любому другому основанию необходимо разделить натураль­
ный логарифм числа на натуральный логарифм основания, т. е. loga х=1п х/in а.

LOG — функция определения натурального логарифма числа X
Y=LOG(X)

X — число больше 0.
Например:

PRINT LOG(45/7)
1.860752

Ok
Натуральные логарифмы используются во многих задачах, но иногда необходимо вычис­

лить десятичный логарифм. Значение десятичного логарифма можно получить, умксжив
значение натурального логарифма на 0.43429448. Например:

100 LN~LO6(X)
110 LD-LN*0.43429448

В этом примере LN — натуральный логарифм числа X, LD- десятичный логарифм числе. X.

LOMEM — устанавливает минимальный размер памяти для переменных и строк, исполь­
зуемых программой (LOMEM: п)

LSHIFT-см. ROTATE

МЕМ — функция определения количества использованных и неиспользованных байтов
памяти

Y=MEM
Эта функция может использоваться в командном режиме для определения котг’чпсТВа
байтов,которое занимает загруженная программа, или может использоваться в прогрг^ме гпя

81

предотвращения ошибки ОМ (Out of memory — Вне памяти) переопределением количества
байтов, отведенных под строковое пространство, определением массивов меньшей размернос­
ти и т. п.

МШ$ — функция или оператор выделения требуемой части заданной строки

как функция

Y$=MID$(X$,n[,m])

как оператор

MID$(X$,n[,m])=Y$

п — целочисленное выражение от 1 до 255;
m — целочисленное выражение от 0 до 255.

Когда MID$ используется как оператор, то замещается часть одной строки другой строкой.
Символы в строке Х$, начиная с n-го, замещаются символами строки Y$; m — число символов
строки Y$, которые будут замещены. Если m не указано, то используется вся строка Y$.

Длина строки Y$ не изменяется независимо от того, задано число m или нет. Например,
если Y$ длиной 4 символа, a Y$ длиной 5 символов, то после замещения Х$ будет содержать
первые 4 символа строки Y$. Бели п или m находятся вне диапазона, то появляется сообщение
об ошибке Illegal function call (Неверный функциональный вызов).

Функция воспроизводит строку длиной m символов из строки Х$, начиная с n-го симво­
ла. Бели m не указано или в строке меньше m символов справа от n-го символа, то образуется
строка из всех самых правых символов, начиная с n-го. Бели т=0 или n>LEN(X$), то MID$
образует пустую строку.

Например:

10 A$="GOTO"
20 В$=" MORN ING EVENING AFTERNOON"
30 PRINT A$,MID$(B$,9,7)
RUN
GOTO EVENING
Ok

MSBYTE, LSBYTE и JOIN - функции обработки битов

Y= LSBYTE(выражение)

Y=MSBYTE(выражение)

выражение! JOIN выражение2

Функции LSBYTE и MSBYTE определяют самые младшие и самые старшие восемь битов
16-битового целочисленного выражения. Функция JOIN выполняет конкатенацию двух
8-битовых значений в 16-битовое значение.

NULL — команда, определяющая число пустых символов, которые должны быть напеча­
таны после символа "возврат каретки”, т. е. задающая левую границу экрана

NULL п
п - целое число от 1 до 255.

82

Например:

NULL 3
Ok

OCT$— функция, предназначенная для образования восьмеричного значения десятично­
го аргумента п

Y$=OCT$(n)

Перед выполнением значение п округляется до целого числа. Например:

PRINT ОСТ$(24)
30
Ок

ON...GOTO, ON...GOSUB - операторы перехода на один из заданных номеров строк в
зависимости от вычисленного выражения п

ON n GOTO номер строки[,номер строки]...
Значение п определяет, какой номер строки в списке будет использован для перехода. Если
необходимо, п округляется до целого числа. В операторе ON...GOSUB каждый номер строки в
списке должен быть номером первой строки подпрограммы, поэтому необходимо иметь в
подпрограмме оператор RETURN, чтобы вернуться в строку, следующую за оператором
ON...GOSUB.

Если значение п равно 0 или больше количества строк перехода в программной строке
(но меньше или равно 255), то выполнение программы продолжается со следующего исполни­
тельного оператора. Если значение п отрицательно или больше 255, то появляется сообщение
об ошибке Illegal faction call (Неверный функциональный вызов).

Например:

100 ON L=1 GOTO 150,300,450,500
110 ON A GOSUB 1300,1400

1300 REM start of subroutine for A=1

1390 RETURN

OUT — оператор посылки данных m в выходной порт машины п
OUT n,m

n - номер порта от 0 до 255 (0 - 65535 для Бейсик-Спектрум+2);
m — байт данных от 0 до 255.

Оператор OUT является дополнительным к функции INP. Для Бейсик-Спектрум+2 загружает в
пару регистров ВС число п, в регистр А число m и выполняет команду ассемблера out (С), А.

Например:

10 OUT 132,100
РЕЕК — функция получения байта из указанного числом п адреса оперативной памяти

Y=PEEK(n)
п — целое число от 0 до 65535.

83

Считанное значение будет целым десятичным числом в диапазоне 0 ... 255. Функция РЕЕК
дополнительная к оператору РОКЕ.

Например:

10 IF (РЕЕК(АН410) AND &Н30)=&Н30 THEN MONO=1 ELSE
MONO=0

Pl — число ”пи”
Y=PI

Число ”пи" является бесконечной непериодической десятичной дробью, его первые значащие
цифры равны 3.1415927.

РОКЕ — оператор записи байта данных m в оперативную память по адресу п
POKE n,m

п — число от 0 до 65535;
m — число от 0 до 255.

Дополнительной функцией к оператору РОКЕ является функция РЕЕК; РЕЕК и РОКЕ полезны
для эффективного хранения данных, загрузки подпрограмм на машинном языке, передачи
аргументов и результатов в и из подпрограмм на машинном языке. Интерпретатор не делает
никакой проварки адресов. Например:

10 РОКЕ 106,0
POP — оператор удаления из стека последнего адреса возврата

PRINT — оператор вывода информации на экран дисплея
PRINT [список выражений][; : ,]

Если список выражений не указан, то на экран выводится строка пробелов. Выражения в
списке могут быть числовыми и/или строковыми. Строковые константы должны быть заклю­
чены в кавычки. Позиция каждого выведенного элемента определяется знаками препинания,
используемыми для разделения элементов списка.

В версиях XYBASIC, Бейсик-ТИ5-80, Бейсик-ПК8010, Бейсик-ПК8020, MSX-BAS1C и
BAS1CA строка разделяется на зоны вывода по четырнадцать символов каждая. В версии
Бейсик-Спектрум+2 запятая используется, чтобы вывод начинался либо с левой границы, либо
с середины экрана, а апостроф (’) используется для вывода с начала следующей строки. В
версии Бейсик-АГ АТ строка делится на три зоны вывода.

Запятая в списке выражений заставляет печататься следующее значение с начала следую­
щей зоны. Точка с запятой заставляет печататься следующее значение со следующей позиции с
учетом пробелов при печати числовых данных.

Если запятая или точка с запятой заканчивают список выражений, то следующий опера­
тор PRINT начинает печать в той же строке через заданное число пробелов. Если длина печатае­
мой строки больше, чем определено оператором WIDTH, то печать продолжается на следую­
щей физической строке.

За печатаемыми числами всегда следует пробел; положительным числам предшествует
пробел, а отрицательным знак минус. В некоторых версиях языка числа одинарной точности
могут быть представлены шестью или меньше цифрами в формате с фиксированной точкой, но
с меньшей точностью, чем если бы они могли быть представлены в формате с плавающей
точкой. Они выводятся, используя фиксированную точку или целочисленный формат. На­
пример, 10"(-7) выводится как .0000001, а 10~(-8) выводится как 1Е-8.

84

10 INPUT X
20 PRINT X; "SQUARED IS** ;ХЛ2; "AND" ,
30 PRINT X;"CUBED IS";X~3
RUN
?3

9 SQUARED IS 81 AND 9 CUBED IS 729
Ok
RUN
?21

21 SQUARED IS 441 AND 21 CUBED IS 9261
Ok
10 FOR X=1 TO 5
20 J-J+5
30 K=K+10
40 ?J;K
50 NEXT X
RUN

5 10 10 20 15 30 20 40 25 50
Ok

PRINT USING - оператор вывода информации на экран с учетом заданного формата

Таблица 3.2

PRINT USING Х$;список выражений[; : ,]
Список выражений состоит из строковых или числовых выражений, которые будут печатать­
ся. Выражения в списке разделяются запятыми или точками с запятой; Х$ — строковая
константа или переменная, которая состоит из специальных символов формата (табл. 3.2).

Версия Специальные символы Формата

। \п пробе- & #
лов\

4 - ЖЖ $$ **$ —

Стандарт 4 4 4 4

Бейсик-
TRS-80 + > г 4 4 4 I

MBASIС 4 4 + + 4 4 4 4 4 4 4’ 4

Бейсик-
ПК8010 4 + 41 4 4 4 4 4 4 4

Бейсик-
ПК8020 4 4 4 4 4 4 4 4 4 4

MSX-BASIC 4 4 4-4 4 4 4 4« 4 1 4 4

BASICA 4 4 4 4 4 1 4 4 4 4 4 4

Примечание. В Бейсик-TRS-SO вместе' \11 пробелов\ используется %п пробелов%;
MSX-BASIC вместо \п пробелов\ используется &п пробелов^ и вместо & используется @.

85

Эти символы определяют формат и поля печатаемых символов. Для печати строк приме­
няются следующие символы формата:

! — первый символ в заданной строке должен быть выведен на экран;
\п пробелов\ — 2+п символов из строки должны быть выведены. Если обратные слеши

(\\) не содержат пробелов, то будут выведены два символа, если содержат один пробел,
то — три символа и т. д. Если строка длиннее, чем поле, то лишние символы игнорируются.
Если поле длиннее, то строка будет справа дополняться пробелами. Например:

10 A$="LOOK" : B$="OUT"
30 PRINT USING "!";А$;В$
50 PRINT USING "\ \";А$;В$
70 PRINT USING "\ \";А$;В$;"!!"
RUN
LO
LOOKOUT
LOOK OUT ! !
Ok

A — определяет поле строки переменной длины. Если поле определено с &, то строка
выводится в том виде, как она была введена. Например:

10 A$="LOOK" : B$="OUT"
20 PRINT USING "!";А$;
30 PRINT USING "А";В$
40 PRINT "ПЕЧАТЬ & НА ЭКРАНЕ";В$
RUN
LOUT
ПЕЧАТЬ OUT НА ЭКРАНЕ
Ок

Для вывода чисел используются следующие символы:
— для представления каждой числовой позиции. Числовые позиции всегда заполнены.

Если число, которое будет выводиться, содержит меньше цифр, чем определенных позиций,
то число будет выводиться в поле справа и ему будут предшествовать пробелы. Точка может
быть выведена в любую позицию поля. Если строка формата определяет, что цифры должны
предшествовать точке, то перед точкой обязательно будут выводиться цифры (если необхо­
димо, будут выводиться нули). При необходимости числа округляются. Например:

PRINT USING 78
0.78

PRINT USING 987.654
987.65

PRINT USING ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

+ - знак ”+” в конце строки формата используется для вывода знака числа (+ или —)
перед или после числа.

— знак ” в конце строки формата используется для вывода отрицательного числа со
знаком минус. Например:

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90
PRINT USING ;68.95,22.449,-7.08
68.95- 22.45 7.04-

86

** — двойная звезда в начале строки формата для заполнения звездочками передних
пробелов в числовом поле; для определения позиции при использовании больше двух цифр.
Например:

PRINT USING 12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ — двойной знак ”$$” для вывода знака $ непосредственно слева от числа; $$ определя­
ет позиции более двух цифр, одна из которых $. Экспоненциальный формат не может быть
использован со знаком Отрицательные числа не могут быть использованы, если знак не
указан справа. Например:

PRINT USING 456.78
$456:78

♦*$ — этот знак в начале строки формата комбинирует действия вышеназванных двух
символов формата. Передние пробелы будут заполняться звездочками, а знак будет
выводиться перед числом. Знак ”**$” определяет позиции более трех цифр, одна из которых
$. Например:

PRINT USING ”**$##.##”;2.34
♦♦♦$2.34

, — запятая, которая находится слева от точки в, строке формата, используется для
вывода запятой слева от каждой третьей цифры слева или справа от точки. При использовании
экспоненциального формата запятая не применяется. Например:

PRINT USING "fl###, .##•’; 1234.5
1,234.5

PRINT USING 1234.5
1234.5,

этот знак может быть размещен после символов цифровой позиции для определения
экспоненциального формата. Этот знак резервирует пространство для Б+пп, которые будут
выводиться. Значащие цифры выводятся слева. Бели задан начальный или конечный знак ”+*
или то одна цифровая позиция будет использована слева или справа от точки для вывода
пробела или знака ”. Например:

PRINT USING --------- ;234.56
2.35Е+02

PRINT USING -88888
.889E+05-
PRINT USING •'+.##--------- ;123
+.12E+03

-знак подчеркивания в строке формата используется для вывода следующего символа
как литерала. Сам литеральный символ может быть знаком подчеркивания, размещаясь как

’ в Строке формата. Например:

PRINT USING “ 12.34
•12.34!

87

Если число, которое должно выводиться, больше определенного числового поля, то в
начале числа выводится знак %. Если при округлении число превышает поле, то знак % будет

выводиться в начале округленного числа. Например:

PRINT USING"##.##"; 111.22
Х111.22
PRINT USING ".##";.999
%1.0

Если число заданных цифр превышает 24, то появляется сообщение об ошибке Illegal
function call (Неверный функциональный вызов). Например:

PRINT USING "THIS IS EXAMPLE ##" ; 1
THIS IS EXAMPLE #1

RANDOM — оператор, включающий генератор случайных чисел и определяющий после­
довательность случайных величин при использовании функции RND

RANDOMIZE — оператор, обеспечивающий работу генератора случайных чисел
RANDOMIZE [п]

п — любое целое число в диапазоне чисел, с которыми работает используемая версия
языка Бейсик.

Если п не указано, то интерпретатор приостанавливает выполнение программы и запрашивает
значение; на экране появляется сообщение Random number seed (—32768 to 32767)? (Введите
любое число (от -32768 до +32767)?) перед выполнением RANDOMIZE.

Чтобы изменить последовательность случайных чисел при каждом выполнении програм­
мы, необходимо поместить оператор RANDOMIZE в начале программы и каждый раз изменять
число п.

READ — оператор считывания данных из оператора DATA
READ список переменных

Считывая значения из оператора DATA, присваивает их переменным. Оператор READ всегда
должен быть использован в паре с оператором DATA. Оператор READ присваивает значение
оператора DATA переменным один к одному. Например:

10 PRINT "СТРАНА" , "ГОРОД" , "ИНДЕКС"
20 READ C$,S$,Z
30 DATA "СССР","МОСКВА",115470
40 PRINT C$,S$,Z
RUN
СТРАНА ГОРОД ИНДЕКС
СССР МОСКВА 115470
Ок

RESET и SET — функция установки в 0 или в 1 соответственно определенного бита в
байте

Y=RESET(выражение!,вырахение2)

Y=SET(выражение!,выражение2)

88

выражение! — целочисленное выражение, значение которого изменяется;
выражениеЗ — номер бита (от 0 до 15).
Например:

10 Х=16:Y=SET(0,4)
20 PRINT RESET(X,4);Y
RUN

О 16
OK

В функциях SET и RESET выражение2 вычисляется по модулю 16.

RESTORE — оператор, используемый совместно с операторами READ и DATA при вводе
данных
Формат 1 (кроме Бейсик-АГАТ).

RESTORE [номер строки]
Формат 2 (для Бейсик-АГАТ).

RESTORE
Разрешает данным, указанным оператором DATA, повторно считываться с определенной
строки. После того как выполнится оператор RESTORE, следующий оператор READ имеет
доступ к первому элементу первого оператора DATA программы. Например:

10 READ А,В,С
20 RESTORE
30 READ D,E,F
40 DATA 57,68,49
50 PRINT A,B,C,D,E,F
RUN

57 68 49 57 68 49
Ok

Если номер строки задан, то следующий оператор READ имеет доступ к первому элементу в
заданном операторе DATA.

RETURN — оператор возврата управления из подпрограммы в вызывающую программу.

Формат 1 (кроме MSX-BASIC и BASICA).
RETURN

Формат 2 (для MSX-BASIC и BASICA).
RETURN[номер строки]

Осуществляет возврат к оператору, следующему за оператором перехода к подпрограмме. В
версиях MSX-BASIC и BASICA может быть осуществлен возврат по указанному номеру
строки. Например:

50 GOSUB 400

400 REM subroutine

500 RETURN
RIGHTS — функция выделения п самых правых символов строки Х$

Y$=RIGHT$(X$,п)

п — число от 0 до 255.
Если п больше или равно длине строки Х$, то печатается вся строка Х$. Если и равно 0, то

печатается пустая строка.
89

Например:

10 А$-'*ВОСА RATON,ABCDEFG"
20 PRINT RIGHT$(A$,7)
RUN
ABCDEFG
Ok

RND - функция генерации псевдослучайных чисел от 0 до 1
Формат 1 (кроме Бейсик-АГАТ).

Y=RND[(n)I
Формат 2 (для Бейсик-АГАТ).

Y=RND (п)
Например:

10 FOR 1=1 ТО 3
20 PRINT RND(I),
30 NEXT I
RUN

.6291626 .1948297 .6305799
Ok

При выполнении программы каждый раз генерируется одинаковая последовательность
случайных чисел, если ие выбран генератор случайных чисел. Это можно сделать, используя
оператор RANDOMIZE, или в функции RND задавать аргумент п каждый раз с другим значе­
нием; RND(O) повторяет последнее сгенерированное случайное число.

ROTATE, RSHIFT и LSHIFT - функции сдвига байта

Y=ROTATE(выражение!, выражение2)

Y=RSHIFT(выражение!,выражение2)

Y=LSHIFT(выражение!,выражение2)

выражение! — целочисленное выражение, значение которого сдвигается;
выражение! - число позиций.

Функция ROTATE осуществляет циклический сдвиг вправо, а функции RSHIFT и LSHIFT
осуществляют сдвиг целочисленных значений, заданных в выражении!, вправо и влево на
заданное число позиций соответственно.

Например:

PRINT ROTATE (1,2)
16384

OK
PRINT LSHIFT (5,3)

40
OK

В первом примере циклически сдвигается вправо число 1 на две позиции и получается
число 16384 (#4000). Во втором примере число 5 (двоичное &0101) сдвигается влево на три
позиции и получается число 40 (двоичное &101000).

SCALL — оператор вызова подпрограммы на машинном языке

90

SCALL число[.целочисленная переменная!.целочисленная

переменная2.целочисленная переменнаяЗ]
число — адрес подпрограммы.

Вызывает подпрограмму на машинном языке по адресу, заданному числом. Если необязатель­
ные переменные присутствуют, то их значения передаются в регистры ВС, DE и HL, а при
возврате из машинной подпрограммы значения из этих регистров присваиваются соответст­
вующим переменным.

Сообщение об ошибке МС появляется, если определено более трех переменных или если
переменные не являются целочисленными.

Например:
SCALL #7400,Х%

SENSE - функция определения значения бита в порте
Y-SENSE(номер бита,номер порта)

Например:
10 FOR U0 ТО 7
20 PRINT SENSE(5»I)
30 NEXT I
RUN
10110000

OK
SGN — функция определения знака числа

Y=SGN(X)
Если аргумент X — положительное число, то функция определяет +1, если равен 0, то —0, если
отрицательное число, то —1.

Например:
10 ON SGN(X)+2 GOTO 100,200,300

SIN — функция определения синуса угла X, заданного в радианах

Y=SIN(X)
Функция SIN(X) определяет вещественное число одинарной точности.

Например:
PRINT SIN(1.5)

.09974951
Ok

SPACES — функция образования строки пробелов
Y$=SPACE$(n)

n — число от 0 до 255.
Например:

10 FOR 1=1 TO 5
20 X$=SPACE$(I)
30 PRINT X$;I
40 NEXT I
RUN

1
2

3
4

5
Ok

91

SPC — функция, используемая совместно с оператором PRINT для печати п пробелов
PRINT SPC(n)

и — число от 0 до 255.
Если п больше заданной ширины экрана, то используется значение (n MOD ширина).

Функция SPC может быть использована только с операторами PRINT, LPRINT, PRINT#.
Например:

PRINT "OVER”;SPC(15);"THERE”
OVER THERE
Ok

SQR “ функция извлечения квадратного корня неотрицательного числа X
• Y-SQR(X)

Например:

10 FOR X--10 TO 25 STEP 5
20 PRINT
30 NEXT
RUN

X,SQR(X)

10 3.162278
15 3.672984
20 4.472136
25 5Ок

STR$ - функция формирования строки десятичных цифр. Образует строковое представ-
лекие значения X

X$-STR$(X)
Функция VAL является инверсией функции STR$.

Например:

10 INPUT “NUMBER”;N
20 ON LEN(STR$(N)) GOSUB 60,100,200

STRINGS “ функция повторения определенное число п раз заданного символа с кодом m
или первого символа строки Х$

Y$=STRINGS(n,m)

YS-STRINGS(n,Х$)
пит- числа от 0 до 255.
Например:

10 Х$-STRING$(10,45)
20 PRINT XS;“MONTHLY REPORT”;XS
RUN
--------------------MONTHLY REPORT--------------------
Ok
10 X$~(ABCD)
20 YS=STRINGS(10,XS)
30 PRINT Y$
RUN
AAAAAAAAAA
Ok

92

SWAP - оператор обмена значений двух переменных
SWAP переменная!,переменная?

Могут быть обменены переменные любого типа, но обе переменные должны бьг% одного типа,
иначе появляется сообщение Type Mismatch (Ошибочный тип). Переменными могут быть,

элементы массива.
Например:

10 A$-"ONE": B$-”ALL": C$-"FOR PRINT А$;С$;В$
20 SWAP A$,B$:PR1NT A$,C$,B$
RUN
ONE FOR ALL
ALL FOR ONE
Ok

TAB — функция табуляции в n-ю позицию. Записывается совместно с оператором PRINT

PRINT TAB(n)
n - число от 1 до 255.

Если номер позиции, в которой производится печать текущего символа больше п, то заданная
табуляция отрабатывается на следующей строке. Позиция 1 — самая левая заданная ширина
минус 1 (WIDTH—1) — самая правая позиция. Функция ТАВ может использоваться только с
операторами PRINT, LPRINT, PRINT#.

Например:
10 PRINT "ИМЯ“TAB(25)’’КОЛИЧЕСТВО"
20 READ А$,В$
30 PRINT А$ТАВ(25)В$
40 DATA "Л.М.Яншин","25.68"
RUN
ИМЯ КОЛИЧЕСТВО
Л.М.Яншин 25.68
Ок

TAN - функция определения тангенса угла X, заданного в радианах

Y=TAN(X)
Функция TAN вычисляется с одинарной точностью.

TEST - функция определения значения бита
Y-TEST(выражение!,выражение?)

Проверяв! бит в целочисленном значении, устанавливая его значение (0 или 1). Первый
аргумент функции TEST — это переменная или выражение, которое необходимо проверить,
второй — номер бита, который необходимо проверить.

Например

10 1-7
20 PRINT TEST(I,2)

1
OK

USR — функция, используемая для вызова подпрограмм, написанных на машинном
языке с аргументом X

Формат 1 (для Бейсик-Спектрум+2 и Бейсик? АГ АТ).
Y-USR(X)

93

Формат 2 (для всех остальных версий).
Y^USR[цифра](Х)

цифра — 0—9. Соответствует цифре в операторе DEF USR для заданной подпрограммы.
Если цифра не указана, то принимается USRO.

X — адрес начала подпрограммы на машинном языке.

Формат 1. В Бейсик-Спектрум+2 результатом выполнения будет значение, лежащее в
регистрах ВС. Подпрограмму в машинных кодах можно сохранять командой SAVE "имя”
CODE адрес (см. гл. 4).

Например:

PRINT USR 65268
В Бейсик-АГ АТ значение X помещается в ячейках 157 — 163. Адрес подпрограммы на

машинном языке должен быть подготовлен в ячейках И — 12, а в ячейке 10 должен быть
код 76.

Формат 2. Оператор CALL другим способом вызывает подпрограмму на машинном
языке.

Например:

10 B=T*SIN(Y)
20 C=USR(B/2)
30 D=USR(B/3)

VAL — функция определения числового значения строки Х$
X=VAL(X$)

функция VAL при вычислении результата убирает начальные пробелы, табуляцию и перевод
строки. Если Х$ не число, то результатом будет 0.

Например:

PRINT VAL(" -3й)
-3
PRINT VAL("PROBA")

О

VAL$ — функция обработки строки Х$ (без ограничивающих кавычек) как строкового
выражения

Y$=VAL$(X$)
Если аргумент функции содержит синтаксическую ошибку или дает числовое значение, то
появляется сообщение об ошибке Nonsense in BASIC (Ерунда в Бейсике).

Следует помнить, что (в Бейсик-Спектрум+2) внутри строки символ кавычек должен
быть введен дважды. Для более глубокого вложения строк кавычки потребуется повторять
или четыре или восемь раз.

Для того чтобы разобраться, как работает функция VAL$, необходимо разобраться, как
работает функция VAL.

Функция VAL выполняется в два приема: сначала ее аргумент вычисляется как строка,
затем кавычки отбрасываются и оставшаяся величина вычисляется как число.

Для функции VAL$ первый шаг тот же, однако после отбрасывания кавычек оставшаяся
величина снова вычисляется как строка. Например: •

PRINT VAL$(.......STROKA.......)
"STROKA"

94

VARFTR — функция определения адреса памяти, где хранится заданная переменная
X-VARPTR(переменная)

Возвращает адрес первого байта данных, идентифицированных переменной. Перед использо­
ванием функции VARPTR значение должно быть присвоено переменной, иначе появится
сообщение об ошибке Illegal function call (Неверный функциональный вызов). Может быть
использовано имя переменной любого типа.

Функция VARPTR обычно используется для получения адреса переменной или массива
для передачи его в подпрограмму на машинном языке. Например:

100 FR=VARPTR(А%)
110 PRINT PEEK(FR);₽EEK(FR+1)

WAIT — оператор приостановки выполнения программы на период обработки состояния
входного порта компьютера

WAIT порт,п[,ш]
порт - номер порта от 0 до 255.

Приостанавливает выполнение программы, пока заданный порт машины не выработает
определенного образа бит. Данные, считанные в порт, подвергаются операции XOR с целочис­
ленным значением т, а затем операции AND с выражением п. Если результат равен 0, то
выполнение продолжается со следующего оператора. Если ш не указано, то принимается ш,
равное 0.

Например:
100 WAIT 32,2

WHILE...WEND — оператор цикла

WHILE выражение

операторы внутри цикла

WEND

Выполняет последовательность операторов в цикле до тех пор, пока заданное условие истинно
(не 0). Если выражение истинно, операторы цикла выполняются до тех пор, пока не встретится
оператор WEND. Затем управление передается оператору WHILE и проверяется выражение.
Если заданное условие ложно, то выполнение программы продолжается с оператора, следую­
щего за оператором WEND. Цикл WHILE...WEND может быть вложенным до любого уровня.
Каждый WEND будет соответствовать последнему незакрытому оператору WHILE. Незакры­
тый цикл вызовет ошибку WHILE without WEND (WHILE без WEND).

Например:

10 FL=1
20 WHILE FL
30 FL=0
40 FOR 1=1 TO 5:PRINT I:FL=1:NEXT I
50 WEND

95

WIDTH — оператор, определяющий ширину строки на экране дисплея или на печатающем
устройстве
Формат 1 (кроме MB ASIC и BASICA).

WIDTH размер
Формат 2 (для MB ASIC и BASICA).

WIDTH [LPRINT] размер
размер — числовое выражение от 15 до 255.

Если задан параметр LPRINT, то для печатающего устройства будет устанавливаться новая
ширина строки. Если размер равен 255, то интерпретатор никогда не будет вставлять возврат
каретки. Однако позиция курсора или головки печатающего устройства, заданная функциями
POS или LPOS, будет равна 0.

WRITE - оператор вывода информации на экран
WRITE [список выражений]

Если список выражений не указан, то выводится строка пробелов. А если задан список
выражений, то их значения выводятся на экран дисплея. Выражения в списке могут быть
числовыми и/или строковыми. Они отделяются друг от друга запятыми или точками с запя­
той. При выводе каждый печатаемый элемент будет отделяться от другого запятой.

Печатаемые строки будут заключаться в кавычки. После печати последнего элемента
списка интерпретатор вводит возврат каретки/перевод строки. Различие между WRITE и
PRINT в том, что WRITE вставляет запятые между выводимыми ‘ элементами, заключает
строковые переменные в кавычки и положительным числам не предшествуют пробелы.

Например:

10 А=80:В=90:С$="THAT'S ALL-
20 WRITE А,В,С$
RUN
80,90, "THAT'S ALL'*
Ok

Глава 4

Работа с внешними устройствами

4.1. Файловая организация

4.1.1. Основные определения

Запись — совокупность данных на устройстве внешней памяти, являющаяся элементар­
ным объектом при единичном обращении к данным.

Спецификация — имя, однозначно идентифицирующее файл, обрабатываемый в любой
операционной системе. Спецификация файла обычно состоит из трех компонентов: имени
устройства, имени файла, расширения имени файла.
В табл. 4.1 представлена информация о синтаксисе этих компонентов в рассматриваемых
версиях интерпретаторов языка Бейсик.

96

Таблица 4.1

Версия Имя устройства Имя Файла Расширение
имени Файла

XYBASIC А: ,В:,С:,D:
ИЛИ Ф:

до 8 символов
или цифр

от 0 до 3
волов или

СИМ-
ЦИфр

Бейсик-
Спектрум+2 до 10 символов

Бейсик-АГАТ 1,2 от 1 до 30 сим
волов или цифр

-

MBASIС А:,В: и т.д. до 8 символов от 0 до
волов

3 сим-

Бейсик-
ПК8020 То же То же То хе

MSX-BASIC -II- —II— —II —
BASICA —II — —II— . — II—

Файл — организованный определенным образом набор связанных записей данных.
Файл данных — файл последовательного или произвольного доступа, создаваемый

программистом для последующей обработки в программе.
Программный файл — программа пользователя, написанная на языке Бейсик или на

машинном языке и хранящаяся на внешнем носителе.
К программным файлам также можно отнести и программы, написанные на каком-либо

машинном языке, и которые использует в своей работе Бейсик-программа.
Бейсик-программа может храниться в текстовом, внутреннем или закодированном

внутреннем формате. Внутренный формат зависит от конкретной версии интерпретатора языка
Бейсик (пример внутреннего представления программ в MBAS1C дан в приложении). Внутрен­
ний закодированный формат — это специально подобранная система кодировки программы,
которая при загрузке программного файла не позволяет вносить в него изменения и распеча­
тывать его текст. Текстовый формат Бейсик программы — это набор кодов ASCII (КОИ-8).
Этот формат позволяет набирать тексты программ на языке Бейсик, пользуясь любыми
текстовыми редакторами.

В большинстве версий языка Бейсик, работающих под управлением той или иной опера­
ционной системы, доступ может осуществляться не к одному дисководу, а к нескольким.
Например, операционная система МикроДОС может поддерживать до 16 дисководов, если эти
устройства подключены и инициализированы. Соответственно Бейсик также может различать
эти 16 дисководов.

Как уже было сказано выше, любой файл определяется спецификацией файла. Однако в
таких версиях, как XYBASIC, MBAS1C, Бейсик-ПК8020, MSX-BASIC, BASICA в операторах
обмена с файлом большую роль играет номер файла.

97
4-6301

Номер файла — числовая константа, присваиваемая файлу при операции обмена с ним.
Номер файла идентифицирует текущий файл. Одновременно может быть задействовано
несколько файлов. Обращение к ним осуществляется по номеру. В вышеперечисленных
версиях одновременно могут использоваться до 16 файлов.

Признаком номера файла является символ #. В XYBASIC признаком номера файла
является символ @.

4.1.2. Общие файловые операторы и команды

Почти во всех версиях языка Бейсик существуют инструкции, которые могут применять­
ся при работе как с файлами данных, так и с программными файлами (рис. 4.1 и 4.2). Они
представлены в табл. 4.2.

Таблица 4.2

Инструкция Номер версии
____________>

123456789 10

CAT!
CATALOG
CLEAR
DELETE
DIR
DSKF
KHASE
ERASE!
FILES
KILL
LFILES
NAME
RENAME
SCRATCH

CAT! — команда выдачи списка всех программ или файлов данных каталога, записанных
на "электронном” диске
"Электронный* диск — это область ОЗУ, организованная как накопитель на гибком магнит­
ном диске.

CAT!
Описание см. команду FILES. (Формат FILES*.*)

CATALOG — команда выдачи списка всех программ или файлов, находящихся на диске
CATALOG устройство

устройство - диск, каталог которого необходимо вывести на экран дисплея
Описание см. команду FILES.

CLEAR — команда определения количества одновременно используемых файлов на
диске

CLEAR &п
в - количество файлов, определяемое пользователем.

98

Работа с файлами и внешними устройствами

Работа с дисками

Работа с последовательными
файлами
—оператор APPEND
—оператор ASSIGN
—оператор IN#
—оператор INPUT
—функция INPUTQ
— функция IOBYTE
— оператор LINPUT
— оператор LINE INPUT
— оператор MARGIN
— оператор PR#
— оператор PRI NT
— оператор READ
— оператор WRITE

Работа с файлами

данных

.оператор CLOSE

.оператор CLOSE#
■ оператор EOF
-функция LOC
■функция LOF
-функция MAXFILE
-функция OPEN
•функция OPEN#
■функция RESET
функция VARPTR

—команда CAT1
—команда CATALOG
—оператор CLEAR
—оператор DELETE
—команда DIR
— команда DCKF
—команда ERASE
— команда ERASE1
— команда FILES
— команда KILL
— команда LETLES
— команда NAME
— команда RENAME
— команда SCRATCH

Работа с программными

файлами

— команда В LOAD
— команда BSAVE
— оператор CHAIN
— команда CLOAD
— команда CSAVE
— оператор DEF SEG
— команда LOAD
— команда MERGE
— команда SAVE
—оператор VERIFY

Работа с функциональной

клавиатурой

_ оператор KEY
—оператор КЕУ (п)
—оператор ON KEY (п)

Работа с произвольными файлами

— оператор CVD
— оператор CVI
—оператор CVS
— оператор FIELD
—оператор GET
—оператор LSET
—оператор MKD#
—оператор MKIQ
—оператор MkS$
—оператор POSITION
—оператор PUT
—оператор READ
—оператор RSET
—оператор WRITE

Рис. 4.1

-- г
Работа с экраном дисплея Работа с другими ВУ

Работа с внешними устройствами

Работа с прерыванием от процессора Работа с локальной

—функция CSRL1N
—оператор НОМЕ
—оператор НТ АВ
—оператор LOCATE
—функция POS
—оператор SPEED
—оператор VTAB

—команда COPY
—команда FORMAT
—функция LPOS
—оператор LPRINT
—оператор LPRINT USING
—оператор MOTOR
—оператор MOTOR ON
—оператор MOTOR OFF
—оператор ON PEN
—оператор ON STRIG
—оператор PAD
—оператор PDL
—оператор PEN
—оператор PEN ON
—оператор PEN OFF
—оператор PEN STOP
—оператор SPEED
—функция STICK
—функция STRIG
—оператор STRIG ON
—оператор STRIG OFF
— оператор STRIG STOP

—функция DATEti
—оператор DELAY
—оператор DISABLE
—оператор ENABLE
—оператор INTERVAL
—оператор PAUSE
—функция TIME
—функция Т1МЕЙ

Рис. 4.2

сетью

—оператор COM
—оператор COM (n)
—оператор ON COM (n)
—оператор OPEN

По умолчанию в XYBASIC в начале работы пользователь может работать с двумя файлами.
Однако, если необходимо увеличить количество файлов, он должен выполнить команду
CLEAR. Но надо помнить, что каждый открытый для записи или чтения файл занимает 166
байт памяти. Одновременное использование большого количества файлов может вызвать
появление ошибки ОМ — Out of memory (Вне памяти).

Использование команды CLEAR для указания количества файлов не влияет на действие
этой же команды при определении емкости памяти, выделяемой под строковое пространство.
Строковое пространство, определенное в какой-либо ранее заданной команде CLEAR, остается
неизменным. Но при этом все переменные, определенные ранее, очищаются.

Например:
CLEAR @3

По этой команде пользователю разрешается использовать в своих файловых операциях до трех
файлов.

DELETE — команда удаления файла с заданным именем на диске
DELETE имя файла[,устройство]

имя файла — имя удаляемого файла;
устройство - обозначение диска, с которого удаляется файл.
Описание см. команду KILL.
Например:

DELETE PROGRAMM.BAS-
Удаляет на текущем диске файл PROGRAMM.BAS.

DIR — команда выдачи на экран дисплея имен файлов или программ, записанных на
диске

DIR ["имя файла"]
Описание см. команду FILES.

DSKF — функция определения свободной памяти на диске
DSKF (номер диска)

Определяет число оставшихся блоков памяти на диске, указанном -в команде. Параметр
номер диска может принимать значения 0, 1 или 2, где .0 — активизированный (текущий)
диск; 1 - диск А; 2 - диск В.

ERASE — команда удаления файлов на диске

ERASE

Описание см. команду KILL.

ERASE! — команда удаления файла на "электронном” диске
ERASE! "имя файла"

Описание см. команду KILL.

FILES - команда вывода на экран дисплея каталога диска
FILES ["спецификация файла"]

Команда FILES выводит на экран дисплея имена всех файлов, которые существуют на диске.
В спецификации файла имя файла может быть неявным, т. е. содержать на месте расширения
файла или имени файла символы * или ?. В таком случае на экран будут выводиться не все
файлы, а только указанные.

101

Например:

К TEES “PROG.***
PROG. BAS
PROG.BG
PROG.BSC
Ok

Если в спецификации файла не указан дисковод, то считывается каталог текущего диска. Если
же спецификация файла не указана, то на экран выводятся имена всех файлов, находящихся
на диске.

KILL — команда удаления заданного файла на диске
KILL “спецификация файла**

Может быть удален файл любого типа, но если обозначенный файл является открытым, то
выдается сообщение File already open (Файл уже открыт) и удаления не происходит. Имя
должно быть явно указано, т. е. не должно содержать символов * или ?. Если указанного
файла на диске нет, то выдается сообщение File not found (Файл не найден). Команда KILL не
удаляет также файлы, помеченные как системные, или файлы, имеющие атрибут Read only
(только для чтения).

Например:
KILL "PROG.***

Это означает, что с диска будут удалены все файлы, имеющие имя PROG с произвольным
расширением.

LF1LES — команда вывода каталога диска на печатающее устройство
LFILES ["спецификация файла"]

Формат и действие аналогично команде FILES, только вывод каталога осуществляется на
печатающее устройство. Если печатающее устройство не включено, то выдается сообщение
Device I/O error (Ошибка устройства ввода-вывода).

NAME — команда переименовывания файлов на диске
NAME "спецификация файла!" AS "спецификация файла2“

спецификация файла1 — имя файла, который подлежит переименованию;
спецификация файла2 — имя, которое будет дано файлу после переименования.

При операции переименовывания старое имя файла, определенное в спецификации файла1,
должно существовать на диске, иначе будет выдаваться сообщение об ошибке File not found
(Файл не найден). Нового имени файла на диске существовать не должно. Если в имени файла
не указано устройство, то по умолчанию принимается текущий дисковод. После действия
команды NAME файл под новым именем располагается на заданном диске в той же области
дискового пространства.

RENAME — команда переименовывания файлов на диске
RENAME старое имя файла,новое имя файла[.устройство]

Описание см. команду NAME.

SCRATCH — команда удаления заданного файла на диске
SCRATCH "имя файла"

Описание см. команду KILL.
102

Например:
SCRATCH "TEMP.DAT"

Удаляется файл TEMP.DAT с текущего диска.

4.1.3. Команды и операторы, используемые при работе с файлами
последовательного и произвольного доступа

Во многих версиях языка Бейсик существуют инструкции, которые можно использовать
как с файлами последовательного, так и произвольного доступа. Их перечень и наличие в
разных версиях приведены в табл. 4.3.

Таблица 4.3

Инструкция Номер версии

1 2 3 4 5 6 7 8 9 10

CLOSE * 4 4 4 4 4 4 4
CLOSE#
EOF + 4

4
4 4 4 4 4

LOC 4 4 4- 4 4
LOF 4 4 4- 4 4
MAXFILES 4-
OPEN *
OPEN#

4-
4

4- 4 4 4 4 4-

RESET 4-
VARPTR 4- 4- 4- 4- 4

CLOSE — оператор закрытия файла на диске
Формат 1 (для Бейсик-ПК8020, BASICA, MSX-BASIC, MBASIC).

CLOSE [[»]номер файла[,«номер файла...]]
Формат 2 (для XYBASIQ.

CLOSE [[3]номер файла[,@номер файла...]]
Завершает операции ввода-вывода с файлами и освобождает соответствующие буферы. Опера­
тор CLOSE без указания операндов закрывает все файлы, открытые оператором OPEN. После
выполнения CLOSE аннулируется условная связь между определенным файлом или устрой­
ством и его номером. Этот же файл или устройство могут быть опять открыты с тем же или
другим номером файла. (Оператор END, команды NEW, RESET или SYSTEM автоматичес­
ки закрывают все открытые файлы или устройства. Оператор STOP не закрывает файлов.)

Например:
100 CLOSE 1,#2,#3

Закрываются указанные файлы.

CLOSEf — оператор закрытия файла на диске
CLOSEUhomcp файла,номер файла...

Описание см. оператор CLOSE.

EOF — функция признака конца файла
Y-EOF(номер файла)

номер файла - номер, определенный в операторе OPEN.

103

Проверяет признак конца файла при операции чтения. Значение функции равно -1 (ИСТИНА),
если найден конец файла, и равно О (ЛОЖЬ), если конец файла не найден. Например:

10 OPEN “I" ,#1»’’DATA" :С=0
20 IF EOF(l) THEN 100
30 INPUT #1,M(C)
40 C=C+1:GOTO 20
100 REM обработка конца файла

LOC — функция определения текущей позиции в файле
Y=LOC(номер файла)

При работе с файлами произвольного доступа LOC определяет номер последней записи,
считанной или записанной в файл произвольного доступа. При работе с файлами с последова­
тельным доступом LOC определяет число записей, считанных или записанных в файл с того
момента, как он был открыт.

Когда файл открыт для последовательного ввода, интерпретатор считывает первый
сектор файла, поэтому значение LOC будет равно 1.

Например:

10 IF LOC(1)>50 THEN STOP
20 PUT #1,LOC(1)

В строке 20 происходит перезапись считанной записи.

LOF — функция определения длины файла
Y-LOF(номер файла)

номер файла — номер, заданный в операторе OPEN.
Определяет число байтов, размещенных в файле (длина файла). Число, определяемое функци­
ей LOF, кратно 128. Например, если действительные данные в файле занимают 257 байт, то
число байтов, определенных в функции, будет равно 384.

Например:

10 OPEN -0м,#1»-BIG-
20 GET #1,LOF(1)/128

MAXFILES — оператор резервирования определенного числа буферов управления файлом
MAXFILES-арифметическое выражение

арифметическое выражение— выражение, принимающее значения от 0 до 15.
Оператор используется для установления максимального числа одновременно открытых
файлов и соответственно числа зарезервированных буферов управления файлом данных.
Каждый буфер управления файлом требует 257 байт памяти.

Если параметр арифметическое выражение больше 15, то выдается сообщение "Illegal
function call” (Неверный функциональный вызов), если не хватает памяти, то Out of memory
(Вне памяти).

Например:
10 MAXFILES-2

OPEN — оператор открытия файла
104

Формат 1 (для Бейсик-ПК8020, MBASIC, BASICA).

OPEN "режим Г* ,[#]номер файла,"имя файла"

[.длина записи]

Формат 2 (для XYBASIC).
1 OPEN режим2, ©номер файла,"имя файла"

Формат 3 (для Бейсик-АГАТ).
OPEN имя файла[[.длина записи][.устройство]]

Формат 4 (для MSX-BASIC и BASICA).

OPEN "имя файла"[FOR "режим4"] AS [#] номер файла

[LEN=длина записи]

режим1 — строковое выражение, первый символ которого:
О — последовательный вывод в файл;
I — последовательный ввод из файла;

R — произвольный ввод-вывод.
режим! — строковое выражение, первый символ которого:

О - последовательный вывод в файл;
I — последовательный ввод из файла;

U — добавление к последовательному файлу.
длина записи — числовое выражение, определяющее длину записи для файла произ­
вольного доступа.
режим4 • - один из нижепредставленного набора строк:

INPUT - последовательный ввод из файла;
OUTPUT — последовательный вывод в файл;
APPEND - добавление к последовательному файлу;

номер файла — целочисленное выражение, значение которого лежит в диапазоне от
одного до максимального количества файлов; по умолчанию равно 3. Может быть изменено
параметром/F: при загрузке интерпретатора.

Форматы 1 — 4. Открывают буфер для ввода-вывода в файл или устройство и определяют
режим чтения или записи.

На НГМД могут размещаться файлы как последовательного, так и произвольного мето­
дов доступа; на других внешних устройствах памяти могут размещаться только файлы с
последовательным методом доступа.

Формат 3. Оператору OPEN должен предшествовать вывод кода CONTROL-D:
PRINT CHR$(4);"OPEN MYFILE.n"*

n — длина записи.
Если параметр длина записи указан, то определяемый файл будет произвольного доступа, если
не указан - то последовательного.

Формат 4.
Например:

10 OPEN "DATA" FOR "INPUT" AS #1
Файл DATA открывается для последовательного ввода информации.

105

OPENf - оператор открытия файла
OPEN# имя файла

Описание см. оператор OPEN.

RESET - оператор закрытия файлов
RESET

Закрывает все файлы и очищает системный буфер. Если все открытые файлы находятся на
диске, то RESET действует так же, как и команда CLOSE без номера файла. '

VARPTR — функция определения адреса блока управления файлом
Х-УАИРТЦ(#номер файла)

Определяемый адрес лежит в диапазоне от 0 до 65535. Файл должен быть предварительно
открыт. Например:

10 OPEN "О",#1,"DATA”
20 FC=VARPTR(#1)
30 DA-FC+188
40 A$-PEEK(DA)

4.1.4. Файлы с последовательным доступом

Файлы с последовательным доступом создаются легче, чем файлы произвольного до
па, но они уменьшают гибкость и скорость доступа к данным. Данные, которые записи i : тся
в файл с последовательным доступом, запоминаются один за другим (последовательно) и
также считываются в коде ASCII (КОИ-8).

Для работы с файлами последовательного доступа используются следующие инструкции,
представленные в табл. 4.4.

Таблица 4.4

Инструкция Номер версии

1 2 3456789 10

APPEND
ASSIGN *
IN#
INPOT + +
INPUTS
IOBYTE *
LINPUT *
LINE INPUT +
MARGIN +
PR#
PRINT * *
PRINT USING +
READ
WRITE

+

+
+ + + + + +

+ + + + +

+ + + + +

+
♦ + + + + ♦

+ + + + +
+
+

APPEND - команд? подсоединения данных к файлу
APPEND "имя файла”

106

Команда открывает файл и устанавливает указатель записи в конец файла. Данные, дополни
тельно записываемые в файл, будут вводиться только после последнего элемента в файле.
Если после задания команды APPEND производится операция чтения, то это приводит к
сообщению об ошибке. Команда APPEND не должна следовать за оператором открытия файла
OPEN, так как оператор OPEN устанавливает указатель записи-чтения на начало файла.

ASSIGN — оператор установления связи между физическим устройством и обращением к
нему в программе

ASSIGN устройство номер
устройство - CON# (клавиатура);

RDR# (устройство чтения с перфоленты);
PUN# (устройство вывода на перфоленту);
LST# (экран дисплея);

номер — значение от 0 до 3.
Оператор ASSIGN дает возможность передавать программе имя устройства ввода-вывода и
управление этим устройством. Оператор изменяет значение байта ввода-вывода так, что
последующие операции ввода-вывода будут осуществляться с выбранным устройством.

Например:
ASSIGN CONtfl

В этом примере выбрано устройство ввода с клавиатуры с номером 1.

INf — оператор определения устройства для ввода информации
IN# номер устройства

номер устройства — численное выражение от 0 до 7.
Если выбранное устройство не определено или не задействовано, то система ” зависает”. Для
перезагрузки необходимо нажать клавиши RESET+CONTROL-C.

Оператор IN#0 указывает на ввод с клавиатуры.
Оператору IN# должен предшествовать вывод кода CONTROL-D:

PRINT CHR$(4) ; ** IN#6"

INPUT — оператор ввода данных в программу из файла
Формат 1 (кроме XYBASIC и Бейсик-TRS—80).

INPUT #номер файла,переменная[,переменная]..
Формат 2 (только для XYBASIC).

INPUT £номер файла,переменная[,переменная]..
Формат 3 (только в Бейсик-TRS—80).

INPUT #-1,переменная[,переменная]...
номер файла - номер, с которым файл был открыт для ввода;
переменная — имя переменной, которой будет присвоен элемент данных.
Формат 1. Считывает элементы данных из файла с последовательным доступом и при­

сваивает их переменным программы. Тип данных в файле должен соответствовать типу
переменной. Знак вопроса не печатается. Элементы данных появляются в файле сразу, как
только они введутся. Числовые значения (управляющие коды от 0 до 10), начальные пробелы,
возврат каретки, перевод строки игнорируются. Первый вычисленный символ, который не
является пробелом, возвратом каретки или переводом строки, будет началом числа.

Число ограничивается пробелом, возвратом каретки, переводом строки или запятой.
Если Бейсик разделяет данные на строковые элементы, то начальные пробелы, перевод
строки, возврат каретки также игнорируются. Началом элемента строки является первый

107

вычисленный символ. Если кавычки (”) являются первым символом, то элемент строки будет
остоять из всех символов, находящихся между первыми и вторыми кавычками.

Строка, заключенная в кавычки, не может содержать кавычки как элемент строки. А
если строка не заключена в кавычки, то она ограничивается запятой, возвратом каретки,
переводом строки или длиной 255 символов. Если найден признак конца файла при вводе
числового или строкового элемента, то ввод элемента будет закончен. Оператор INPUT#
может быть использован при вводе данных из файла произвольного доступа.

Формат 2, Если номер файла равен 0, то ввод данных осуществляется с клавиатуры.
Формат 3. Используется для ввода данных с НКМЛ.

INPUTS — функция определения последовательности заданного количества символов из
файла

Y$-INPUT$(n,[#]m)

n - количество символов;
m — номер файла, определенный в операторе OPEN.

Из файла выбирается заданное количество символов, в том числе и управляющих. Например:

10 OPEN “0“,#1,"DATA"
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUTS(1,#1)));
40 GOTO 20
50 PRINT : END

IOBYTE — функция определения текущего значения байта ввода-вывода
X-IOBYTE

При использовании этой функции пользователь может всегда проконтролировать активные в
данный момент устройства ввода-вывода информации.

Переменная X, стоящая в левой части выражения, будет содержать байт ввода-вывода,
который побитно расписывается следующим образом:

поле LST поле PUN поле RDR поле CON

бит 7 бит 6 бит 5 бит 4 бит 3 бит 2 6ит1 бит 0

Каждое двухбитовое поле выделяется под одно из четырех устройств (см. оператор ASSIGN).

LINPUT — оператор ввода строки символов из файла
LINPUT @номер файла,строковая переменная

номер файла - численное выражение, определенное в операторе OPEN;
строковая переменная - имя строковой переменной, которой будет присвоена вве­

денная строка.
Описание см. оператор LINE INPUT.

LINE INPUT — оператор ввода в оперативную память строковой переменной из файла
LINE INPUT# номер файла, строковая переменная

номер файла — номер открытого файла;
строковая переменная — имя строковой переменной, которой будет присвоена введен­

ная строка.
108

Считывает строку (длиной до 254 символов) без ограничителей из файла с последовательным
доступом в строковую переменную.

Оператор LINE INPUT# считывает из файла с последовательным доступом все символы до
символа возврата каретки. При повторном использовании оператора происходит считывание
следующей последовательности символов до символа возврата каретки.
Оператор LINE INPUT# особенно удобен, если каждая строка файла разбита на поля или
программа на языке Бейсик, сохраняемая в коде ASCII (КОИ-8), считывается как данные
другой программой. Оператор LINE INPUT# может использоваться и для работы с файлом
произвольного доступа. Например:

10 OPEN "0",#1,"LIST-
20 LINE INPUT "СТРОКА?”;С$
30 PRINT #1,С$: CLOSE 1
40 OPEN ”I”,#1,"LIST”
50 LINE INPUT #1,C$
60 PRINT C$: CLOSE 1
RUN
СТРОКА? МОСКВА, ЛЕНИНСКИЙ ПРОСПЕКТ
МОСКВА, ЛЕНИНСКИЙ ПРОСПЕКТ
Ок

MARGIN — оператор форматирования выходных файлов
MARGIN ©номер файла[,длина строки]

номер файла — номер, определенный в операторе OPEN;
длина строки — целочисленное выражение, меньшее'256.

С помощью этого оператора устанавливается длина выходной строки данных. Если параметр
длина строки не указан, то по умолчанию принимается длина строки, равная 72 символам.

Если номер файла равен 0, то изменится длина строки на экране дисплея. Если длина
строки больше 255, то выдается сообщение об ошибке BY, если номер файла не совпадает ни с
одним номером открытых файлов, то выдается сообщение об ошибке BF.

Например:

MARGIN ©1,100
MARGIN ©0,50

PR# — оператор определения устройства для вывода информации
PR# номер устройства

номер устройства - численное выражение от 0 до 7.
Если выбранное устройство не определено или не задействовано, то система "зависает”. Для
перезагрузки необходимо нажать клавиши CONTROL—С. Оператор PR#O выбирает вывод на
экран дисплея.

Оператору PR# должен предшествовать вывод кода CONTROL—D:

PRINT CHR$(4);”PR#6-

PRINT и PRINT USING - операторы вывода данных и форматированного вывода
данных в файл
Формат 1 (кроме XYBASIC и Бейсик TRS-80).

PRINT #номер файла,[USING Х$;]список выражений
Формат 2 (только для XYBASIC).

PRINT ©номер файла,[формат]список выражений

109

Формат 3 (только в Бейсик-TRS-SO).
PRINT #-1,список выражений

номер файла — номер, с которым файл был открыт для вывода;
Х$ - строковое выражение, определяющее формат;
список выражений — числовые или строковые выражения, которые должны быть

записаны в файл;
формат — строковое выражение.
Формат 1. Оператор PRINT не сжимает данные в файле. В списке выражений необходимо

разделять выражения точками с запятой (;). Если запятые (,) используются как разделители,
то лишние пробелы, которые вводятся между печатными полями, также будут записываться
в файл. Строковые выражения в списке выражении должны разделяться точками с запятой (;).

Например,
если А$-"HELLO" и В$-"DOLLY"

тогда оператор

PRINT #1,А$,В$

запишет в файл HELLODOLLY. Поскольку нет разграничителей, то эти данные не могут быть
выведены как две отдельные строки. Чтобы устранить проблему, необходимо ввести с клавиа­
туры ограничители

PRINT #1,А$,”,”;В$
и в файл запишется строка HELLO, DOLLY, которая затем может быть введена в две строки.
Если сами строки содержат запятые и точки с запятой, то их надо записать в файл, заключая в
кавычки.

Например,

если А$-"HELLO, FUNNY” и В$-" DOLLY" тогда оператор

PRINT

запишет в файл HELLO, FUNNY DOLLY и оператор
INPUT #1,А$,В$

введет строку "HELLO” в А$, а строку ”FUNNY DOLLY” в строку В$.
Поэтому надо использовать двойные кавычки и опеоатоо

PRINT #1,CHR$(34);А$;CHR$(34);CHR$(34);B$;CHR$(34)
запишет в файл "HELLO, FUNNY”” DOLLY”, а оператор

INPUT H1,A$,B$
введет "HELLO, FUNNY” bA$, a "DOLLY” bB$.
Оператор PRINT может быть использован с параметром USING для управления форматом
вывода.
Например:

PRINT #1,USING , J;K;L
Формат 2. Если указан параметр формат, то строка символов, определенная в этом

параметре, будет записываться в файл.
Формат 3. Использу ется для вывода данных на НКМЛ.

READ — оператор чтения данных из файла с последовательным доступом
READ имя файла, список выражений

Описание см. оператор INPUT в этой главе.
НО

Оператору READ должен предшествовать вывод кода CONTROL—D:

PRINT CHR$(4); “READ MYFILE,P“
WRITE — оператор записи данных в файл с последовательным доступом

Формат 1 (кроме Бейсик* АГ АТ).
WRITE Йномер файла,список выражений

Формат 2 (только Бейсик* АГАТ).
WRITE имя файла,список выражений

номер файла — номер, с которым файл был открыт для вывода.
Выражения в списке могут быть числовыми и/или строковыми, они отделяются запятыми или
точками с запятой.

Различие между операторами WRITE# и PRINT# заключается в том, что оператор WRITE
вставляет запятые между элементами и заключает строки в кавычки. Поэтому нет необходи-
мости ставить ограничители в списке.

После записи последнего элемента в список выражений вводится символ возврат карет*
ки/перевод строки.

Формат 2. Оператору WRITE должен предшествовать вывод кода CONTROL-D:

PRINT CHR$(4); “WRITE MYFILE,P“

4.1.5. Файлы произвольного доступа

Создание файла и обращение к файлу произвольного доступа'требует больше программ­
ных шагов, чем к файлу с последовательным доступом, *но у файлов произвольного доступа
существует ряд преимуществ:

требует меньше места на диске, так как они запоминаются в закодированном (упакован­
ном) двоичном формате;

для доступа к данным не надо считывать всю информацию, так как информация записы­
вается и считывается записями, причем записи пронумерованы.

Для работы с файлами произвольного доступа используются инструкции, представленные
в табл. 4.5.

Таблица 4.5

Инструкция Номер версии

1 2 3 4 5 6 7 8 9 10

CVD 4 4 4 4
CVI 4 4 4 4
CVS 4 4 4 4
FIELD 4 4 4 4
GET 4 4 4 4
LSET 4 4 4 4
MKD$ 4 4 4 4
MKI$ 4 4 4 4
MKS$ 4 4 4 4
POSITION 4
PUT 4 4 4 4
READ 4
RSET 4 4 4 4
WRITE 4-

111

CVI, CVS, CVD — функции преобразования строковых переменных в числовые

Y=CV1(строка из двух байт)

Y=CVS (строка из четырех байт)

Y=CVD(строка из восьми байт)

При считывании из файла произвольного доступа строковые переменные преобразуются в
числа. Функция CVI преобразует двухбайтовые строковые переменные в целые числа; функ­
ция CVS — четырехбайтовые строковые переменные в числа одинарной точности; функция
CVD - восьмибайтовые строковые переменные в числа двойной точности.

Например:

10 FIELD #1,4 AS N#,12 AS B#
20 GET #1
30 Y-CVS(N#)

FIELD - оператор выделения памяти для переменных в буфере файла произвольного
доступа

FIELD [#[номер,ширина AS строковая переменная][.ширина AS

строковая переменная]...]

номер — номер файла, указанный в операторе OPEN;
ширина — числовое выражение, определяющее число символов для резервирования

строковой переменной;
строковая переменная — строковая переменная, которая будет вводиться в файл

произвольного доступа.
Оператор FIELD должен быть выполнен до получения данных из буфера файла произвольного
доступа после оператора GET или после введения данных в буфер для оператора PUT. Общее
число байтов, зарезервированных оператором FIELD,не должно превышать длину записи,
которая была определена при открытии файла. В противном случае выдается сообщение об
ошибке FIELD overflow (Переполнение поля).

Для файла с одним номером может быть выполнено любое число операторов FIELD, и все
выполняемые операторы FIELD находятся в обработке одновременно. Каждый новый опера­
тор FIELD переопределяет буфер с первой символьной позиции, так что это имеет эффект
многократных определений полей для строковых данных. Например: .

FIELD 1,20 AS N#,10 AS ID#,40 AS ADD#
Резервирует первые двадцать позиций в буфере файла произвольного доступа для строковой
переменной N$, следующие десять позиций для ID$ и следующие сорок позиций для ADD$.

Сам оператор не размещает данные в буфере файла. Это делают операторы LSET и RSET.
Например:

10 OPEN *'R*',#1,"В:CUST”
20 FIELD 1,20 AS CUSTM#,30 AS ADD#,35 AS CITY#
30 GET 1
40 N#=CUSTM#
50 PRINT N#,ADD#,CITY#

112

GET — оператор чтения записи из файла произвольного доступа в буфер
GET [#]номер файла [.номер записи]

номер — номер файла, который был открыт оператором OPEN;
номер записи — номер записи для чтения от 1 до 32767.

Если не указан номер записи, то в буфер считывается следующая (после последнего оператора
GET) запись. После выполнения оператора GET могут выполняться операторы INPUT# и LINE
INPUT# для считывания символов из буфера файла произвольного доступа.

Например:

10 OPEN “A:CUST" AS #1
20 FIELD 1,30 AS CUSTM$
30 GET i
40 PRINT CUSTM$
50 GET 2

LSET и RSET - операторы пересылки данных из памяти в буфер файла произвольного
доступа.

LSET строковая переменная - Х$

RSET строковая переменная = Х$

Если Х$ требует меньше байтов, чем было отведено для строковой переменной в операторе
FIELD, то LSET пересылает символы строки, определенной в операторе FIELD, в левую часть
буфера, a RSET — в правую. Пробелы используются для заполнения лишних позиций. Если Х$
длиннее строковой переменной, то лишние символы отбрасываются оператором LSET справа,
a RSET — слева. Числовые значения перед использованием операторами LSET и RSET должны
быть преобразованы в строковые. Операторы LSET и RSET можно так же использовать со
строковыми переменными, которые не были определены в FIELD. Например:

10 A$-SPACE(20)
20 RSET A$=N$
30 LSET A$=MKS$(ANT)

MK1$, MKS$ и MKD$ — функции преобразования числовых значений в строковые

Y$~MKI$(целочисленное выражение)

Y$=MKS$(выражение одинарной точности)

Y$=MKD$(выражение двойной точности)

Любое строковое значение, которое размещается в буфере файла произвольного доступа
операторами LSET и RSET, должно быть переведено в строковое значение. Функция МК1$
переводит целое число в двухбайтную строку; функция MKS$ — число одинарной точности в
четырехбайтную строку; функция MKD$ — число двойной точности в восьмибайтную строку.

Например:

90 АМТ=(К+Т)
100 FIELD #1,4 AS D$,20 AS N$
110 LSET D$~MKS$(AMT)
120 LSET NS-A$
130 PUT #1

113

POSITION - оператор пропуска определенного числа записей (полей) в файле произволь­
ного доступа

POSITION имя файла[,Нпозиция]
позиция — число пропускаемых записей. Значение может Меняться от 0 до 32767. По

умолчанию — 0.
Символ R служит признаком файла произвольного доступа. Оператор POSITION устанавлива­
ет указатель записи в начало поля после числа пропускаемых записей, определенного в пара­
метре позиция. Операторы READ и WRITE начинают работу с этого указателя. Каждая запись
(поле) — это последовательность символов, оканчивающаяся символом возврата каретки/пе-
ревода строки.

Оператору POSITION должен предшествовать вывод кода CONTROL-D:

PRINT CHR$(4);"POSITION MYFILE.RIOO"
PUT - оператор записи из буфера файла произвольного доступа в файл данных

PUT [й]номер файла[,номер записи]
Заносит запись из буфера файла произвольного доступа в файл данных. Если номер записи не
указан, то запись будет иметь следующий по порядку и разрешенный номер. Для записи
символа в буфер файла произвольного доступа перед оператором PUT могут быть использова­
ны операторы PRINT#, PRINT# USING и WRITE#. Любые попытки прочитать или записать файл
данных, который превышает емкость буфера, вызовут ошибку FIELD overflow (Переполнение
поля).

READ - оператор чтения данных из файла произвольного доступа
READ имя файла[R,запись], список выражений

Если указан параметр запись, то чтение осуществляется начиная с указанной записи. Запись
может содержать от 1 до 32767 символов и определяется как последовательность символов,
заканчивающаяся символом возврата каретки.

Оператору READ должен предшествовать вывод кода CONTROL—D:

PRINT CHR$(4);"READ MYFILE,P"

RSET - см. описание оператора LSET

WRITE - оператор записи данных в файл произвольного доступа
WRITE имя файла [,Езапись], список выражений

номер файла - номер, под которым файл был открыт для вывода;
запись — число выводимых записей (полей).

Оператору WRITE должен предшествовать вывод кода CONTROL-D:
PRINT CHR$(4);"WRITE MYFILE,P"

4.1.6. Программные файлы

Как было сказано выше, программные файлы делятся на:
файлы на языке Бейсик, сохраненные во внутреннем формате (в промежуточном коде,

полученном после преобразования исходного текста);
файлы на языке Бейсик, сохраненные в закодированном внутреннем формате (во

внутреннем коде, дополнительно обработанном по специальным формулам кодирования);
файлы на языке Бейсик, сохраненные в текстовом (коде ASCII) формате;
файлы на машинном языке.
В табл. 4.6. представлены инструкции, которые обрабатывают программные файлы.

114

Таблица 4.6

Инструкция Номер версии

123456789 10

BLOAD
BSAVE
CHAIN
С LOAD
CSAVE
DEF SEG
LOAD
MERGE
SAVE
VERIFY

BLOAD — команда загрузки программы, написанной на машинном языке
BLOAD "имя файла"[,[R][,смещение]]

смещение— величина, определяющая смещение физического адреса загрузки от заданного
Команда BLOAD загружает в память файлы с НГМД или НКМЛ, сохраненные командой
BSAVE. После загрузки программы, если задан параметр R, управление передается загружен­
ной программе. Иначе интерпретатор переходит в командный режим.

Например:
BLOAD"CAS:MOUSE.GM",R

С НКМЛ загружается программа MOUSE.GM и ей передается управление.
При чтении с НКМЛ, если заданное имя файла не совпадает с записанным на ленте,

выдается сообщение Skip (Пропущен), если совпадает, то выдается сообщение Found (Найден).
Использование команды BLOAD в программе не вызывает стирания информации в

памяти, которую занимает Бейсик-программа, поэтому эту команду можно использовать для
загрузки отдельных машинных программ, которые, например, ускоряли бы действие интер­
претатора.

BSAVE — команда сохранения на определенном носителе программы в машинных кодах
или определенной области памяти

BSAVE "спецификация файла",начальный адрес,конечный

адрес[,стартовый адрес]

начальный адрес — начальный адрес программы или области памяти;
конечный адрес — конечный адрес программы или области памяти;
стартовый адрес — стартовый адрес программы.

Все адреса могут быть заданы в любой форме представления. Если не указан стартовый адрес,
то вместо него записывается начальный адрес программы.

Команда BSAVE записывает программу или область данных на НКМД или НКМЛ в
следующем формате:

1-й байт - признак двоичного файла (OFEH);
2-3-й байты - начальный адрес;

115

4-5-й байты - конечный адрес;
6—7-й байты — стартовый адрес;
далее — данные.
Если какой-нибудь параметр не указан, то выдается сообщение об ошибке Missing operand

(Ошибочный операнд) или Sintax error (Синтаксическая ошибка).

CHAIN — оператор передачи управления другой подпрограмме с передачей переменных
из текущей программы

CHAIN [MERG£]”mmh файла"[,[номер строки] [,[ALL И , DELETE

диапазон]]]

имя файла — имя файла вызываемой программы;
номер строки — номер строки или выражение, которое вычисляет номер строки в

вызванной программе. Это начальная точка, с которой начинается выполнение вызванной
программы. Если этот оператор не указан, то выполнение программы начинается с первой
строки. На этот параметр не действует команда RENUM;

ALL — если указан параметр ALL, то все переменные из текущей программы передаются
в вызванную программу. Если параметр ALL не указан, то текущая программа должна
содержать оператор COMMON;

MERGE — если указан параметр MERGE, то подпрограмма включается в программу на
языке Бейсик как оверлей, т. е. параметр MERGE выполняется с текущей и вызванной
программами. Вызванная программа должна быть файлом в текстовом формате (в коде ASCII
(КОИ-8));

DELETE - используется для удаления использованного оверлея. Действие аналогично
команде DELETE;

диапазон — диапазон номеров строк, которые надо удалить перед загрузкой. На номера
строк в диапазоне действует команда RENUM.
Оператор CHAIN с параметром MERGE оставляет открытыми файлы и защищает текущую
установку OPTION BASE. Если параметр MERGE не указан, то не защищены типы переменных
и функций, определенных пользователем для сцепленной программы, и должны быть заново
определены в сцепленной программе. Например:

CHAIN "А:PROG Г’
CHAIN ”А:PROG1”,1000
CHAIN "A:PROG1",1000,ALL
CHAIN MERGE ”A:OUERLAY”,1000
CHAIN MERGE °A:OUERLAY2",1000,DELETE 1000-5000

CLOAD — команда загрузки программы на языке Бейсик, находящейся на НКМЛ в
упакованном формате
Формат 1 (кроме Бейсик-TRS-eO). w

CLOAD [?] имя файла

Формат 2 (только для Бейсик-TRS—80).
CLOAD? ‘’имя файла”

Загружаемая программа считывается с НКМЛ в память. Имя программы должно быть не
более б символов. Если имя не задано, то выдается сообщение Illegal function call (Неверный
функциональный вызов).

116

Перед загрузкой файла происходит очистка памяти (выполняется команда NEW), затем
данные считываются единым блоком.

Если задан параметр ?, то команда NEW не выполняется, вместо этого происходит побайт­
ное сравнение загружаемой программы и программы, находящейся в памяти. Если при
сравнении найдено несоответствие, то выдается сообщение Verify error (Ошибка проверки).

Например:

CI.OAJ) ‘TEST”
Found. TEST
Ok

CSAVE - команда записи Бейсик-программы на НКМЛ
Формат 1 (для MSK-BASIC).

CSAVE “имя файла”[,скоростьJ
Формат 2 (для Бейсик-ТК8-80).

CSAVE “имя файла"
имя файла — строковое выражение, из которого воспринимаются первые 6 символов;
скорость — арифметическое выражение, принимающее значение 1 или 2.
Формат 1. Записывает текст программы на языке Бейсик, на НКМЛ в упакованном

формате. Команда CSAVE сохраняет текст Бейсик-программы, используя внутренний формат.
В качестве имени файла можно использовать практически любую строку символов, но воспри­
нимаются только 6 первых символов. Если заданное имя содержит меньше 6 символов, то оно
дополняется пробелами.

Скорость передачи информации на ленту из соображений надежности равна 1200 бод (по
умолчанию) и может быть увеличена до 2400 бод (для этой скорости требуется хорошая
лентопротяжка). Скорость можно задать в операторе SCREEN, см. гл. б (для Бейсик-ПК8010 и
Бейсик-ПК8020 — в операторе SPEED, см. 4.3) или с помощью второго аргумента в CSAVE. Если
второй аргумент равен 1, то устанавливается скорость 1200 бод, если 2 — то 2400 бод.

При отсутствии или неверном задании имени выдается сообщение Missing operand (Оши­
бочный операнд), Illegal function call (Неправильный функциональный вызов).

Формат 2. Параметра скорость нет. Например:
CSAVE ”PROGR”,2

Файл PROGR сохраняется на ленте, скорость считывания 2400 бод.

DEF SEG — оператор определения текущего сегмента памяти
DEF SEG[-адрес]

адрес — числовое выражение от 0 до 65535.
При использовании этого оператора некоторые команды и операторы, такие как BLOAD,

BSAVE, CALL, РЕЕК, РОКЕ или USR будут определять при своей работе действительный
физический адрес как смещение в этом сегменте памяти. Если параметр адрес не указан, то
сегмент устанавливается по адресу сегмента данных интерпретатора, который является
начальным адресом по умолчанию. Сегмент данных — это начало рабочего пространства в
памяти. Если адрес задан, то его значение должно быть выравнено на 16-байтовую границу.
Значение сдвигается влево на 4 бита (что дает умножение на 16) для формирования адреса
сегмента для следующей операции. Интерпретатор не проверяет адрес сегмента.

Слова DEF и SEG должны быть разделены пробелом.
Любое значение параметра адрес, выходящее за указанный диапазон, вызывает сообще­

ние об ошибке Illegal function call (Неправильный функциональный вызов).
117

Например:

100 DEF SEG-0
110 Y=PEEK(72) : REM выбор байта по адресу 0:72

LOAD — команда загрузки программы с определенного устройства в память
Формат 1 (для XYBASIC).

[,Н]

LOAD "спецификация файла**{ }[,R]

С. А]

Формат 2 (для Бейсик-Спектрумт2).

[,DATA имя массива

LOAD (!) "спецификация файла" { [,CODE[адрес,количество]]

[,SCREEN»]

Формат 3 (для Бейсик-АГАТ).
LOAD "спецификация файла"[.устройство]

Формат 4 (дляMBASIC, MSX-BASIC, BASICA).
LOAD "спецификация файла"[,R]

Формат 5 (для Бейсик-ПК8010, Бейсик-ПК8020)
L > А]

LOAD "спецификация файла"] { }[,R]

[,В[,смещение]]

Формат 1. Параметры А и Н определяют тип загружаемого программного файла. Если
указан параметр А, то загружается программный файл, который был сохранен в текстовом
формате (в коде ASCII (КОИ-8)). Если в имени файла не указано расширение, то по умолчанию
подставляется расширение .BAS. Если указан параметр Н, то загружается программа, сохра­
ненная в шестнадцатеричном формате. Расширение по умолчанию — .НЕХ. Бега не указаны
параметры А или Н, то будет загружаться программа, сохраненная во внутреннем формате и
имеющая расширение .XYB.

Формат 2. Если указан символ !, то загрузка происходит с "электронного” диска, иначе —
с НКМЛ. Если имя программы не указано, то с НКМЛ считывается первый встреченный файл
заданного типа. Ниже приведено описание параметров.

DATA — с магнитной ленты загружается массив (числовой или строковый) и при этом из
памяти удаляется массив, имеющий то же имя, что и указанное в операторе LOAD. При
нахождении числового массива на экране появляется сообщение Number array: (Числовой
массив:), при нахождении строкового массива — Character array: (Строковый массив:). При
загрузке строкового массива из памяти стираются не только строковые массивы с тем же
именем, но и строковые переменные, имеющие то же имя.

CODE — с магнитной ленты загружается набор байтов. Параметр адрес определяет начало
области размещения байтов, параметр количество определяет количество считываемых

118

байтов. Если записанных байтов больше, чем указано, то считывания не происходит и появля­
ется сообщение Таре Loading error (Ошибка ввода с ленты).

SCREENS - специальная форма CODE 16384,6912. Загружает данный набор байтов в
компьютер.

Формат 3, Загружает программный файл с НКМД.
Формат 4. Загружает программные файлы иа языке Бейсик во внутреннем и в текстовом

форматах. Если вместо имени дисковода в имени программы указано ”CAS:”, то происходит
загрузка текстового программного файла с НКМЛ (кроме MB ASIC). При загрузке с НКМЛ,
если не задано имя, считывается первый встречный текстовой файл. Имя загружаемой про­
граммы не должно быть больше 6 символов. Если в имени файла устройство не указано, то
выбирается текущий дисковод. К имени файла прибавляется расширение .BAS, если имя
файла меньше или равно 8 символам (кроме MSX-BASIC). Если имя определено ие по прави­
лам, то выдается сообщение Bad file name (Неверное имя файла) и загрузка не производится.

Если указанного файла нет на устройстве, то выдается сообщение File not found (Файл не
найден), и загрузка не производится.

Формат 5. В Бейсик-ПК8010 программа загружается только с НКМЛ при задании устройст­
ва ”CAS:”. Имя программы не должно быть больше б символов. Если имя, заданное в коман­
де, или тип не совпали с записанным на ленте, то выдается сообщение ПРОПУЩЕН, если же
имя и тип файла совпали, то выдается сообщение НАЙДЕН. При чтении с НКМЛ текстового
файла блоками по 256 байт после каждого корректно считанного блока данных выдается
сообщение *. Если указан параметр А, то происходит загрузка текстового программного файла,
если параметр В, то загружается набор байтов (двоичный файл) в область, адрес которой
записан на НКМЛ. Параметр смещение позволяет загруженную программу перемещать в ОЗУ
на заданный адрес.

В Бейсик-ПК8020, если в спецификации файла имя устройства не указано, выбирается
текущий дисковод. К имени файла прибавляется расширение .BAS, если имя файла меньше
или равно 8 символам. Если имя определено не по правилам, то выдается сообщение Bad file
name (Неверное имя файла), и загрузка не производится. Если указанного файла нет на
устройстве, то выдается сообщение File not found (Файл не найден), и загрузка также не
производится.

Если в вышеперечисленных форматах команды указан параметр R, то программа загру­
жается и сразу запускается на выполнение. Если параметр R отсутствует, то после загрузки
программы интерпретатор переходит в командный режим. В большинстве рассматриваемых
версий интерпретаторов языка Бейсик команде LOAD "спецификация файла", R эквивалент­
на команда RUN "спецификация файла".

Команда LOAD закрывает все открытые файлы и удаляет все переменные и строки
программы в памяти, однако при использовании параметра R все открытые файлы данных
остаются открытыми. Например:

LOAD "INVENT",R
С текущего диска загружается программа INVENT.BAS и выполняется.

MERGE — команда подзагрузки программы с определенного устройства в оперативную
память и слияния ее с существующей в памяти программой
Формат 1. (для Бейсик-Спектрум+2).

MERGE (!) "спецификация файла"
119

Формат 2. (для MBASIC, MSX-BASIC, BASICA, Бейсик-ПК8010 и Бейсик-ПК8020).
MERGE "спецификация файла" [,R]

Формат 1, Если указан символ!, то загрузка происходит с "электронного” диска, иначе —
с НКМЛ. Бели имя программы не указано, то с НКМЛ подзагружается первый встреченный
файл.

Формат 2. Подзагружает программные файлы на языке Бейсик в текстовом формате. Бели
вместо имени дисковода в спецификации файла указано ”CAS:”, то происходит загрузка
текстового программного файла с НКМЛ (кроме MBASIC). При загрузке с НКМЛ, если не
задано имя программы, считывается первый встреченный текстовый файл. Имя программы не
должно быть больше б символов. Бели в имени файла устройство не указано, то выбирается
текущий дисковод. К имени файла прибавляется расширение .BAS, если имя файла меньше
или равно 8 символам (кроме MSX-BASIC). Бели имя определено не по правилам, то выдается
сообщение Bad file name (Неверное имя файла) и загрузка не производится.

Если указанного файла нет на устройстве, то выдается сообщение File not found (Файл не
найден) и загрузка также не производится.

В Бейсик-ПК8010 подзагрузка производится, только с НКМЛ. Если имя, заданное в
команде, или тип не совпали с записанными на ленте, то выдается сообщение ПРОПУЩЕН,
если же имя и тип файла совпали, то выдается сообщение НАЙДЕН. При чтении с НКМЛ
текстового файла блоками по 256 байт» после каждого корректно считанного блока данных
выдается сообщение *.

Если в спецификации файла устройство не указано, то выбирается текущий дисковод. К
имени файла прибавляется расширение .BAS, если имя файла меньше или равно 8 символам.
Если имя определено не по правилам, то выдается сообщение Bad file name (Неверное имя
файла), и загрузка не производится. Если указанного файла нет на устройстве, то выдается
сообщение File not found (Файл не найден), и загрузка также не производится.

Если указан параметр R, то после загрузки программы она запускается на выполнение.
Если параметр R не указан, то после загрузки программы интерпретатор переходит в команд­
ный режим.

Команда MERGE не закрывает все открытые файлы и не удаляет все переменные и
строки программы в памяти, если номера загружаемых программных строк не совпадают с
уже существующими в памяти. Например:

MERGE "INVENT",R
С текущего диска подзагружается программа INVENT.BAS и выполняется.

SAVE — команда записи программы из памяти на определенное устройство
Формат 1 (для X YB ASICk

[,Н]

SAVE "спецификация файла"{ }

[»А]
Формат 2 (для Бейсик-Спектрум+2),

[,LINE номер строки]

[,DATA имя массива

SAVE (!) "спецификация файла" { [,CODE[адрес,количество]] }

[,SCREENS]
120

Формат 3 (для Бейсик-АГАТ)«
SAVE мспецификация файла** [.устройство]

Формат 4 (дляМВА81С, MSX-BASIC, BASICA).

[,А]

SAVE “спецификация файла'*{ }

[,Р]

Формат 5 (для Бейсик-ПК8020, Бейсик-ПК8010).

С»А]

SAVE “спецификация файла**] { }

[,В,начальный адрес,конечный адрес[стартовый адрес]]

Формат 1. Параметры А и Н определяют тип сохраняемого программного файла. Бели
указан параметр А, то сохраняется программный файл в текстовом формате (в коде ASCH
(КОИ-8)), и если в спецификации файла не указано расширение, то по умолчанию подставля­
ется расширение .BAS. Если указан параметр Н, то сохраняется программа в шестнадцатерич­
ном формате. Расширение по умолчанию — .НЕХ. Если не указаны параметры А или Н, то
программа сохраняется во внутреннем формате с расширением .XYB.

Формат 2. Если указан символ !, то программа сохраняется на "электронном” диске,
иначе — на НКМЛ. Если имя программы не указано, то на НКМЛ записывается файл с именем,
состоящим из пробелов. Ниже приведено описание параметров:

LINE — сохраняет программу и переменные таким образом, что LOAD при загрузке
автоматически выполняет команду GOTO номер строки;

DATA - сохраняет массив (числовой или строковый);
CODE — сохраняет содержимое области памяти — набор байтов. Параметры адрес и

количество определяют начало области, откуда начинается-запись байтов, и количество
записываемых байтов соответственно;

SCREENS - специальная форма CODE: 16384,6912; сохраняет данный набор байтов из
экранной области памяти компьютера.

Формат 3. Записывает программный файл на НГМД.
Формат 4. Записывает программные файлы на языке Бейсик во внутреннем формате и,

если указан параметр А, в текстовом формате. Если указан параметр Р, то программа сохраня­
ется в закодированном внутреннем формате, который после загрузки запрещает внесение
изменений в текст программы, а также запрещает просмотр текста программы. Если вместо
имени дисковода в спецификации файла указано ”CAS:”, то происходит запись программного
файла на НКМЛ (кроме MBASIC). Если имя программы не указано, то на НКМЛ записывается
файл с именем, состоящим из пробелов. Имя программы на НКМЛ не должно быть больше 6
символов. Если в спецификации файла устройство не указано, то выбирается текущий диско­
вод. К имени файла прибавляется расширение .ВАЗ, если имя файла меньше или равно 8
символам (кроме MSX-BASIC). Если имя определено не по правилам, то выдается сообщение
Bad file name (Неверное имя файла) и программа не сохраняется.

Формат 5. В Бейсик-ПК8010 программа сохраняется только на НКМЛ при задании уст­
ройства ”CAS:”. Имя программы не должно быть больше 6 символов. При сохранении на

121

НКМЛ текстового файла запись производится блоками по 256 байт. Если указан параметр А, то
происходит запись текстового программного файла, если параметр В, то записывается набор
байтов (двоичный файл) из области, начальный и конечный адреса которой указаны в коман­
де. Параметр стартовый адрес позволяет определить стартовый адрес программы, на который
передается управление при загрузке программы командой LOAD с параметром R. Если в
спецификации файла устройство не указано, то выбирается текущий дисковод. К имени
файла прибавляется расширение .BAS, если имя файла меньше или равно 8 символам. Если
имя определено не по правилам, то выдается сообщение НЕВЕРНОЕ ИМЯ ФАЙЛА, и запись не
производится. Команда SAVE закрывает все открытые файлы.

Например:
SAVE "INVENT",А

На текущий диск записывается программа INVENT.BAS в текстовом формате.

VERIFY — команда сравнения программы и переменных, считываемых с НКМЛ, с
программами и переменными в памяти. (Используется только в Бейсик-Спектрум+2.)

[,DATA имя массива]

VERIFY "спецификация файла" { }

[,CODE[адрес,количество]]

DATA — сравнивает массив, имя которого задано в команде, с существующим массивом
в памяти. Эти массивы могут быть числовыми или строковыми;

CODE - если явно заданы параметры адрес и количество и записанное на НКМЛ
количество байтов не больше указанного в команде, то выполняется сравнение блока байтов,
находящихся на НКМЛ с блоком байтов в памяти, начиная с адреса. Если же параметры адрес
и количество не указаны, то происходит сравнение всех байтов, записанных на НКМЛ, с
байтами в памяти, начиная с адреса, записанного на НКМЛ.

4.2. Работа с функциональными клавишами
Функциональные клавиши представляют собой специальные клавиши, при нажатии на

которые происходят заранее определенные действия. В некоторых компьютерах функцио­
нальные клавиши запрограммированы на ввод наиболее распространенных и часто использу­
емых операторов и команд языка Бейсик. Это значительно облегчает работу пользователя по
набору и отладке программ.

В табл. 4.7 приведены исходные значения функциональных клавиш, которые использу­
ются в КУВТ ’КОРВЕТ* (Бейсик-ПК8010, Бейсик-ПК8020), MSX-BASIC, BASICA.

Таблица 4.7

Функциональная
к ла в ива

КУВТ "КОРВЕТ" MSX-BASIC BASICA

F1 CLS [вк/пс] color [пр] LIST
F2 LOAD­ auto [пр] RUN

[вк/пс]
F3 EDIT [пр] goto [пр] LOAD-
F4 AUTO [пр] list [пр] SAVE"

122

Окончание табл, 4,7

Фужцйонаш>ная— КУ ВТ "КОРВЕТ” MSX-BASIC ВASICA
клавиша

F5 RUN [вк/пс] run [вк/пс] CONT
[вк/пс]

F6 PCLS [вк/пс] color 15,4,4, -LPT1:”
[вк/пс]

F7 SAVE- cload w TRON
[вк/пс]

F8 LIST [пр] cont [вк/пс] TROFF
[вк/пс]

F9 RENUN [пр] list
[вк/пс]

KEY

F1O CONT [вк/пс] [о]гип[вк/пс] SCREEN
0,0,0
[вк/пс]

Примечание, [вк/пс] - возврат каретки/перевод строки; [пр] - пробел; [в] - курсор вверх;
[о] - очистка экрана.

В MSX-BASIC и BASICA функциональные клавиши можно перекодировать, т. е. прида­
вать нужные пользователю значения. Для этой цели используются операторы: KEY; KEY LIST;
KEY ON; KEY OFF; KEY (n); ON KEY.

KEY - оператор установки и распечатки значений функциональных клавиш

KEY п,Х$

KEY LIST

KEY ON

KEY OFF

n — номер функциональной клавиши;
X$ — текст, присваеваемый функциональной клавише.

С помощью оператора KEY любой функциональной клавише можно присвоить новое строко­
вое значение длиной до 15 символов. Когда клавиша нажимается, в буфер клавиатуры
вводится ее строковое значение.

Оператор KEY ON распечатывает значения программируемых клавиш на 25-й строке
экрана. Когда ширина экрана равна 40 символам, распечатываются значения только пяти
клавиш из десяти. При ширине экрана, равной 80 символам, распечатываются значения всех
десяти клавиш. При любой ширине экрана распечатываются только шесть первых символов
каждого значения.

Оператор KEY OFF удаляет распечатку значений программируемых клавиш с 25-й строки
экрана, делая эту строку доступной для программного использования. Оператор KEY OFF не
блокирует функциональные клавиши.

Оператор KEY LIST распечатывает все десять значений программируемых клавиш на
экране. Распечатываются все 15 символов каждого значения.

123

Оператор KEY п,Х$ присваивает строку Х$ функциональной клавише п. Строка Х$
может быть длиной до 15 символов. Если длина строки больше 15 символов, то лишние
символы отбрасываются. Присваивание пустой строки, т. е. строки длиной 0 символов, блоки­
рует функциональную клавишу. Если значение п не лежит в диапазоне 1 - 10, то появляется
сообщение об ошибке Illegal function call (Неверный функциональный вызов), и значение
клавиши остается прежним.

При нажатии программируемой клавиши функция INKEY$ определяет один символ
строки значения клавиши. Если функциональная клавиша блокируется, то функция INKEY$
определяет строку длиной два символа. Первый символ - двоичный 0, второй символ - код
сканируемой клавиши.

После выключения распечатки функциональных клавиш оператором KEY OFF можно
использовать оператор LOCATE 25,1, за которым следует оператор PRINT для вывода инфор­
мации на экран.

Например:
10 KEY 1,“FILED”<CHR$(13)

Присваивает функциональной клавише F1 значение FILES с возвратом каретки.

KEY (и) ~ оператор блокировки/разблокировки ловушки определенных клавиш

KEY (п)

KEY (п) ON

KEY (п) OFF

KEY (п) STOP

п - номер клавиши от 1 до 14; указывает клавишу, нажатие которой должно быть
определено: 1 - 10 - функциональные клавиши F1-F10; И - курсор вверх; 12 - курсор
влево; 13 — курсор вправо; 14 — курсор вниз.
Оператор KEY (n) ON должен быть выполнен, чтобы разблокировать ловушку функциональ­
ной клавиши или клавиши управления курсором. Если в операторе ON KEY (п) задан ненуле­
вой номер строки, то после выполнения оператора KEY (n) ON каждый раз будет выполняться
оператор, который проверяет, была ли нажата заданная клавиша. Если заданная клавиша
нажата, то будет выполняться переход (COSUB), определенный в операторе ON KEY.

После выполнения оператора KEY (п) OFF ловушка блокируется и событие нажатия
клавиши не запоминается, если оно имело место.

После выполнения оператора KEY (п) STOP ловушка блокируется, но если клавиша
нажимается, то это событие запоминается, и ловушка срабатывает, как только выполнится
оператор KEY (n) ON.

ON KEY “ оператор установки номера строки для перехода в подпрограмму ловушки
нажатия клавиши

ON KEY (n) GOSUB номер строки
n — номер клавиши от 1 до 14:1 - 10 — функциональные клавиши Fl—F10; 11 — курсор

вверх; 12 - курсор влево; 13 — курсор вправо; 14 — курсор вниз.
Если задан нулевой номер строки, то ловушка функциональной клавиши блокируется.

До выполнения оператора ON KEY должен быть выполнен оператор KEY (n) ON. После
этого, если в операторе ON KEY задан номер строки, каждый раз будет проверяться, нажата ли

124

клавиша п. Если эта клавиша нажата, то будет осуществляться переход на заданный номер
строки.

Если выполнился оператор KEY (и) OFF, то ловушка для определенных клавиш забло­
кировалась, и событие нажатия клавиши не зафиксировалось, даже если оно имело место.

После выполнения оператора KEY (n) STOP ловушка для определенной клавиши блоки­
руется, но событие нажатия клавиши запоминается, и как только будет выполнен оператор
KEY (n) ON, ловушка сработает.

После того как ловушка сработает автоматически, выполнится оператор KEY (n) STOP,
поэтому не может быть рекурсивных ловушек. Возврат из подпрограммы ловушки автомати­
чески выполняет оператор KEY (n) ON, если внутри подпрограммы не выполнился явный
KEY (n) ON.

4.3. Дополнительные возможности работы с экраном дисплея
В дополнение к уже описанным командам и операторам работы с экраном дисплея здесь

будут рассмотрены дополнительные инструкции, представленные в табл. 4.8.

Таблица 4.8

Номер версии
Инструкция ---

123456789 10

CSRLIN
НОМЕ
НТАВ
LOCATE
POS
SPEED
VTAB

CSRLIN — переменная, определяющая вертикальную координату курсора
Y=CSRLIN

Полученное значение будет лежать в диапазоне 1 - 25 для BASICA; 0 - 22(23) для MSX-BASIC;
1-15 для Бейсик-ПК8010 и Бейсик-ПК8020. Например:

10 Y=CSRLIN
20 X=POS(0)
30 LOCATE 24,1 : PRINT “HELLO”
40 LOCATE Y,X

HOME — оператор очистки экрана
HOME

Очищает экран и переводит курсор в левый верхний угол экрана.

НТАВ — оператор горизонтального перемещения курсора в заданную позицию текущей
строки

НТАВ X
X — имеет значение от 0 до 31.

125

LOCATE — оператор установки курсора в нужную позицию экрана
LOCATE [X],[Y],[ключ]

X — Х-позиция (столбец), в который следует поместить курсор;
Y - Y-позиция (строка), в которую следует поместить курсор;
ключ — числовое выражение.

Устанавливает курсор в любую позицию текстового экрана. Если задан ключ, равный 0, то
курсор исчезает, если равный 1, то курсор высвечивается снова. Все значения описанных выше
переменных должны находиться в диапазоне от 0 до 255, в противном случае выдается сооб­
щение об ошибке Illegal function call (Неверный функциональный вызов). Кроме того, любой
элемент может быть пропущен, но его запятая должна присутствовать перед любым следую­
щим элементом.

Оператор LOCATE управляет курсором в текстовом режиме работы. Он воспринимается
и в других режимах, но его действие сохраняется и используется в следующем появляющемся
тексте на экране.

Строки текста на экране нумеруются сверху вниз. В MSX-BASIC - от 0 до 22, в BASICA -
от 0 до 25, в Бейсик-ПК8010 и Бейсик ПК-8020 — от 1 до 16. Аналогично столбцы нумеруются
слева направо от 0 до последней колонки, значение которой может быть изменено в операторе
WIDTH. Оператор LOCATE перемещает курсор в указанное знакоместо. Если X или Y пропу­
щены, то сохраняется предыдущее значение. Например:

10 LOCATE 1,10 : PRINT ’ ПРОВЕРКА LOCATE’’

20 LOCATE ,,0 : PRINT ’ОТКЛЮЧЕНИЕ КУРСОРА”

POS — функция, определяющая горизонтальную координату курсора

X=POS(n)
п — фиктивный аргумент.

Полученное значение должно находиться в пределах, установленных каждой из версий
языка. Например, для версий языка Бейсик, используемых в машинах ПК8010 и ПК8020,
полученное значение изменяется от 1 до 64, для PC IBM - от 1 до 40 (или от 1 до 80).

SPEED — оператор, устанавливающий скорость вывода информации на экран
SPEED=n

п — численное выражение от 0 до 255.

VTAB — оператор вертикального перемещения курсора по столбцу
VTAB Y /

Y — значение от 0 до 31

4.4. Работа с периферийными устройствами
В этом разделе будут рассмотрены инструкции (табл. 4.9), обеспечивающие работу с

джойстиками, световыми перьями и другими устройствами, расширяющими возможности
компьютера.

126

Таблица 4.9

Номер версии
Инструкция

1 2 3 4 5 6 7 8 9 10

COPY 4
FORMAT 4
LPOS 4 4 4 4 4
LPRINT + 4 4 4 4 4 4
LPRINT USING 4 4 4 4 4 4 4

•MOTOR 4 4 4 4 4
MOTOR ON 4 4 4 4 4
MOTOR OFF 4 4 4 4 4
ON PEN 4
ON STRIG 4 4 4
PAD 4
PDL 4
PEN 4
PEN ON 4
PEN OFF 4
PEN STOP 4
SPEED 4 4
STICK 4 4 4
STRIG 4 4 4
STRIG ON 4 4
STRIG OFF 4 4
STRIG STOP 4 4

COPY — команда, выводящая на печатающее устройство копию изображения на экране

COPY
Команда COPY требует 15 — 30 с для того, чтобы началась печать. На печатающем устройстве
появляется полная копия изображения на экране.

FORMAT — команда установки скорости передачи информации на печатающее устройство
FORMAT *'р**; скорость

Для того чтобы печатающее устройство и компьютер могли обмениваться сообщениями,
необходимо установить скорость обмена, заданную для используемого типа печатающего
устройства. Если в печатающем устройстве используется скорость 9600 бод, то команду FOR­
MAT можно не использовать.

LPOS — функция, определяющая текущую позицию головки печатающего устройства в
пределах буфера памяти

Y=LPOS(n)
п — фиктивный аргумент.
Например:

100 IF LPOS(X)>60 THEN LFRINT CHR$(13)
LFRINT и LFRINT USING — операторы вывода данных на печатающее устройство

LPRINT [список выражений][;/,]

LFRINT USING X*;список выражений[;/,]
127

Эти операторы функционируют подобно операторам PRINT и PRINT USING за исключением
того, что вывод идет на печатающее устройство. Оператор LPRINT допускает длину строки до
128 символов. Печать свыше 128 символов происходит с переводом строки.

MOTOR — команда управления двигателем магнитофона
MOTOR [ON/OFF]

Включает и выключает двигатель кассетного магнитофона: MOTOR ON — включение; MOTOR
OFF — выключение. Если не указано ON или OFF, то предыдущее состояние двигателя магни­
тофона инвертируется на обратное, т. е. если магнитофон был включен, то он выключается;
если выключен, то включается.

ON PEN — оператор установки номера строки при работе со световым пером. (Использует­
ся только в BAS1CA.)

ON FEN GOSUB номер строки

Номер строки, равный 0, блокирует ловушку светового пера. Для активизации оператора ON
PEN должен выполниться оператор PEN ON, после чего, если в операторе ON PEN задан не
нулевой номер строки, каждый раз будет выполняться новый оператор PEN ON, который
будет проверять, активизировалось ли световое перо. Если это так, то будет выполняться
переход (GOSUB) к определенной строке. Если перо выключено (PEN OFF), то ловушка не
будет работать и событие не запомнится, если даже оно и произошло. ‘

При встрече ловушки автоматически выполняется оператор PEN STOP, поэтому рекур­
сивные ловушки запрограммировать не удается. Возврат из подпрограммы ловушки автома­
тически делает оператор PEN ON, если внутри программы не был задан явный оператор
PEN OFF.

При включенном пере запрещается делать операции ввода-вывода на кассетную магнит­
ную ленту.

ON STR1G — оператор, разрешающий обработку запроса от кнопки активного джойстика

ON STRIG (номер) GOSUB номер строки
номер — число 0 — 2, определяющее источник прерываний. Обрабатывает прерывания от

трех источников для перехода на заданный номер строки: при значении номера 0 опрашивает­
ся клавиша "пробел* на клавиатуре; при значении номера 1 и 2 - кнопка джойстика 1 или
кнопка джойстика 2 соответственно.

PAD — функция считывания данных с графического планшета

X=PAD(выражение)
выражение — любое арифметическое выражение, имеющее значение 0 — 7.

Эта функция предназначена для ввода координат с графического планшета, подключенного к
одному из портов расширения.

Выражение определяет вид информации, считываемой с графического планшета
(табл. 4.10).

При выполнении PAD(O) одновременно считываются значения, которые получаются с
помощью PAD(l) и PAD(2); то же касается PAD(4), PAD(5) и PAD(6). Таким образом, когда
PAD(O) или PAD(4) возвращают значение ИСТИНА (-1) и X,Y - координаты считываются и
хранятся до запроса.

.128

Таблица 4.10

Тип информации ’ Порт расширения
1

• Порт расширения
2

“ блокнот’*
(- 1, если нажато,
иначе 0)

! 0
।
।

! 4
।
।

координата
X после чтения

! 1 ! 5
।

координата
Y после чтения

• 2 ! 6
।

состояние кнопки
(- 1, если нажата,
иначе 0)

! 3 ! 7
।
।

Например:

10 IF PAD(O) THEN X=PAD(1):Y=PAD(2):PSET(X,Y)

PDL — функция определения кода положения игрового рычажка
X~PDL(выражение)

выражение— любое арифметическое выражение, принимающее значение от 1 до 12.
К любому порту расширения можно подключить только один рычажок. Считывание произво­
дится с помощью дискретных импульсов, время считывания примерно 0,01 с.

Если значение выражения нечетное, то информация считывается с первого порта расши­
рения, если четное — со второго.

Функция PDL упрощает ввод данных в программу с некоторых устройств. Обычно
PDL(l) и PDL(2) используются для считывания с портов расширения 1 и 2. Если нет подключен­
ного рычажка, то функция образует значение 255, если есть — от 0 до 254.

Например:

10 SCREEN 2
20 PSET(PDL(1),PDL(2)):GOTO 20

PEN - оператор и функция, вводящие значения, считанные со светового пера

PEN ON/OFF/STOP

X=PEN(n)

n — целочисленное выражение от 0 до 9.
Функция X=PEN(n) считывает координаты светового пера, п может принимать следую­

щие значения:
О — флаг, указывающий, внизу ли перо с последнего опроса. Если внизу, возвращается 1,

если нет - 0;
1 - возвращает координату X, где перо было последний раз активизировано;
2 - возвращает текущее значение координат Y;
3 - возвращает текущее значение координат X;
4 — возвращает последнее известное значение координаты X;

129
5-6301

5 - возвращает последнее известное значение координаты Y;
6 — возвращает позицию ряда символов, где перо было последний раз модифицировано;
7 — возвращает позицию столбца символов, где перо было модифицировано;
8 - возвращает последнее известное значение ряда символа;
9 — возвращает последнее известное значение позиции символа.
Когда перо находится внизу, в граничной области экрана, возвращаемые значения могут

быть неточны.
Оператор PEN ON разблокирует функцию чтения PEN. Первоначально функция PEN

выключена. Перед любыми вызовами функции чтения светового пера, оператор PEN ON
должен быть включен.

Оператор PEN OFF блокирует функцию PEN, т. е. разблокирует ловушку оператора
ON PEN, но действие светового пера не запоминается.

Оператор PEN STOP блокирует ловушку активности светового пера, но если событие
происходит, то оно запоминается, и после выполнения оператора PEN ON сработает ловушка.
Например:

10 PEN ON
20 FOR 1=1 ТО 500
30 X-PEN(O):X1=PEN(3)
40 PRINT X.X1
50 NEXT
60 PEN OFF

В данном примере печатается значение пера с последнего опроса и текущее значение.

SPEED — команда установки скорости записи на магнитную ленту

SPEED выражение

выражение — если выражение равно 1, то скорость 1200 бод, если равно 2, то скорость
2400 бод.

STICK - функция, определяющая код положения ручки джойстика

X-STICK(число)

число - арифметическое выражение от 0 до 2 (см. ON STR1G).
Функция выдает состояние джойстика 1 (STICK(l)) или джойстика 2 (STICK(2)). Положение
ручки джойстика определяется числом от 0 до 8:

0 — нейтральное положение ручки джойстика;
1 - ручка вперед;
2 - ручка вверх и вправо по диагонали;
3 - ручка вправо;
4 - ручка вниз и вправо по диагонали;
5 -ручкавниз;
6 — ручка вниз и влево по диагонали;
7 - ручка влево;
8 — ручка влево я вверх по диагонали.

Если задан STICK(O), то в качестве джойстика используется клавиатура.

STRIG - оператор и функция определения признака нажатия кнопки на рукоятке
джойстика

130

X=STRIG(число)

ON

STRIG (число) { OFF }

STOP
число — целочисленное выражение от 0 до 4.

Как функция инструкция STRIG образует признак нажатия кнопки на рукоятке джойстика:
О — выбор в качестве пусковой кнопки на клавиатуре клавиши "пробел”;
1 — опрос состояния кнопки 1 джойстика 1;
2 — опрос состояния кнопки 1 джойстика 2;
3 — опрос состояния кнопки 2 джойстика 1;
4 — опрос состояния кнопки 2 джойстика 2.
Если кнопка нажата, то образуется значение 1, иначе — 0.

Как оператор инструкция STRIG управляет обработкой прерываний от кнопок джойстика.
Предварительно он должен быть активизирован оператором ON STRIG GOSUB, иначе этот
оператор не даст никакого эффекта. Например:

10 ON STRIG GOSUB 1000,2000,,4000:STRIG (0) ON
20 STRIG (1) ON : STRIG (3) ON}

1000 'эта часть работает при нахатии клавиши
пробел

1100 RETURN
2000 'эта часть работает при нахатии кнопки 1

дхойстика1

2100 RETURN
4000 'эта часть работает при нахатии кнопки 2

дхойстика 1

4.5. Работа с временными интервалами

Инструкции работы с прерываниями, временными задержками и т. п. представлены
в табл. 4.11.

Таблица 4.11

HuniHiviriiua_______________________
Номер версии

1 2 3 4 5 6 7 8 9 10

DATES +
DELAY
DISABLE
ENABLE +
INTERVAL +
PAUSE
TIME + +
TIMES + +

131

DATES — переменная, которая хранит текущую дату
DATE»

Дата устанавливается при входе в интерпретатор автоматически и хранится в виде мм—дд—гггг,
где мм — месяц; дд — день; гггг — год.
Например:

PRINT DATE»
07-11-89
DATE»=“07-12-1989“
PRINT DATE»
07-12-89

DELAY - оператор, приостанавливающий выполнение программы на определенное

время

DELAY выражение![,выражение2[,выражение3]]

выражение! - число минут;
выражение! — число секунд;
выражение! — сотые доли секунды.

Действие оператора DELAY прерывается по клавишам CTRL—S или abort. В этом случае
интерпретатор переходит к обработке следующей инструкции после нажатия клавиши с
любым другим символом. Разблокированные оператором ENABLE прерывания не активны во
время действия оператора DELAY.

Если компьютер не стандартен, то оператор DELAY не будет работать до введения опера­
тора TIME, который используется для калибровки.

В примере текущее время вводит пользователь, а затем текущее время печатается с
интервалом 5 с.

Например:

10 INPUT "TIME" H,M,S
20 PRINT H; *': ** ;M; ” : ” ;S
30 S=S+5
40 IF S>60 THEN GOSUB 100
50 IF M>60 THEN GOSUB 200
60 IF H>24 THEN H=H-24
70 DELAY 0,5
80 GOTO 20
100 S=S-60 : M=M+1 : RETURN
200 M=M-60 : H=H+1 : RETURN
RUN
TIME? 7,15,45

7 : 15 : 45
7 : 15 : 50
7 : 15 : 55
7 : 16 : 0

DISABLE — оператор блокировки прерываний
DISABLE номер.строки

132

Блокирует прерывания, установленные заданным номером строки. Если номер строки не
задан, то блокируются все прерывания.

Например:
DISABLE 10

Блокирует прерывание, которое было разблокировано в программной строке 10 оператором
ENABLE. При попытке блокировать несуществующие прерывания появляется сообщение об
ошибке EN.

Например:

10 ENABLE 20,5,411111,411100000,$
20 GOTO 100
30 PRINT “BET LAST! HERE HE COMES!"
40 DISABLE 10
50 RETURN
60 'START PROGRAMM

ENABLE — оператор, определяющий условие прерывания
ENABLE номер,порт,выражение!,[маска[, $]]

номер — номер строки подпрограммы;
порт - входной порт;
выражение! — необходимое значение;
маска — накладываемая маска.

Условие прерывания должно проверяться перед выполнением каждого оператора в програм­
ме. Условие выполняется, если значение на входном порте соответствует значению выраже­
ния!, маскируемого маской. Параметр маска необязательный.

Если указан символ $, то условие выполняется при полном соответствии битов значения
порта выражению 1. Например:

10 ENABLE 100,6,1,411111110
20 GOTO 200
100 'ПОДПРОГРАММА ПОСЫЛКИ СЛЕДУЮЩЕГО БЛОКА НА

ПЕЧАТЬ

190 RETURN
200 'ГЛАВНАЯ ПРОГРАММА

Главная программа выполняется до тех пор, пока бит 0 порта 6 не станет равным 1. Тогда
программа прерывается и управление передается подпрограмме с номера 100.

INTERVAL — оператор разрешающий, запрещающий или задерживающий прерывания по
таймеру

ON
INTERVAL {OFF}

STOP

133

Этот оператор управляет отсчетом реального времени для прерывания в регулярные интерва­
лы. Но прежде надо выполнить оператор ON INTERVAL-кв ант времени GOSUB номер
строки, чтобы проинформировать Бейсик-систему, как часто, после какого количества кван­
тов времени (1 квант — 0,02 с), Бейсик-система должна прерывать работающую программу для
выполнения специальной программы обработки прерывания.

В отличие от ON INTERVAL оператор INTERVAL ON не начинает и не прерывает процес­
са. Однако, если интервал и номер строки не заданы, оператор INTERVAL ON не работает.
Когда выполняется оператор INTERVAL ON, то в заданном интервале в заданной строке
начинается обработка прерывания. Оператор INLTRVAL OFF отключает обработку прерыва­
ний. Оператор INTERVAL STOP выполняет приостанов обработки прерывания до следующего
оператора INTERVAL ON.

Используя INTERVAL STOP, можно отложить только одно прерывание, остальные будут
потеряны. Надо помнить, что неявно INTERVAL STOP выполняется при входе в программу
обработки прерываний и отменяется при выходе из нее. Этого можно избежать с помощью
явных операторов INTERVAL ON и INTERVAL OFF в начале и в конце программы обработки
прерывания.

Оператор INTERVAL ON/OFF/STOP позволяет контролировать количество одновремен­
ных событий в работающей программе.
Например:

10 ON INTERVAL=20 GOSUB 1000:INTERVAL ON

100 INTERVAL STOP:GOSUB 500:INTERVAL ON

1000 INTERVAL OFF

1090 INTERVAL ON:RETURN
PAUSE — команда установки временной задержки

PAUSE n
n — любое число от 0 до 65535.

Приостанавливает вычисления и отображает картинку в продолжении п кадров (с частотой 50
кадров в секунду). Максимальное значение п дает задержку до 22 мин. Паузу всегда можно
прервать, нажав на любую клавишу

TIME — для MSX-BASIC — псевдопеременная, которая устанавливает или определяет
системное время; для XYBASIC — оператор, который калибрует оператор DELAY
Формат 1 (для MSX-BASIC).

Х=Т1МЕ или TIME-выражение
Формат 2 (для XYBASIC).

TIME
Формат 1. Псевдопеременная MSX-BASIC имеет внутренний 16-разрядный счетчик,

значение которого изменяется с частотой 50 раз в секунду. Когда счетчик достигает значения
65535, он сбрасывается в 0.
Когда TIME стоит слева от выражения, которое может принимать значения от -32768 до 65535,
устанавливается новое значение счетчика. Счетчик обновляется каждые 21,8 мин.

Счетчик используется для отсчета времени в операторе ON INTERVAL GOSUB.
Формат 2. Оператор TIME калибрует (формирует) оператор DELAY для систем, которые

используют процессоры Z-80, 8085 и NEC8080. Интервал в 60 с используется как стандарт для
выполняющейся последовательности операторов DELAY.

134

TIMES — функция, которая формирует текущее время

TIMES
Выходная строка имеет вид: чч:мм:сс, где чч - часы; мм - минуты; сс - секунды

4.6. Работа в коммуникационной системе
Коммуникационная система - система, выполняющая вспомогательные функции,

связанные с передачей информации между другими системами. При создании коммуникаци­
онных систем используются коммуникационные сети телефонные, телекоммуникационные
или локальные).

В данном разделе будут рассмотрены операторы работы с коммуникационной сетью.

Коммуникационная сеть - это сеть передачи информации, образуемая множеством
взаимосвязанных коммуникацинных модулей.
Для работы с коммуникационными сетями используются операторы COM(n) ON, COM(n) OFF,
COM(n) STOP, ON COM(n) GOSUB, OPEN”COM...W, которые реализованы в версии BASICA и
оператор СОМ, который реализован в Бейсик-ПК8010.

4.6.1. Организация работы с файлом связи

Оператор OPEN”COM...” распределяет буфер для ввода-вывода таким же способом, как
и оператор OPEN для файлов произвольного доступа.

Так как каждый адаптер связи открывается как файл, то все операторы ввода-вывода,
которые действительны для файлов произвольного доступа, действительны для файлов связи.

Операторы последовательного ввода из файла связи такие же, как и для файлов произ­
вольного доступа: INPUT# номер файла, LINE INPUT# номер файла, INPUTS.

Операторы последовательного вывода в файл связи такие же, как и для файлов произ­
вольного доступа: PRINT# номер файла, PRINT# номер файла USING, WRITE# номер файла.

Операторы GET и PUT для файлов связи незначительно отличаются от операторов для
файлов произвольного доступа. Они используются для ввода-вывода блоков фиксированной
длины в файл или из файла связи. Вместо задания номера записи, которая должна быть
считана или записана, задается число байтов, которые будут переданы в буфер или из буфера
файла. Это число не может превышать значения, установленного параметром ZS: в команде
вызова интерпретатора.

При Скорости обмена свыше 2400 бод (бит/с) необходимо приостановить передачу симво-
■ л а из другого компьютера на время, достаточное для обработки получаемого символа. Это

может быть посылкой символа с кодом 19 в передающий компьютер, а затем символа с кодом
17 в этот же компьютер, когда приемный компьютер готов к получению информации. Символ
с кодом 19 указывает передающему компьютеру остановить передачу информации, а символ с
кодом 17 указывает на разрешение передачи.

Это общеиспользуемое соглашение, но оно не универсальное и зависит от протокола
обмена, реализованного в данной коммуникационной системе.

Для работы с файлом связи существуют три встроенные функции, которые определяют
окончание передачи информации:

LOC(X) — определяет число символов в буфере ввода-вывода; если число больше 255, то
функция LOC возвращает значение, равное 255;

LOF(X) - определяет количество свободного пространства во входном буфере; размер
буфера связи устанавливается параметром /Ст в команде вызова интерпретатора; по умолча­
нию п равен 256;

135

EOF(X) — определяет конец данных в буфере ввода и возвращает значение — 1, если
буфер ввода пустой, или 0, если в буфере есть символы.

Переполнение буфера связи может встретиться при попытке чтения после заполнения
входного буфера, т. е. LOF(X) возвращает 0.

В следующем примере указаны наиболее эффективные операторы для считывания содер­
жимого файла связи.

10 WHILE NOT EOF(l)
20 A$=INPUT$(LOC(1),*1

обработка данных строки А$

100 WEND

4.6.2. Описание инструкций

СОМ — оператор занесения сообщения в "почтовый ящик” локальной сети
СОМ "сообщение"

сообщение - последовательность символов длиной до 240.
Используется для установления связи ученического компьютера с компьютером препода­
вателя.

СОМ(п) — оператор обработки прерываний при работе с коммуникационной сетью

СОМ (п) ON

COM (n) OFF

COM (n) STOP

п — номер адаптера связи (1 или 2).
Для разрешения прерывания оператором ON СОМ (п) должен быть выполнен оператор СОМ
(n) ON. После этого, если в операторе ON СОМ (п) задан ненулевой номер строки, будет
происходить обработка прерывания.

Если был задан оператор COM (n) OFF, то прерывание не обрабатывается, даже если оно и
произошло.

Если был задан оператор COM (n) STOP, то прерывание не обрабатывается, но произошед­
шее событие запоминается для последующей обработки, когда будет задействован опера­
тор COM (n) ON.

ON COM (n) — определяет подпрограмму обработки прерывания от коммуникационной
сети

ON COM(n) GOSUB номер строки
и — номер адаптера связи (1 или 2).

Если задан нулевой номер строки, то прерывание блокируется.
Перед заданием оператора ON СОМ (и) GOSUB для адаптера п должен быть выполнен

оператор COM (n) ON. Если в операторе ON COM (n) GOSUB задан ненулевой номер строки, то
каждый раз происходит проверка на наличие символов в определенном адаптере связи и если
символы в буфере есть, то будет вызываться подпрограмма по заданному номеру строки.

Если был выполнен оператор СОМ (и) OFF, то ловушка прерывания от адаптера блокиру­
ется и прерывание не запоминается, даже если оно и произошло.

136

После выполнения оператора COM (n) STOP ловушка прерывании для адаптера блокиру­
ется, а если получен символ, то это событие запоминается, и после выполнения оператора СОМ
(n) ON ловушка срабатывает.

Не рекомендуется использовать ловушки прерываний от адаптера связи для односим­
вольного сообщения.

OPEN — оператор, открывающий файл связи

OPEN"COM п:[скорость][,четность][.данные][,останов]" AS [#]

номер файла

п — номер адаптера связи (1 или 2);
скорость — целочисленная константа, определяющая передачу или получение отноше­

ния (бит/секунда); значения скоростей: 75, ПО, 150,300, 600, 1200, 1800, 2400, 4800 и 9600 бод (по
умолчанию 300 бод);

четность—односимвольная константа, определяющая четность для передачи и получения:
S — (SPACE) бит четности всегда передается и получается как пробел (бит 0);
О - (ODD) нечетная передача, нечетное получение;
М - (МАРК) бит четности всегда передается и получается как флаг (метка)(бит 1);
Е — (EVEN) четная передача, проверка, четное получение;
N — (NONE) не передается и не проверяется бит четности; по умолчанию принимается

значение Е (EVEN);
данные — целочисленная константа, указывающая число битов переданных или полу­

ченных данных; принимаемые значения от 4 до 8 (по умолчанию 7);
останов — целочисленная константа, указывающая число битов параметра останов;

принимаемые значения 1 или 2; по умолчанию два бита останова для 75 и ПО бод, один бит
останова - для всех других скоростей;

номер файла — целочисленное выражение, которое затем будет использовано в операто­
рах ввода-вывода информации в файл или из файла связи.

Оператор OPEN*COM...” при открытии организовывает буфер ввода-вывода так же, как
это делает оператор OPEN для обмена с дисками. Для работы оператора требуется адаптер
асинхронной связи с другими компьютерами на базе RS232.

Устройство связи может работать одновременно только с одним файлом. Если асинхрон­
ный адаптер связи не установлен в соответствии с форматом данной системы, то появляется
сообщение об ошибке.

Например:
5 TRIES=6
10 ON ERROR GOTO 100
20 OPEN“COM1:300,N,8,2.CS,DS.CD10000" AS #1
30 ON ERROR GOTO 100
40 CLOSE UI
50 GOTO 1000

100 TRIES=TRIES-1
110 IF TRIES=O THEN ON ERROR GOTO 100
120 RESUME

1000 OPEN’’COM1:300, N, 8,2, CS, DS, CD2000 " AS #2
137

Глава 5

Работа с программами, написанными на языке Бейсик,
и средства отладки программ

5.1. Ввод новой программы

В гл. 2 было сказано, что программная строка состоит из номера строки, за которым
следую? элементы языка. Программные строки могут вводиться в любом порядке, но их
выполнение будет осуществляться в порядке увеличения номеров строк, не считая безуслов­
ных переходов и вызовов подпрограмм. Для автоматической нумерации программных строк
рекомендуется использовать команду AUTO, что позволит сократить время ввода программы
(рис. 5.1).

Для добавления новой строки к программе нужно ввести новый номер строки, за кото­
рым следует хотя бы один символ (не пробел), и нажать клавишу возврата каретки. Строка
будет сохраняться в памяти как часть программы. Если строка с таким номером уже сущест­
вует, то старая строка стирается и заменяется новой.

Программные строки не проверяются на наличие синтаксических ошибок перед добавле­
нием к программе. Они проверяются только при выполнении программы. Для того чтобы
легко можно было вставить строки, рекомендуется нумеровать их с шагом, не равным
единице, а например десять или сто. Шаг (или инкремент) выбирается произвольно и необяза­
тельно должен быть постоянным по всей программе. Для перенумерации строк, если уже
невозможно вставить программную строку или по каким-либо другим причинам, следует
использовать команду RENUM.

При работе с интерпретаторами версий языка Бейсик в операционной среде СР/М и
МикроДОС ошибку во время ввода строки можно исправить до нажатия клавиши возврата
каретки следующими способами:

удалить всю строку, нажав клавиши CTRL-U;
удалить символ, нажав клавиши Del, Backspace или CTRL—Н.
Чтобы удалить уже существующую программную строку, надо набрать номер удаляемой

строки и нажать клавишу возврата каретки или использовать команду DELETE (для Бей­
сик-АГАТ команду DEL).

Для редактирования уже существующей программной строки можно использовать
команды редактора или ввести строку заново под тем же номером.

Для вывода программных строк на экран дисплея или печатающее устройство использу­
ются команды LIST и LLIST соответственно. Любую введенную или отредактированную
программу необходимо запомнить на НГМД или НМЛ.

Если программа или часть программы уже существует на НГМД или НМЛ, то сначала она
загружается в память ЭВМ. После этого можно продолжать ввод программы, добавлять,
удалять или редактировать программные строки.

Для ввода новой программы, которой еще нет на диске или на магнитной ленте, необхо­
димо очистить память командой NEW перед вводом программных строк новой программы.
Если этого не сделать, то вводимые программные строки будут замещать программные строки
с этими номерами уже загруженной в память программы.

138

Работа с программами

Ввод новой программы Редактирование программы Отладка программы

— команда AUTO команда EDIT

—оператор RENUM (см. гл. 2)

—команда DELETE

— команда LIST

— команда LLIST

— команды TRON, TROFF

— оператор ON ERROR

— оператор RESUME

— переменная ERR

—команда NEW

— оператор STOP

Работа с программами,
размещенными на диске___________
- см. гл. 4 [SAVE, LOAD, MERGE,
KILL, FILES, NAME, OLD, UNSAVE]

— переменная ERL

— оператор ERROR

— команды TRACE,
UNTRACE

— команда NOTRACE

—команды TRAP, UNTRAP

Рис. 5.1

Выполнение программы

^команда RUN

—команда CONT

5.2. Редактирование программ

Редактирование программы — это процесс изменения текста программы, в котором могут
использоваться различные режимы редактирования. Практически все современные версии
языка Бейсик содержат средства для редактирования программ, т. е. средства, используемые
для изменения отдельных символов или программных строк. Эти средства, как правило,
входят в состав встроенного редактора, который обеспечивает выполнение следующих
функций:

управления курсором;
ввода текста;
удаления текста;
добавления текста в конец логической строки (т. е. строки программы, а не экрана);
поиска текста;
замены текста;
управления режимом редактирования.
Различные версии встроенного редактора могут по-разному обеспечивать выполнение

перечисленных выше функций; при этом полнота выполнения этих функций и способы
обращения к ним отличают версии друг от друга.

Рассматриваемые версии языка Бейсик имеют два типа встроенного редактора: команд­
ный (строчный) и экранный. Данные о наличии редакторов приведены в табл. 5.1, где пред­
ставлены также команды вызова редактируемой строки.

Таблица 5.1

Версия
Редактор

Команда
Командный Экранный

XYBASIC + EDIT

Бейсик-
Спектрум+2 + LIST

Бейсик-
TRS-80 + EDIT

MBASIС + EDIT

Бейсик-
ПК8010 + EDIT

Бейсик-t
ПК8020 + EDIT

MSX-BASIC LIST

BASICA + + LIST
EDIT

Бейсик-АГАТ + LIST

140

5.2.1. Командный (строчный) редактор

Введем следующие обозначения:
<символ> — произвольный символ или произвольная клавиша;
<текст> — строка символов произвольной длины;
[п] — целое число, по умолчанию единица.

Редактор XYBASIC

<возврат каретки> - заканчивает процесс редактирования, печатаются символы справа
от курсора, программная строка добавляется к текущей программе; возврат в прямой режим с
подсказкой ОК (см. гл. 2);

<печатный символ> — любой <печатный символ> удваивается (эхо) и вводится в
редактируемую строку в текущую позицию курсора; курсор будет находиться в позиции
справа от введенного символа; если строка не содержит больше символов, то вместо символа
будет удваиваться <Ctrl-G>;

<Rubout> — удаляет символ слева от курсора, удаленный символ изображается в
слешах (/и/);

<Ctrl—В> — выход из XYBASIC и возврат в операционную систему или монитор;
<Ctrl—С> — выход из системы редактирования и возврат в прямой режим, оставляя

неизменным предыдущее содержимое строки.
< Ctrl—D> - удаляет символ справа от курсора; стертые символы не печатаются;
< Ctrl—Е> - позволяет использовать возможности редактирования всякий раз, как

вводится строка в XYBASIC; если <Ctrl—Е> введен как первый символ строки, то XYBASIC
входит в редактор с содержимым самой последней определенной строки; эта особенность
полезна для коррекции ошибок при работе в командном режиме и при вводе данных; если
< Ctrl—Е> вводится после первого символа строки, то XYBASIC входит в редактор с символа­
ми, предшествующими < Ctrl—Е>;

< Ctrl—рХпечатный символ> — посылает курсор вправо до следующей встречи < пе­
чатного символа> в редактируемой строке, печатая все символы, которые прошел курсор;
если остаток строки не содержит <печатного символа>, то XYBASIC удваивает <Ctrl—G> и
оставляет позицию курсора неизменной; исследуемый символ не печатается;

< Ctrl—G> - вызывает звуковой сигнал;
< Ctrl—Н> — возврат на одну позицию; стирает символ слева от курсора;
< Ctrl—К> — стирает все символы справа от курсора.
< Ctrl—L> — выводит на экран символы, оставшиеся справа от курсора в редактируемой

строке, и переводит курсор в начало следующей строки;
< Ctrl—N> - находит следующий < печатный символ>, заданный последним в команде

<Ctrl—F>; удваивает <Ctrl-G> и оставляет позицию курсора неизменной, если команда
<Ctrl—F> не задана или строка не содержит < печатного символа>;

< Ctrl—R> - выводит на экран символы справа от курсора в редактируемой строке, а
затем переводит курсор в начало следующей строки и выводит на экран символы слева от
позиции курсора, в которой он находился в предыдущей строке, когда была нажата клавиша;

< Ctrl—Т> - пересылает курсор вправо;
< Ctrl—U> - уничтожает текущее содержимое редактируемой строки и начинает редак­

тирование заново с первоначального содержимого строки, позволяя легко устранять ошибки
редактирования.

141

Редактор TRS-80, MBASIC и КОРВЕТ

Команды управления курсором.
<пробел> — нажатие клавиши <пробел> пересылает курсор вправо. Нажатие клавиши

< пробел> п раз пересылает курсор на п позиций вправо. После каждого нажатия клавиши
< пр обе л > появляется символ редактируемой строки

 — В режиме редактирования нажатие клавиши п раз пересылает курсор на
п позиций влево

Команды ввода текста.
1<текст><Езсаре> — Вводит текст с текущей позиции курсора. Вводимые символы

печатаются на экране дисплея. Чтобы закончить ввод, нажимается клавиша <Escape>. Если во
время команды ввода нажимается клавиша возврата каретки, то прекращается ввод текста и
редактирование строки. Если при вводе символа общая длина строки превышает 255 симво­
лов, то символ не печатается и выдается звуковой сигнал

Х<текст><Бзсаре> — Ввод текста в конец редактируемой строки. Команда X пересыла­
ет курсор в конец строки и включает режим ввода. Нажатие клавиши <Escape> или возврата
каретки заканчивает ввод

Команды удаления текста.
[n]D — Удаляет п символов справа от курсора. Удаленные символы печатаются в обрат­

ных слешах, и курсор располагается справа от последнего удаленного символа. Если справа от
курсора меньше, чем п символов, то удаляется вся оставшаяся строка

Н<текст><Бзсаре> - Удаляет все символы справа от курсора, а затем автоматически
включает режим ввода

Команды поиска текста.
[п]8<символ> — Находит позицию n-го включения символа в строке и оставляет

курсор перед ним. Символ в текущей позиции курсора не рассматривается. Если заданный
символ не найден, то курсор останавливается в конце строки. Все символы, рассмотренные за
время проверки, печатаются

[н]К<символ> — Подобна команде S, за исключением того, что все рассмотренные во
время проверки символы удаляются. Курсор устанавливается перед заданным символом, и
все стертые символы печатаются в обратных слешах

Команды замены текста. Замена текста производится в режиме строчного редактирова­
ния командой С.

[п]С<текст> - Изменяет следующие п символов на <текст>. <Текст> должен содер­
жать п символов. После того, как n-й новый символ напечатан, осуществляется возврат в
режим редактирования

Команды управления режимом редактирования.
< возврат каретки> — Печатает остаток строки, сохраняет сделанные изменения и

возвращает управление на уровень команд
Е — Сохраняет сделанные изменения и возвращает управление в режим редактирования.

Остаток строки не печатается
Q — Возвращает управление на уровень команд без сохранения изменений, которые

были сделаны во время редактирования
L — Печатает остаток редактируемой строки и устанавливает курсор в начало строки,

оставаясь в режиме редактирования
А — Позволяет начать редактирование сначала. Запоминает первоначальную строку и

восстанавливает курсор в начало строки. Редактирование производится только на экране

142

дисплея или на экране и в памяти в зависимости от того, как была введена строка перед
нажатием Ctrl—А

После нажатия клавиш Ctrl—А номер редактируемой строки будет появляться после
вспомогательного знака! и пробела. Если строка была введена с клавиатуры, то после нажа*
тия клавиш Ctrl—А она будет редактироваться как на экране, так и в памяти.

Например:

400 NEXT
(нажатие “Ctrl-А”)
! 400 NEXT [IJ,К]<возврат каретки>
LIST 400
400 NEXT J,К

Если Ctrl-A используется после распечатки программы, то редактируется последняя строке
программы и причем только на экране, а не в памяти.

Например:
LIST 200
200 PRINT 5
Ok
(нажатие "Ctrl-A“)
* 200 PRINT [D\5\[I8$L]<возврат каретки>
200 PRINT 8

Если еще раз ввести команду LIST 200, то на экране все равно появится строка
200 PRINT 5
Ok

В приведенных выше примерах в квадратных скобках действия оператора ЭВМ, а символ $ -
нажатие клавиши < Escape>.

С помощью Ctrl—А можно редактировать и вызывать не только программные строки, но
и любые директивы, вводимые с клавиатуры.

Например:
PRINT “Проверка”
Проверка
(нажатие ”Ctrl-A“)
! PRINT “Проверка"

5.2.2. Экранный редактор

Экранный редактор позволяет пользователю вводить строки программы обычным путем,
а затем редактировать полный экран до внесения изменений в оперативную память. Эта
ускоряющая работу возможность обеспечивается с помощью специальных функциональных
клавиш, управляющих перемещением курсора, режимом вставки или удаления текста и т. д.

С помощью экранного редактора пользователь может быстро передвигать курсор по
экрану, внося при необходимости исправления. Строка программы не изменится до тех пор,
пока не будет нажата клавиша возврата каретки при нахождении курсора в этой строке.

Чтобы отредактировать программу, необходимо поместить ее или часть ее строк на экран
с помощью команды LIST.

Функции экранного редактора существенно зависят от аппаратной реализации клавиату­
ры и программной организации интерпретатора языка Бейсик, поставленного на микроЭВМ.

143

Редактор Спектрум+2

Для ввода редактора из начального меню выбирается функция "BASIC” с помощью
клавиш управления курсором и клавиши < ENTER >.

Экран будет выглядеть следующим образом: бело-голубой курсор будет установлен в
левом верхнем углу экрана. В нижней части экрана имеется черная полоса. Она называется
полосой подсказки и сообщает о том, какая часть встроенного программного обеспечения
используется. В данный момент полоса подсказки будет содержать ”Беисик-128”, поскольку
именно так называется редактор. Между полосой подсказки и нижней границей экрана
образуется часть экрана, которая называется малым экраном. Эта часть экрана содержит место
только для двух строк текста и наиболее часто используется при обнаружении ошибки и
выводе сообщения об ошибке.

Теперь нажимается клавиша <EDIT>. Курсор исчезнет и появится новое меню — меню
редактирования. Меню редактирования содержит следующие функции:

Бейсик-128 - удаляет меню редактирования и восстанавливает курсор
RENUM — (Перенумерация) Перенумеровывает номера программных строк с шагом 10.

Программы всегда будут начинаться с номера 10. Если перенумерация невозможна, то раздает­
ся короткий низкочастотный сигнал и меню исчезает. Для того чтобы перенумеровать програм­
му с шагом отличным от 10 и начальным номером строки отличным от 10, используются
следующие команды:

LET start=5:LET stepsize=2:
LET histart=INT(start/256):
LET histep=INT(stersize/256):
POKE 23444,start-256*histart:
POKE 23445,histart:
POKE 23446,stepsize-256*histep:
PORE 23447,histep

Вследствие изменения значения переменных start и stepsize команда RENUM будет выполнять
перенумерацию, начиная с любого (допустимого) номера строки и с любым шагом. Введите
указанную команду, а затем используйте команду RENUM

SCREEN — (Экран) Перемещает курсор в нижнюю часть экрана и обеспечивает ввод и
редактирование команд языка в этой части экрана. Любые операции редактирования в ниж­
ней части экрана не портят верхнюю часть экрана, что особенно удобно при работе с графичес­
кими средствами. Для возврата к работе с верхней частью экрана снова выберите функцию
SCREEN в меню редактирования

PRINT — (Печать) Распечатывает листинг текущей программы, если подключено печатаю­
щее устройство. После завершения печати листинга меню исчезает с экрана, а курсор возвра­
тится в прежнюю позицию. Если печатающее устройство не подключено или находится в
состоянии НЕ ГОТОВ, то при двукратном нажатии клавиши <BREAK> будет осуществлен
возврат в режим редактирования

EXIT — (Выход) Осуществляет возврат в начальное меню, сохраняя в памяти любую
программу, с которой в данный момент осуществлялась работа. Если необходимо снова
вернуться к программе, то выбирается функция "Бейсик-128”. При выборе функции "Бей-
сик-48”, включении компьютера или нажатии клавиши <RESET>, всякая программа, нахо­
дящаяся в памяти, будет стерта.

При вводе программы, если строка окажется введенной строчными буквами и цвет
курсора изменился на красный, то это означает, что обнаружена ошибка. Строка должна быть

144

исправлена перед тем, как она будет принята компьютером. При коррекции строки использу­
ются клавиши управления курсором для подведения курсора к части строки, которую
необходимо исправить. Затем можно вводить любые символы, которые требуется вставить,
или, используя клавишу <DELETE>, удалять лишние. После того, как закончена коррекция
строки, нажимается клавиша <ENTER>.

Редактор MSX-BASIC

В табл. 5.2 приводятся шестнадцатеричные коды для управляющих функции, а также
последовательности, полученные при нажатии клавиши Control (Ctrl) и других клавиш,
соответствующих этим функциям. Они максимально соответствуют коду ASCII. Некоторые
управляющие функции далее (стр. 149) описаны более подробно. В описании используются
понятия физическая и логическая строка.

Строка, появляющаяся на экране, называется физической строкой, а строка программы в
оперативной памяти от 1 до 255 символов — логической.

Таблица 5.2

Вестнадца-
теричый
код

Клавина
Ctrl
нажата

Специальная
клавина

Функция

01 А Заголовок графи­
ческого символа

* 02 В Перемецение курсо­
ра к началу преды-
дуцей строки

* 03 С Прерывание, когда
система MSX-BASIC
ожидает ввода

* 04 D Игнорируется

♦ 05 Е Усечение строки
(очистка до конца
логической строки)

ж Об F Перемецение курсо­
ра к началу следу­
ющего слова

♦ 07 G Звуковой сигнал

08 Н Back space , Удаление символа
слева от курсора

09 I TAB Табуляция (8 сим­
волов)

145

Шестнадцате-
2ичныйкод__
» ОА

Клавиша
Ctrl нажата

J

Специальная
клавиша

Продолжение табл. 5.2

Функция

Перевод строки

Ж ов К HOME Установка курсора
в верхний левый
угол экрана

* ОС L CLS Очистка экрана

♦ OD M RETURN Возврат каретки,
ввод логической
строки

♦ ОЕ N Дополнение в конец
строки

* OF . 0 Игнорируется

ж 10 p

ж 11 Q

ж 12 R INS Вставка символа

ж 13 S Игнорируется

ж 14 T

ж 15 U Удаление логичес­
кой строки

ж 16 V Игнорируется

ж 17 w

ж 18 X SELECT

ж 19 Y

ж 1А Z

ж 1В [ESC

ж IC —> Курсор вправо

ж ID] < — Курсор влево

ж
146

IE ■* Курсор вверх

Окончание табл. 5.2

Шестнадцате­
ричный код__
♦ 1F

Клавиша
Ctrl нажата

Специальная
клавиша

Функция

Курсор вниз

7F DELETE DEL Удаление символа
под курсором.
Сдвиг текста влево

Примечание. Коды, отмеченные символом выводят из режима вставки, если
происходила работа в этом режиме.

Предыдущее слово — Курсор смещается влево к предыдущему слову- Предыдущим
словом считается знак слева от курсора, принадлежащий одному из следующих множеств:
A—Z; А—Я; a—z; а—я; 0—9

Прерывание - Возвращает MSX-Бейсик в режим прямого управления при нажатии
клавиши RETURN, без сохранения изменений, внесенных в редактируемую логическую
строку

Усечение — Все символы логической строки, начиная от текущего положения курсора до
конца логической строки, удаляются

Следующее слово — Курсор передвигается вправо к следующему слову. Следующее
слово — знак справа от курсора, принадлежащий одному из множеств: A—Z; А—Я; a—z;
а-я; 0-9

Звуковой сигнал - Слышен звуковой сигнал, такой же, как и при выполнении опе­
ратора ВЕЕР

Стирание последнего символа — Удаляет знак слева от курсора. Все знаки от курсора
перемещаются влево на одну позицию. Последующие знаки и строки в логической строке
передвигаются вверх

Табуляция - В режиме вставки функция ТАВ вводит пробелы с обозначенной курсором
позиции до следующей позиции табуляции. Происходит раздвижка строк с переходом на
следующую строку. В режиме, отличном от режима вставки, функция ТАВ перемени «т
курсор к следующей позиции табуляции через 8 позиций

Перевод курсора в исходное положение - Курсор перемещается в верхний левый
угол экрана. Экран не очищается

Очистка экрана — При нажатии этой клавиши курсор переходит в исходное положение и
очищает весь экран, независимо от исходной позиции курсора

Возврат каретки — Вставляет код "возврат каретки" в текущую позицию курсора.
Нажатие этой клавиши указывает Бейсику на логический конец этой строки. Курсор переме­
щается в начало следующей логической строки. Если на экране недостаточно места, то все
изображение сдвигается вверх и снизу добавляется пустая строка

Дополнение в конец строки — Переводит курсор в конец строки, остающиеся знаки в
строке не стираются. С новой позиции все внесенные знаки добавляются к логической строке,
пока не произойдет нажатие клавиши "возврат каретки”

Вставка - Триггерный переключатель для режима вставки. При режиме вставки размер
курсора уменьшается и, начиная с данной позиции, происходит вставка символов. При
вставке новых символов знаки справа от курсора перемещаются вправо. Соблюдается непре­

147

рывный переход на новые строки. По окончании режима вставки размер курсора вновь
увеличивается

Очистка логической строки - При нажатии этой клавиши при курсоре в . любой части
строки удаляется вся логическая строка

Курсор вправо — Курсор перемещается вправо на одну позицию. Соблюдается непре­
рывный переход на следующие строки

Курсор влево - Курсор перемещается влево на одну позицию. Соблюдается непрерыв­
ный переход на предыдущие строки

Курсор вверх - Курсор переводится вверх на одну физическую строку (в данной

колонке)
Курсор вниз - Курсор переводится вниз на одну физическую строку (в данной колонке)

Редактор BASICA и ЕС 1840

Для машин фирмы IBM ниже представлены специальные команды (клавиши) редактора
и описаны функциональные возможности этого полноэкранного редактора.

Специальные клавиши редактора.
Ноше — (Числовая клавиша 7) пересылает курсор в верхнюю левую позицию экрана
CTRL—Ноше — Очищает экран. Устанавливает курсор в верхнюю левую позицию экрана
Т - (Курсор вверх - числовая клавиша 8) Пересылает курсор на одну позицию вверх

i — (Курсор вниз — числовая клавиша 2) Пересылает курсор на одну позицию вниз
— (Курсор влево — числовая клавиша 4) Пересылает курсор на одну позицию влево.

Если курсор достиг левой границы экрана, то он пересылается в самую правую позицию
предыдущей строки

—* - (Курсор вправо - числовая клавиша 6) Пересылает курсор на одну позицию
вправо. Бели курсор достиг правой границы экрана, то он пересылается в самую левую пози­
цию следующей строки

CTRL— —* — (Следующее слово) Пересылает курсор вправо до следующего "слова”.
"Слово” определяется как символ или группа символов, которые начинаются с буквы или
цифры. Слова разделяются пробелами или специальными символами

CTRL— - (Предыдущее слово) Пересылает курсор влево до предыдущего слова
End — (Числовая клавиша 1) Пересылает курсор в конец логической строки. Символы,

введенные начиная с этой позиции, добавляются в конец строки
CTRL—End — Удаляет символы от текущей позиции до конца логической строки. Все

физические строки экрана удаляются до тех пор, пока не будет найден символ конца ввода

Ins - (Числовая клавиша 0) Устанавливает режим Ins (ввода символов). Если этот режим
не установлен, то нажатие этой клавиши будет включать его. Режим Ins отмечается мерцанием
курсора, определяя нижнюю половину символьной позиции. Очередной вводимый символ
помещается в позицию, на которую указывает курсор, все символы, расположенные справа от
курсора, смещаются вправо на одну позицию. Если последний символ вытесняется за пределы
строки экрана, то он помещается в крайнюю левую позицию следующей строки. Когда режим
Ins выключен, вводимые символы будут замещать в строке существующие символы

Del — (Числовая клавиша — десятичная точка) Удаляет символ с текущей позиции. Все
символы справа от удаленной позиции пересылаются на одну позицию влево

---(Backspace - возврат на одну позицию) Удаляет символ слева от курсора. Все
символы справа от удаленного пересылаются влево на одну позицию

148

ESC — При нажатии ESC, когда курсор находится где-либо в строке, с экрана удаляется
эта физическая строка. Строка не передается в интерпретатор Бейсик для обработки. Если она
является программной строкой, то из памяти не удаляется

CTRL—Break - Возвращает редактор в командный режим без сохранения каких-либо
изменений, сделанных при редактировании текущей строки, не удаляя строку с экрана,
подобно ESC

ТАВ - (Табуляция) Пересылает курсор в следующую установку табуляции, которая
встречается каждые восемь символьных позиций

Коррекция текущей строки при работе с экранным редактором
MSX-BASIC и BASICA

В режиме уровня команды любая строка будет обрабатываться встроенным редактором.
Бейсик всегда находится на уровне команды после напоминания Ок.

Изменение символов. Используя клавиши пересылки курсора, курсор пересылается в
позицию, где обнаружена ошибка, и вводится нужный символ. Затем можно переслать курсор
в конец строки, используя клавиши ”курсор вправо” или ”End”, и продолжить ввод.

Удаление символов. Если в строке необходимо удалить символ, то используется
клавиша Del. С помощью клавиши пересылки курсора курсор передвигается на символ,
который надо удалить. Символ удаляется нажатием клавиши Del. Затем оператор пересылает
курсор обратно в конец строки. Если неправильный символ был только что введен, то его
можно удалить, используя клавишу ’’Backspace”. Затем можно продолжить ввод строки.

Добавление символов. Для добавления пропущенных символов надо переслать курсор
в позицию, с которой необходимо ввести новые символы. Нажмите клавишу ”Ins” для
установления режима ввода символов. Введите символы, которые надо добавить, эти симво­
лы будут вставлены, начиная с этой позиции. Символы слева от курсора остаются неизменны­
ми. Символы справа от курсора будут сдвигаться вправо по мере введения новых символов.
Режим ввода автоматически отключается при нажатии любой клавиши пересылки.

Удаление части строки. Чтобы удалить часть строки, начиная с текущей позиции
курсора, введите CTRL-End, за которым следует Enter.

Аннулирование строки. Чтобы аннулировать строку, которая находится в обработке,
надо нажать клавишу Esc где-либо в строке. Нельзя нажимать клавишу возврата каретки. Это
приведет к удалению входной логической строки.

Введение или изменение программы. Любая введенная строка, которая начинается с
номера, рассматривается как строка программы. Строки программы могут содержать макси­
мум 255 символов, включая возврат каретки. Если строка содержит больше 255 символов, то
лишние символы игнорируются при нажатии клавиши возврата каретки. Хотя эти символы
появляются на экране, они не обрабатываются Бейсиком.

Ключевые слова и имена переменных должны быть записаны прописными буквами.
Однако их можно вводить как комбинации прописных и строчных букв, редактор программ
будет переводить их в прописные за исключением комментариев и строк, заключенных в
кавычки.

Добавление новой строки к программе. Введите номер строки (0 — 65529), за которым
следует хотя бы один символ - не пробел и не возврат каретки. Строка будет сохраняться как
часть программы в памяти. Если строка с этим номером уже существует, то старая строка
замещается новой. Программные строки не проверяются на наличие синтаксических ошибок
перед добавлением к программе. Они проверяются только при выполнении программы.

149

Замещение или изменение существующей программной строки. Существующая
строка изменяется, когда номер вводимой строки уже существует в программе. Старая строка
замещается новой.

Удаление программных строк. Чтобы удалить существующую строку, сразу за номером
этой строки надо нажать клавишу возврата каретки. Чтобы удалить одну строку или группу
строк, можно использовать команду DELETE. При попытке удалить несуществующую строку
появляется сообщение Undefined line number (Неопределенный номер строки). Нельзя исполь­
зовать клавишу Esc для удаления программной строки, так как нажатие клавиши Esc удаляет
строку только с экрана.

Удаление введенной программы. Чтобы удалить введенную программу, находящуюся
в памяти, надо ввести команду NEW. Команда NEW обычно используется для очистки памяти
перед вводом новой программы.

Работа с новой строкой. Редактируя любую строку на экране, можно использовать
клавиши пересылки курсора в позицию, выбранную для измерения. Затем можно использо­
вать средства для изменения, добавления или удаления символов в строке. Для вывода
программных строк на экран можно применить команду LIST. Для этого курсор устанавлива­
ется в позицию в строке, которая будет редактироваться; эта позиция изменится.

Чтобы запомнить отредактированную строку, следует нажать клавишу возврата каретки.
Можно продублировать строку в программе следующим способом: переслать курсор в строку,
которая будет дублироваться, изменить номер строки. Затем нажать клавишу возврата
каретки; обе строки, старая и новая, будут в программе.

Программная строка никогда не изменится до тех пор, пока не будет нажата клавиша
возврата каретки. Перед нажатием клавиши возврата каретки, курсор надо перевести в конец
логической строки. Редактор программы "знает”, где заканчивается каждая логическая строка
и обрабатывает полную строку, даже если клавиша возврата каретки Enter нажимается в
начале строки. Чтобы сохранить программу с новыми изменениями, следует использовать
команду SAVE (см. гл. 4) перед введением команды NEW.

Синтаксические ошибки. Если во время выполнения программы обнаруживается
синтаксическая ошибка, то интерпретатор автоматически распечатывает строку, которая
вызвала ошибку, и ее можно корректировать.

Например:

10 А=2$45
RUN
? Syntax error in 10
10 A=2$45

Редактор распечатывает строку с ошибкой и устанавливает курсор в позицию первой цифры
номера строки. Нужно переслать курсор вправо до знака ”$” и изменить его на затем
ввести возврат каретки. Скорректированная строка запоминается в программе.

5.3. Работа программиста по исправлению ошибок

5.3.1. Средства отладки программ

Обычно программисты тратят около 40% рабочего времени на написание программы, а
60% - на отладку программы. Встроенные средства отладки позволяют обрабатывать некото­
рые ошибочные ситуации, а также выводить на терминал номера выполняемых строк
программы.

150

Важной сервисной функцией, обеспечивающей отладку программы, обладает команда,
включающая трассировку программы. С помощью трассировки выполнение программы
может быть проверено строка за строкой, что позволяет определить точное местонахождение
ошибки. Трассировка включается командой TRON (в некоторых версиях - TRACE) и выклю­
чается командой TROFF (UNTRACE или NOTRACE). После команд TRON(TRACE) и RUN на
экране дисплея появляются номера строк каждого исполнительного оператора и выводимые
значения переменных и констант.

В XYBASIC команда BREAK позволяет установить точку приостанова по номеру строки
или переменной. Если установить точку приостанова по номеру строки, то номер строки будет
печататься каждый раз, когда строка будет выполняться, а затем или продолжается выполне­
ние программы, или выполнение программы завершается. Вели установить приостанов по
имени переменной, то будет печататься имя переменной и ее новое значение всякий раз при ее
изменении. Команда UNBREAK удаляет точку приостанова. Сведения о командах для разных
версии языка представлены в табл. 5.3.

Таблица 5.3

Версия Команды
трассировки

Скобки Приостанов Ловужки Приме
чание

Стандарт ТВОИ
TROFF

ERL, ERR,
ERROR,
ON ERROR

XYBASIC TRACE
UNTRACE

[J BREAK
UNBREAK

TRAP
UNTRAP

Бейсик-
АГАТ

TRACE
NOTRACE

ONERR **

Бейсик-
TRS-SO

TRON
TROFF

< > ERL, ERR,
ERROR,
ON ERROR

Ж

MBASIC TRON
TROFF

[1 ERL, ERR,
ERROR,
ON ERROR

♦

Бейсик-
ПК8010

TRON
TROFF

[1 ERL, ERR,
ERROR,
ON ERROR

ж

Бейсик-
ПК8020

TRON
TROFF

[] ERL, ERR,
ERROR,
ON ERROR

ж

MSX-BASIC TRON
TROFF

[] ERL, ERR,
ERROR,
ON ERROR

ж

BASICA TRON
TROFF

[ERL, ERR,
ERROR,
ON ERROR

ж

151

Окончание табл. 5.3

Примечание. * - При трассировке номер строки печатается только один раз, даже если эта
строка содержит несколько операторов. ** — При трассировке номер строки печатается столько
раз, сколько операторов содержит эта программная строка.

5.3.2. Ошибки

В рассматриваемых версиях интерпретаторов при появлении сообщения об ошибке
возможны различные ситуации. Одни ситуации приводят к прерыванию работы программы,
другие прерывания не вызывают.

Ошибки, препятствующие выполнению программы, можно разделить на несколько
груше
Группа 1. Синтаксические ошибки. В операторах РИШТ, INPUT или LET может быть:

забыта одна пара кавычек;
использовано неправомочное имя переменной;
забыты двоеточие или точка с запятой, или запятая, отделяющая переменные или текст;
забыт номер строки, или в номере строки присутствуют буквы, или номер строки больше

максимально разрешенного;
двойные кавычки внутри текста;
строка больше 255 символов;
пропущено ключевое слово;
определен лишний символ, особенно лишняя запятая или двоеточие.

Группа 2. Выполнение оператора READ, когда нет данных в операторе DATA.
Группа 3. Ошибки цикла:

отсутствие оператора NEXT или FOR; WHILE или WEND;
забыто ключевое слово FOR;
вложены два цикла, использующие одинаковую переменную в обоих циклах;
имя переменной в цикле и имя счетчика цикла совпадают;
циклы некорректно вложены один в другой.

Группа 4. Несуществующий номер строки, к которому обращаются операторы GOTO,
THEN и т. п.
Группа 5. Значение параметра или индекса вне диапазона:

задание неправильных значений в графических операторах (например, в Бейсик-ПКЭДЮ и
Бейсик-ПК8020);

переполнение или деление на нуль.

Группа 6. Ошибки при работе с подпрограммами:
отсутствие RETURN при наличии GOSUB;
отсутствие GOSUB при наличии RETURN;
отсутствие RESUME при наличии ON ERROR GOTO;
отсутствие ON ERROR GOTO при наличии RESUME.

Группа 7. Строковые ошибки:
задание строкового значения вместо числового или наоборот;
превышено количество свободной памяти для строк;
попытка создать строку длиннее 255 символов;
строковое выражение слишком длинное или сложное.

152

Группа 8. Ошибки при работе с массивами:
неправильное задание индекса массива;
определение размерности одного или того же массива дважды.

Группа 9. Ошибки при работе с файлами:
обращение к файлу, которого нет на диске;
файл с заданным именем уже существует или открыт;
ошибка в спецификации файла;
несоответствие режима файла выполняемым действиям;
создание нового файла при полном каталоге диска;
попытка записи на диск, когда места на диске нет;
переполнение буфера;
ошибочный номер файла или записи;
ошибка определения конца файла.

Группа 10. Ошибки устройств:
ошибка в операции ввода-вывода устройства;
нет информации из устройства ввода-вывода по истечении определенного времени;
печатающее устройство отключено;
ошибка аппаратуры, обнаруживаемая адаптером интерфейса;
отсутствие устройства или заблокированное устройство;
открыта дверца дисковода или диска нет в дисководе;
плохой диск;
попытка записи на защищенный диск.

Группа 11. Ошибки коммуникации:
попытка установления связи при полном входном буфере.

Группа 12. Прочие ошибки:
программа слишком велика или слишком сложна;
ввод в прямом режиме оператора, который может быть использован только в программ­

ном режиме;
попытка продолжить программу, которая остановлена из-за ошибки, не существует или

модифицирована во время прерывания выполнения;
функция пользователя вызывается перед ее определением оператором DEF FN;
выражение содержит оператор, такой как * или OR, без операнда, следующего за ним.
Все эти ошибки прерывают выполнение программы, вызывают сообщение об ошибке с

указанием строки, где эта ошибка встретилась.
Типичные логические (несообщаемые) ошибки:
1. Переинициализация переменной — особенно при использовании циклов.

10 TOR N=1 ТО 3
20 READ А
30 PRINT А
40 RESTORE
50 NEXT N
60 DATA 1,2,3

2. Реверсия условий, т. е. использование знака вместо знака "о " или "> " и т. п.
3. Включение "равно* в условие "меньше или равно", когда должно быть "меньше" и т.п.
4. Перепутаны подобные имена переменных, особенно переменная А, строка А$ и мас­

сив А(Х).

153

5. Забыт порядок программного выполнения - слева направо, ио умножение и деление
всегда имеют приоритет перед сложением и вычитанием, а функции (INT, RND, ABS и т. п.)
перед другими функциями.

6. Вычисления некорректны в цикле, так как FOR 1=0 ТО 7 выполняет цикл 8 раз, а не 7.
7. Использование одной переменной в нескольких различных местах.
Подробное описание ошибок, приводящих к прерыванию выполнения программы, дано

далее.

Сообщения об ошибках XYBASIC

Когда обнаруживается ошибка в программе, интерпретатор выводит на экран сообщение
о характере и месте появления ошибки (табл. 5.4).

Например:

10 LET 3 = L

Интерпретатор выдает сообщение

SN ERROR: 10 LET

3 = L
ОК

SN — код, отражающий появление синтаксической ошибки

BF Bad File number Неправильный номер
файла

BS Bad Subscript Неправильный индекс
BY BYte Байт
CN Continue Продолхение
CS Checksum Контрольная сумма
DD Double Defined Дважды определенный
DF Disk Full Диск полный
EN EHable Блокирование
EX EXeption Исключение
FC Function Call Функциональный вызов
FI File Input Ввод файла
FM File Mode Режим Файла
FN File Hot found Файл не найден
FO File Open Файл открыт
FR FOR: Оператор FOR
ID Illegal Direct Неправомочная

команда
II Illegal Indirect Неправомочна вне

прямого режима
LS Long String Длинная строка
MC Machine Call Каминный вызов
HF HEXT without FOR NEXT без FOR
OD Out of Data Вне данных
OH Out of Memory Вне памяти
OH

154
OH Оператор ON

Сообщения об ошибках Бейсик-Спектрум+2

ОР OPen Оператор OPEN
OS Out of String

space
Вне строкового
пространства

OV Overflow Переполнение
RG RETURN without

GOSUB
RETURN без GOSUB

RO ROmsg feature Особенности ROM
SN SyNtax Синтаксис
ST STring Строка
TH Type Mismatch Несоответствие типов
UF Un implemented

Feature
Нереализованные
возможности

US Undefined
Statement

Неопределенный
оператор

Сообщения появляются внизу экрана при останове выполнения программы. Сообщение
имеет код, короткое сообщение, объясняющее что произошло, номер строки и номер операто­
ра внутри строки, где произошел останов. Подсказка Ок имеет код 0.

1
2

3
4
5
6

7
8
9
А

В

С
D

Е
F

G

Н
I
J

NEXT without FOR
Variable not found

Subscript wrong
Out of memory
Out of screen
Number too big

RETURN without GOSUB
End of file
STOP statement
Invalid argument

Integer out of range

Nonsense in BASIC
BREAK-CONT repeats

Out of DATA
Invalid file name

No room for line

STOP in INPUT
FOR without NEXT
Invalid I/O device

Invalid colour
BREAK into programm

NEXT без FOR
Переменная не
найдена
Неверный индекс
Вне памяти
Вне экрана
Слитком большое
число
RETURN без GOSUB
-Конец файла
Оператор STOP
Неправильный
аргумент
Аргумент вне
диапазона
’Ерунда" в Бейсике

Продолжение BREAK-
CONT
Вне данных
Неверное имя
файла
Нет места для
строк
Стоп при вводе
FOR без NEXT
Устройство
ввода-вывода ука­
зано неверно
Неверный цвет
Перерыв в прог­
рамме

К
L

155

м RAMTOP no good Верхняя граница
памяти испорчена

О Invalid stream Неверный ввод
р FN without DEF FN без DEF
Q Parameter error Ошибка параметра
R Tape loading error Ошибка загрузки

ленты
а MERGE error Ошибка слияния
Ъ Wrong file type Неправильный тип

Файла
с CODE error Ошибка в коде
d Too many brackets Слишком много

скобок
е File already exists Файл ухе судест-

вует
f Invalid name Неверное имя
h File does not exist Файл не сущест­

вует
i Invalid device Неправильное

устройство
J Invalid baud rate Неверная скорость

передачи
k Invalid note name Неверное имя ноты
1 Number too big Слишком большое

число (PLAY)
m Note out of range Нота вне диапазона
n Out of range Вне диапазона
о Too many tied notes Слишком много

связанных нот

Сообщения об ошибках Бейсик-АГАТ

NEXT без FOR Переопределенный массив
Синтаксическая ошибка Деление на нуль
RETURN без GOSUB Ты не в программе
Мало данных Не тот тип
Не тот тип величины Очень длинная строка
Переполнение Очень сложно
Мало памяти Не могу продолжить
Плохой оператор Функция не определена
Плохой индекс Ошибка

156

Сообщения об ошибках Бейсик-TRS-SO

1 NF NEXT without FOR NEXT без FOR
2 SN Syntax error Синтак емче екая

ошибка
3 RG RETURN without

GOSUB
RETURN без GOSUB

4 OD Out of data Вне данных
5 FC Illegal function

call
Неправильный
функциональный
вызов

6 OV Overflow Переполнение
7 ОМ Out of memory Вне памяти
8 UL Undefined line Неопределенная

строка
9 BS Subscript out of

range
Индекс вне диапа­
зона

10 DD Redimensioned
array

Переопределение
массива

11 /0 Division by zero Деление на нуль
12 ID Illegal direct Неправомочная

команда
13 ТМ Type mismatch Не соответ ствие

типа
14 OS Out of string space Вне строкового

пространства
15 LS String too long Слитком длинная

строка
16 ST String fomula too

complex
Слитком сложная
Формула строки

17 CN Can't continue Нельзя продолжить
18 NR No RESUME Нет RESUME
19 RW RESUME without

error
RESUME без ояибки

20 UK Unprintable error Непечатаемая
ошибка

21 MO Missing operand От сут ствуюжий
операнд

22 FD Bad file data Плохие данные в
файле

23 L3 Disk BASIC only Только дисковый
Бейсик

Сообщения об ошибках MBASIC

1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 Out of DATA

NEXT без FOR
Синтаксическая ошибка
RETURN без GOSUB
Вне данных

157

5 Illegal function call

6 Overflow
7 Out of memory
8 Undefined line
9 Subscript out of range
10 Redimensioned array
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too

complex
17 Can *t cont inue
18 Undefined user

function
19 No RESUME
20 RESUME without error
21 Unprintable error
22 Missing operand
23 Line buffer overflow
24-25 Unprintable error
26 FOR without NEXT
27-28 Unprintable error
29 WHILE without WEND
30 WEND without WHILE
31-4? Unprintable error
50 Field overflow
51 Internal error
52 Bad file number
53 File not found
54 Bad file mode
55 File already open
56 Unprintable error
57 Disk I/O error

58 File already exists
59-60 Unprintable error
61 Disk full
62 Input past end
63 Bad record number
64 Bad file name
65 Unprintable error
66 Direct statement

in file
67 Too many files
68 255 Unprintable error

Неправомочный функциональный
вызов
Переполнение
Вне памяти
Неопределенный номер строки
Индекс вне диапазона
Переопределение массива
Деление на нуль
Неправомрчная команда
Несоответствие типа
Вне строкового пространства
Слимком длинная строка
Слимком сложная Формула
строки
Нельзя продолжить
Неопределенная функция
пользователя
Нет оператора RESUME
RESUME без ошибки
Непечатаемая ошибка
Отсутствующий операнд
Буфер строки полный
Непечатаемая ошибка
FOR без NEXT
Непечатаемая ошибка
WHILE без WEND
WEND без WHILE
Непечатаемая ошибка
Переполнение поля
Внутренняя ошибка
Неправильный номер Файла
Файл не найден
Неправильный режим файла
Файл уже открыт
Непечатаемая ошибка
Ошибка при вводе-выводе
на диск
Файл уже суцествует
Непечатаемая ошибка
Диск полный
Ввод после конца файла
Неправильный номер записи
Неправильное имя файла
Непечатаемая ошибка
Прямой оператор в Файле

Слишком много файлов

Непечатаемая ошибка

15#

Коды 31—49 и 68-255 можно использовать для организации сообщений об ошибках, не
вошедших в стандартный перечень (о моделируемых ошибках)

Таблица 5.4
Сообщения об ошибках Бейсик-Корвет

Код Сообщение об оиибке Бейсик-ПК8010 Бейсик-ПК8020

1 NEXT БЕЗ FOR + +
2 ОШИБКА СИНТАКСИСА + +
3 RETURN БЕЗ GOSUB + 4-
4 ВНЕ DATA * 4-
5 НЕВЕРЕН ВЫЗОВ ФУНКЦИИ 4- 4-
6 ПЕРЕПОЛНЕНИЕ 4 4-
7 НЕТ ПАМЯТИ + +
8 НЕОПРЕДЕЛЕННЫЙ НОМЕР СТРОКИ + 4-
9 ИНДЕКС ВНЕ ДИАПАЗОНА 4- 4-
10 ПЕРЕОПРЕДЕЛЕНИЕ МАССИВА + +
11 ДЕЛЕНИЕ НА 0 4- +
12 НЕВЕРНАЯ КОМАНДА + +
13 НЕВЕРНЫЙ ТИП + 4-
14 НЕТ ПАМЯТИ ДЛЯ СТРОК 4 4-
15 ДЛИННАЯ СТРОКА 4- 4-
16 СЛОЖНАЯ СТРОКА <- 4-
17 ОШИБКА CONT 4 4-
18 НЕТ ОПРЕДЕЛЕНИЯ FN + 4-
19 НЕТ RESUME + 4-
20 RESUME БЕЗ ERROR + 4-
21 НЕОПРЕДЕЛЕННАЯ ОШИБКА 4- 4-
22 НЕТ ОПЕРАНДА 4- 4-
23 БУФЕР СТРОКИ ПОЛНЫЙ 4 4-
24
25-50
51
52
53
54
55
56
57
58
59-60
61
62
63
64
65
66
67

ОШИБКА ЧТЕНИЯ 4-
НЕОПРЕДЕЛЕННАЯ ОШИБКА +
ВНУТРЕННЯЯ ОШИБКА *
НЕВЕРЕН НОМЕР ФАЙЛА 4
ФАЙЛ НЕ НАЙДЕН +
НЕВЕРЕН РЕЖИМ ФАЙЛА 4-
ФАЙЛ УЖЕ ОТКРЫТ 4-
НЕОПРЕДЕЛЕННАЯ ОШИБКА 4-
ОШИБКА ВВОДА-ВЫВОДА С ДИСКА 4-
ФАЙЛ УЖЕ СУЩЕСТВУЕТ +
НЕОПРЕДЕЛЕННАЯ ОШИБКА +
ДИСК ПОЛНЫЙ +
ВВОД ПОСЛЕ КОНЦА ФАЙЛА *
НЕОПРЕДЕЛЕННАЯ ОШИБКА 4-
НЕВЕРНО ИМЯ ФАЙЛА +
НЕОПРЕДЕЛЕННАЯ ОШИБКА 4-
ПРЯМОЙ ОПЕРАТОР В ФАЙЛЕ +
МНОГО ФАЙЛОВ 4

4-

Коды 25—50, 68—255 можно использовать для сообщений о моделируемых ошибках.

159

Сообщения об ошибках MSX-BASIC

1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 Out of DATA
5 Illegal function call

6 Overflow
7 Out of memory
8 Undefined line number
9 Subscript out of range
10 Red imen s ioned array
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too

complex
17 Can't continue
18 Undefined user

function
19 Devise I/O error

20 Verify error
21 No RESUME
22 RESUME without error
23 Unprintable error
24 Missing operand
25 Line bufer overflow
26-49 Unprintable error
50 Field overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Input past end
56 Bad file name
57 Direct statement in

file
58 Sequential I/O only

59 File not OPEN
60 Bad FAT

61 Bad file mode
62 Bad drive name
63 Bad sector number
64 File still open
65 File already exists
66 Disk full

. 160

NEXT без FOR
Синтаксическая оиибка
RETURN без GOSUB
Вне данных
Неправомочный функциональный
вызов
Переполнение
Вне памяти
Неопределенный номер строки
Индекс вне диапазона
Переопределение массива
Деление на нуль
Неправомочная директива
Несоответствие типа
Вне строкового пространства
Слипком длинная строка
Слииком сложная формула
строки
Нельзя продолжить
Неопределенная функция
пользователя
Оиибка устройства
ввода-вывода
Оиибка контроля
Нет оператора RESUME
RESUME без оиибки
Непечатаемая оиибка
Отсутствующий операнд
Переполнение буфера строки
Непечатаемая оиибка
Переполнение поля
Внутренняя оиибка
Неправильный номер файла
Файл не найден
Файл ухе открыт
Ввод после конца файла
Неправильное имя файла
Прямой оператор в файле

Только последовательный
ввод-вывод
Файл не открыт
Неверная информация в FAT
(таблице распределения<
файлов)
Неправильный режим файла}
Неправильное имя диска
Неправильный номер сектора
Файл еще не открыт
Файл уже существует
Диск полный

Коды 26—49, 72—255 можно использовать для сообщении о моделируемых ошибках.

67 Too many files Слишком много файлов
68 Disk write protected Защита записи диска
69 Disk I/O error Ошибка при вводе-выводе

на диск
70 Disk offline Дисковод выключен
71 Rename across disks Переименование одного диска

на другой
72- 255 Unprintable error Непечатаемая ошибка

Сообщения об ошибках BASICA (ЕС1840)

1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 Out of data
5 Illegal function call

6 Overflow
7 Out of memory
8 Undefined line number
9 Subscript out of range
10 Duplicate definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too

complex
17 Can't continue
18 Undefined user

function *
19 No RESUME
20 RESUME without error
21 Unprintable error
22 Missing operand
23 Line buffer overflow
24 Device Timeout
25 Device Fault
26 FOR without NEXT
27 Out of paper
28 Undefined error
29 WHILE without WEND
30 WEND without WHILE
31-49 Undifined error
50 FIELD overflow
51 Interna1 error
52 Bad file number
5° File not found

NEXT без FOR
Синтаксическая ошибка
RETURN без GOSUB
Вне данных
Неправомочный функциональный
вызов
Переполнение
Вне памяти
Неопределенный номер строки
Индекс вне диапазона
Двойное определение
Деление на нуль
Неправомочная команда
Несоответствие типа
Вне строкового пространства
Слитком длинная строка
Слишком сложная формула
строки
Нельзя продолжить
Неопределенная функция
пользователя
Нет оператора RESUME
RESUME без ошибки
Непечатаемая ошибка
Отсутствующий операнд
Переполнение буфера строки
Тайм-аут устройства
Ошибка устройства
FOR без NEXT
Нет бумаги
Неопределенная ошибка
WHILE без WEND
WEND без WHILE
Неопределенная ошибка
Переполнение поля
Внутренняя ошибка
Неправильный номер файла
Файл не найден

161
£ -6'491

Коды 31 — 49,74 — 255 можно использовать для сообщений о моделщпгемых ошибках.

54 Bad file mode Неправильный режим файла
55 File already open Файл уже открыт
56 Undefined error Неопределенная оиибка
57 Device I/O error Ошибка при вводе-выводе

на диск
58 File already exists Файл уже существует
59- 60 Undefined error Неопределенная ошибка
61 Disk full Диск полный
62 Input past end Ввод после конца файла
63 Bad record number Неправильный номер записи
64 Bad file name Неправильное имя файла
65 Undefined error Неопределенная ошибка
66 Direct statement in

file
Прямой оператор в файле

67 Too many files Слишком много файлов
68 Device unavailable Устройство недоступно
69 Communication buffer

overflow
Переполнение буфера
коммуникации

70 Disk write protect Зацита записи диска
71 Disk not Ready Диск не готов
72 Disk Media Error Ошибка середины диска
73 Advanced Feature Расширенные возможности
74- 255 Undefined error Неопределенная ошибка

5.4. Моделирование ошибочных ситуаций

Все перечисленные выше ошибки, имеющие код, можно ”отлавливать” в процессе
работы программы и обрабатывать так, как нужно программисту. Обычно ошибки приводят к
прерыванию работы программы, но если встречается смоделированная ошибка (ошибка, не
указанная в стандартном перечне данной версии), то оператор ON ERROR... GOTO (в АГАТе —
ONERR GOTO) передает управление оператору, номер строки которого задан в ON ERROR...
GOTO. Этот оператор запрещает вывод на экран сообщения, отличного от заданного пользова­
телем, и не передает управление интерпретатору.

Например:
10 ON ERROR GOTO 100 : REM "Уход по ошибке на

строку 100"
20 INPUT X
30 PRINT SQR(X)
40 GOTO 20
100 PRINT "Аргумент не может быть отрицательным"
110 PRINT "Введите новое значение"
120 RESUME NEXT
RUN
?3
1.732015

?-3
Аргумент не может быть отрицательным
Введите новое значение

162

Другой пример демонстрирует использование псевдопеременных ERL и ERR при модели­
ровании ошибки, которые определяют номер строки, в которой произошла ошибка, и код
ошибки соответственно.

10 ON ERROR GOTO 100
20 INPUT "Введите число**;A
30 PRINT SQR(A)
40 GOTO 20
100 IF ERR=5 AND ERL=30 THEN PRINT "Введите

положительное число**;
110 RESUME 20
RUN
Введите число?4

2
Введите число?-4
Введите положительное число
Введите число?

Оператор RESUME обеспечивает возобновление выполнения работы программы после
обнаружения и обработки ошибки.

В XYBASIC ловушка ошибок включается и выключается с помощью команд TRUP и
UNTRAP.

Для локализации логической ошибки рекомендуется вставлять в программу операторы
STOP и PRINT, которые останавливают выполнение программы в нужном месте и печатают
значения переменных, по которым можно проследить правильность выполнения программы.
Небольшие куски программы можно отлаживать в командном режиме.

Например:

FOR 1=1 ТО 100 : PRINT I,EXP(I) : NEXT

Для отладки одной из ветвей программы можно использовать команду RUN с номером
строки, с которого нужно начать выполнение. Для этой же цели служит оператор GOTO с
номером строки.

5.5. Описание инструкций

Таблица 5.5

Номер версии
Инструкция ---

123456789 10

AUTO
CONT
CONTINUE
DEL
DELETE
EDIT
ERL
ERR
ERROR
LIST

163

Окончание табл. 5.5

Номер версии
Инструкция 1_____2 3 4 _5____ б_____7____ 8____9_____ 10

LLIST
NEW
NOTRACE
ONKHR
ON ERROR
RESUME
RUN
STOP
TRACE
TRAP
TROFF
TRON
UNTRACE
UNTRAP

AUTO — команда, автоматически генерирующая номер строки. Обычно используется для
ввода новых программ.

AUTO [номер][,инкремент]
номер — номер, который будет использован в качестве начального при нумерации строк;
инкремент — значение, которое будет прибавляться к каждому номеру строки для

получения следующего номера.
Нумерация начинается с номера, для получения следующего номера строки к предыдущему
прибавляется инкремент. Если оба этих параметра не указаны, то по умолчанию принимается
AUTO 10,10. Если за номером следует запятая, а инкремент не определен, то принимается
инкремент, определенный в предыдущей команде AUTO. Если номер не указан, а инкремент
определен, то нумерация начинается с 0. На месте номера строки, чтобы указать текущую
строку, может быть использована точка (•).

Если AUTO генерирует номер строки, уже существующий в программе, то после номера
строки на экране дисплея появится символ чтобы предупредить о том, что любая введен­
ная строка будет замещать уже существующую строку. Однако, если сразу после нажать
клавишу возврата каретки, то существующая строка не будет замещена, и AUTO будет
генерировать следующий номер строки.

Команда AUTO останавливается нажатием клавиш CTRL—С и возврата каретки. Строка,
в которой нажимается CTRL-C, не сохраняется. Управление передается на уровень команд.

Например:
AUTO

Эта команда генерирует номера строк: 10, 20, 30...
AUTO 100,50

Эта команда генерирует номера строк: 100, 150, 200...
AUTO 500

Эта команда генерирует номера строк: 500, 550, 600...
AUTO ,20

Эта команда генерирует номера строк: 0,20,40...
164

CONT — команда, продолжающая выполнение программы после прерывания
CONT

Команда CONT может быть использована для возобновления выполнения программы после
нажатия клавиши останова или после выполнения операторов STOP и END. Выполнение
продолжается с той точки, где осуществилось прерывание. Если прерывание встречается после
напоминания в операторе INPUT, то выполнение продолжается после повторения! напо­
минания.

Команда CONT обычно используется вместе с оператором STOP для устранения ошибок.
Когда выполнение останавливается, можно проверить и изменить значения переменных,
используя операторы в прямом режиме.

Для продолжения выполнения программы можно использовать команду CONT или
оператор GOTO в прямом режиме, который восстанавливает выполнение с определенного
номера строки. Если программа редактируется во время прерывания, то команда CONT не
выполняется и выдается сообщение об ошибке.

Например:

10 FOR А=1 ТО 50
20 PRINT А;
30 NEXT А
RUN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 <нахатие клавиши

останова>
*С
ВЫХОД В 20Ок
CONT

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50Ок

CONTINUE — команда продолжения выполнения программы после приостанова

CONTINUE
См. команду CONT.

DEL - команда, предназначенная для удаления программных строк в памяти

DEL номер строки
См. команду DELETE.

DELETE — команда, предназначенная для удаления программных строк в памяти

DELETE [номер строки[-[номер строки]]]

Команда DELETE удаляет из памяти определенную группу строк. После выполнения коман­
ды управление передается на уровень команд. Точка (•) может быть использована на месте
номера строки для определения текущей строки. Если один из двух указанных номеров строк
отсутствует в программе, то выдается сообщение об ошибке Undefined line number (Неопреде­
ленный номер строки).

165

Например:

DELETE 40 стереть строку 40.

DELETE 40-100 стереть все строки с 40 по 100 включительно.
стереть все строки с начала программы до 40

DELETE -40 включительно.

EDIT — команда, с помощью которой выводится на экран для редактирования строка с
указанным номером

EDIT номер строки
номер строки — номер строки для редактирования или VI

Курсор устанавливается в позицию первого символа после номера строки. Затем строка может
редактироваться. Если строки с таким номером в программе нет, то выдается сообщение
Undefined line number (Неопределенный номер строки). Для редактирования только что
введенной строки можно использовать точку (•).

Команды редактирования были рассмотрены выше.
Например:

EDIT 40

EDIT
ERR и ERL — переменные, которые выводят на экран код ошибки и номер строки, в

которой произошла ошибка

X=ERR

Y=ERL

Переменная ERR содержит код последней ошибки, а переменная ERL содержит номер стро­
ки, где эта ошибка обнаружилась. Переменные ERR и ERL обычно используются в операторах
IF ... THEN, чтобы организовать переход программы на подпрограмму, обрабатывающую
ошибку. При использовании переменной ERL в операторе IF ... THEN надо убедиться, что
номер строки находится справа от ERL.

Например: _____
IF ERL=<номер строки> THEN PRINT "ОШИБКА"

Номер строки должен находиться справа от переменной ERL, чтобы командой RENUM он
мог быть перенумерован. Если оператор, который вызывает ошибку, был задан в прямом
режиме, то ERL сообщает номер 65535. Так как нежелательно, чтобы этот номер строки изме­
нился во время выполнения команды RENUM, то при проверке ошибки в прямом режиме
следует использовать форму:

IF 65535=ERL THEN...
Переменные ERR и ERL могут быть заданы с помощью оператора ERROR. Например:

10 ON ERROR GOTO 100
20 LPRINT "This goes to the printer"
30 END

100 IF ERR=27 THEN PRINT "Turn printer on"; .‘RESUME
166

ERROR — оператор, используемый для распознавания кода ошибки, определенного
пользователем

ERkOR и
и — целочисленное выражение от 0 до 255.

Бели указанное п соответствует коду ошибки, то программа будет выполняться так, как будто
встретилась ошибка, указанная этим кодом (моделируется ошибка).

Если оператором ON ERROR определена подпрограмма обработки ошибки, то будет
осуществляться переход на эту подпрограмму, в противном случае будет печататься сообще­
ние об ошибке, и выполнение программы будет остановлено. Для определения кода модели­
руемой ошибки используется значение, отличное от значений, придаваемых интерпретатором.
Рекомендуется использовать коды больше 200. Если ваша собственная моделируемая ошибка
определяется таким образом и не обрабатывается в подпрограмме обработки ошибок, то
Бейсик-система будет печатать сообщение Undefined error (Неопределенная ошибка), и выпол­
нение программы будет приостановлено.

Например:

10 Т=15
20 ERROR Т
RON
ДЛИННАЯ СТРОКА В 20Ок
110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";В
130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS 5000"
410 IF ERL=130 THEN RESUME 120

LIST — команда вывода на экран дисплея текста программ
LIST [номер строки[-[номер строки]]]

Вывод программы на экран может быть прерван нажатием клавиш CTRL—С. После этого
управление передается на уровень команд. Нажатие клавиш CTRL—S задерживает вывод
текста на экран, а нажатие CTRL—Q продолжает вывод.

Если номера строк не указаны, то выводится вся программа, находящаяся в памяти.
Если задан только первый номер строки, то выводится на экран только строка с этим номером.
Если заданы первый номер и тире, то выводятся программные строки, начиная с заданного
номера и до конца программы. Если заданы тире и второй номер строки, то выводятся строки
с начала программы до заданного номера включительно. Если заданы оба номера строк, то
выводятся все строки, номера которых лежат в заданном диапазоне, включая строки с задан­
ными номерами. Для указания текущей строки можно использовать точку (•)•

Например:

LIST выводится вся программа;

LIST 35 выводится только строка 35;

LIST 100-200 выводятся строки с 100 по 200 включительно;

LIST выводится текущая строка.
167

LUST — команда, выводящая на печатающее устройство программные строки
LLIST [номер строки[-[номер строки]]]

На печатающее устройство выводится вся программа или ее часть, находящаяся в текущий
момент в памяти. Номера строк для команды LLIST указываются так же, как и для команды
LIST. Работа по команде LLIST не может быть остановлена нажатием клавиш. Для останова
печати следует выключить печатающее устройство на 10 с. После команды LL1ST интерпретатор
всегда возвращается на уровень команд.

Например:
LLIST распечатывает на печатающем устройстве всю введенную

программу;
LLIST 30-100 распечатывает строки программы с 30 по 100 включительно.

NEW — команда, которая удаляет программу, находящуюся в текущий момент в памяти
и очищает все переменные

NEW
Команда NEW обычно используется для освобождения памяти перед введением новой
программы. Интерпретатор всегда возвращает управление на уровень команд после выполне­
ния команды NEW. Команда NEW закрывает все файлы.

NOTRACE — команда отмены режима трассировки
NOTRACE

См. команды UNTRACE или TROFF.

ONERR — оператор организации ловушки ошибок
ONERR GOTO номер строки

См. оператор ON ERROR.

ON ERROR — оператор организации ловушки ошибок
ON ERROR [GOTO/GOSUB] номер строки

Если ловушка ошибок блокирует любые ошибки, включая синтаксические, то это будет
вызывать переход на подпрограмму обработки определенной ошибки. Если номер строки,
указанной в операторе ON ERROR GOTO, не существует в программе, то появляется сообще­
ние об ошибке Undefined line number (Неопределенный номер строки). Чтобы заблокировать
ловушку ошибок, необходимо выполнить оператор ON ERROR GOTO 0. Последовательные
ошибки будут выдавать сообщения об ошибках и останавливать выполнение программы.

Оператор ON ERROR GOTO 0, который появляется в подпрограмме ловушки ошибок,
останавливает выполнение программы и печатает сообщение об ошибке, которая вызвала
прерывание. Оператор RESUME используется для выхода из подпрограммы обработки ошибки.

Например:

10 ON ERROR GOTO 100
20 LPRINT ’’This goes to the printer”
30 END
100 IF ERR=27 THEN PRINT ”Turn printer on”:RESUME

RESUME — оператор, продолжающий работу программы после выполнения подпрограм­
мы обработки ошибок
168

RESUME [0]

RESUME NEXT

RESUME номер строки

В зависимости от того, где выполнение должно быть восстановлено, используется один из
вышеприведенных форматов.

При первом формате выполнение восстанавливается с оператора, который вызвал ошиб­
ку. При втором формате восстанавливается выполнение с оператора, непосредственно следую­
щего за оператором, который вызвал ошибку. При третьем формате восстанавливается выпол­
нение с заданного номера строки. Если встретился оператор RESUME, для которого не была
определена подпрограмма обработки ошибки, то выдается сообщение RESUME without error
(RESUME без ошибки).

Например:

10 ON ERROR GOTO 900

900 IF (ERR-230) AND (ERL=90) THEN PRINT "TRY
AGAIN": RESUME 80

RUN — команда, которая начинает выполнение программы

RUN [номер строки]

RON -спецификация файла"[,R]

При первом формате команда начинает выполнение программы, находящейся в данный
момент в памяти. Если задан номер строки, то выполнение начинается со строки с этим
номером. Во втором формате команда загружает программу с внешнего устройства (диска или
кассеты) и выполняет ее. При этом удаляется предыдущая программа в памяти, закрываются
все открытые файлы и очищаются все переменные. Но если указан параметр R, то все откры­
тые файлы остаются открытыми. Например:

RUN 100

RUN "PRIMER. BAS"

RUN "ZADACHA",R

STOP — оператор, прерывающий выполнение программы и возвращающий управление на
уровень команд

STOP

Для прерывания выполнения программы оператор может быть расположен в любом месте
программы. Если при выполнении программы встретился оператор STOP, то на экран выдается
сообщение STOP in nnnn (выход в nnnn), где nnnn — номер строки, в которой встретился
STOP. В отличие от END, оператор STOP не закрывает файлы. Выполнение программы может
быть продолжено командой CONT. Например:

169

10 INPUT А,В,С
20 K=A“2»5.3:L=B“3/.26
30 STOP
40 M=C*K100:PRINT M
RUN
71,2,3
ВЫХОД В 30
PRINT L
30.76923
Ok
CONT
115.9
Ok

TRACE и UNTRACB — команды, включающие и выключающие трассировку программы

TRACE

UNTRACE

В режиме трассировки печатаются пронумерованные строки, заключенные в квадратные
скобки, и результат выполнения каждого оператора (имя и значение переменной). Например:

10 TRACE
20 PRINT 2; “IS PRIM”
30 N=1
40 N=N2
50 FOR 1=3 TO N/2 STEP 2
60 IF N MOD I = 0 THEN 40
70 NEXT I
80 PRINT N;"IS PRIM”
90 GOTO 40
RUN
[20 PRINT 2;“IS PRIM”] 2 IS PRIM
[30 N=l] N=1
[40 N=N2] N=3
[50 FOR 1=3 TO N/2 STEP 2] 1=3
[80 PRINT N; “IS PRIM"] 3 IS PRIM
[90 GOTO 40]

ИТ.Д.

TRAP и UNTRAP - команды включения и выключения режима фиксации ошибок

TRAP

UNTRAP

Иногда необходимо продолжить выполнение программы посде того, как XYBASIC обнаружит
ошибку, например для того, чтобы программа работала без останова. Это достигается использо­
ванием команды UNTRAP, при выполнении которой режим UNTRAP XYBASIC пытается
продолжить работу программы после вывода на экран, сообщения об ошибке.

170

Некоторые ошибки всегда приводят к прерыванию выполнения программы без возмож­
ности продолжения работы. Но для других ошибок XYBASIC применяет особую восстанови­
тельную процедуру и продолжает выполнение программы.

Для задания режима UNTRAP необходимо лишь набрать команду UNTRAP, а для
выхода - TRAP. В самом начале работы XYBASIC находится в режиме TRAP, а также возвра­
щается в режим TRAP после выполения команды NEW. Например:

NEW
20 FOR 1=1 ТО 3
30 PRINNT I
40 NEXT I
RUN
SN ERROR: 30 PRINNT I
OK

При обнаружении синтаксической ошибки в 30 строке XYBASIC возвращается в командный
режим.

Другой пример демонстрирует работу режима UNTRAP:

10 UNTRAP
RUN
SN ERROR: 30 PRINNT I
SN ERROR: 30 PRINNT I
SN ERROR: 30 PRINNT I
OK

Ошибочная строка игнорируется и выполнение программы продолжается.

TRON и TROFF — включение и выключение трассировки

TRON

TROFF

По команде TRON номера строк по мере выполнения программы печатаются на экране в
квадратных скобках; команда TROFF выключает трассировку. Например:

10 К=10
20 FOR 1=1 ТО 2
30 L=K10
40 PRINT I;K;L
50 К=К10
60 NEXT
70 END
TRON
RUN
[10][20][30][40]l 10 ll[50] и т.д.

171

Глава 6

Работа с графическими операторами и операторами звука

6.1. Графический экран

Графический экран в современных ПЭВМ, как правило, растрового типа. В графических
видеоконтрольных устройствах (ГВКУ) такого типа электронный луч под управлением
дисплейного процессора вычерчивает регулярный растр горизонтальных строк развертки.
Изображение при этом получается изменением интенсивности точек растра. В случае цветного
дисплея производится также управление интенсивностями трех лучей — для красного, зелено­
го и синего цветов (RGB-сигнал).

С экраном связаны используемые в интерпретаторах языка Бейсик следующие понятия:
координаты точки, цвет точки, режимы работы экрана (рис. 6.1).

Координаты точки. Точка — минимальный программируемый элемент графического
изображения. Точка в этом смысле отличается от понятия собственно точки экрана, ’’электрон­
ной точки”, рисуемой электронным лучом.

Поэтому в иностранной литературе, а часто и в отечественной, употребляется слово
"пиксел” (от англ. Picture ELEment), точно соответствующий указанному выше понятию
графической точки. Графическая точка может состоять из нескольких "электронных точек" и
воспринимается глазом как единый элемент изображения в виде точки того или иного цвета.

В графических дисплеях, как правило, применяется от 256 до 2048 строк развертки. Чем
больше строк, тем выше разрешающая способность дисплея и качество изображения. В ПЭВМ
может применяться в качестве цветного видеоконтрольного устройства (ЦВКУ) бытовой
телевизионный приемник (телевизионный стандарт 625 строк).

В профессиональных ПЭВМ применяются специальные ЦВКУ с высокой разрешающей
способностью. Обычно в каждой ПЭВМ разрешающая способность ЦВКУ имеет несколько
фиксированных значений и может задаваться дисплейным процессором.

В соответствии со стандартом на языке Бейсик вершина координат находится в верхнем
левом углу экрана, т. е. выглядит так, как показано на рис. 6.2.

В некоторых ПЭВМ существует иная система координат, так, в ПЭВМ "Спектрум" начало
координат находится в нижнем левом углу экрана, так что точка (175,0) — это крайняя ниж­
няя точка в правом углу экрана.

В случае разных систем координат переносимость программ на Бейсике сильно затрудня­
ется. Принятие в стандарте указанной выше системы координат объясняется тем, что нарисо­
ванную таким образом картинку можно воспроизводить на экране любого размера (пусть и не
целиком). В ряде версий языка существуют операторы, позволяющие работать в системе
координат, выходящей за пределы физических координат растра.

В каждой системе координат существуют два основных способа задания координаты
точки — абсолютный и относительный. В обоих случаях задаются две координаты X и Y,
однозначно определяющие место точки на экране. При задании координат абсолютным
способом значения X и Y (или выражений, определяющих эти значения) отсчитываются от
начала кпоппинат (например, Xs! 00, Y=50 означает, что задаваемая точка удалена от начала
координат на ivu графических точек по оси X и на 50 графических точек ни оси Y).

При задании координат относительным способом значения X и Y отсчитываются от
координаты точки, выведенной на экран последней (или выведенной на экран последней
определенным оператором, в Бейсик-АГАТ таким является оператор PLOT). Для указания на

172

Инструкции выполнения графических операций и генерации звука

Дисплейный процессор,
экран и режим

Цвет и яркость

выбор режима ----- ---------------------

—оператор GR

—оператор HGR

—оператор MGR

—оператор NORMAL

—оператор SCREEN

—функция SCREEN

—функция VDP

—функция VPEEK

—функция VPOKE

—оператор RELOC

—оператор TEXT

—функция ATTR

—псевдопеременная BASE

—операторы CLS, PCLS

___ статическая

графика
■оператор CIRCLE

■оператор DRAW

-оператор ROT

■оператор PLOT ТО

-оператор PAINT

оператор XDRAW

-оператор SCALE

—оператор BORDER

—оператор BRIGHT

—оператор COLOR

—оператор FLASH

—оператор INK

—оператор INVERSE

—оператор LUT

—оператор PAPER

—оператор RIBBON

—оператор OVER

динамическая

графика

Точка
—оператор ON SPRITE

— псевдопеременная SPRITES

-оператор SPRITE ON/OF/STOP

— оператор PUT SPRITE

“оператор PUT

— оператор GET

—функция POINT

—оператор PSET

—оператор PRESET

— оператор PLOT

—функция SCRN

генерация звука оператор ВЕЕР

—оператор PLAY

— функция PLAY

—оператор SOUND
Рис. 6.1

кроме Бейсик-Спектрум+2

для Бейсик-Спектрум+2

Рис. 6.2

Y

Y

точку (черно-белое изображение). Если

этот способ определения координат используется
служебное слово STEP. Так, если последняя
выведенная точка находится в точке экрана с
координатами 100, 50, то использование STEP
(—50,50) в любом из графических операторов для
задания координат означает, что мы хотим
неявно указать на точку экрана с координатами
Х=50, Ys100.

Относительная форма задания координат
дает возможность продолжить начатое ранее
построение на экране.

Цвет точки. Управление цветом точки про­
изводится с помощью дисплейного процессора
индивидуально для каждой точки.

Емкость буфера регенерации растрового
ЦВКУ соответствует размеру экрана. Каждый
элемент буфера содержит значения интенсивности
или цвета для соответствующей графической
точки на экране. В самом простом случае требует­
ся по одному биту на каждую графическую

нужно управлять яркостью каждого из лучей, то
необходимо увеличивать количество битов (2 бита — 4 значения яркости, 3 бита — 8 значе­
ний и т. д).

Если, например, элемент буфера содержит 6 битов и на управление каждым из основных
цветов выделяется 2 бита, то максимальное количество цветовых оттенков, которое можно
получить на экране, составит 64 (26).

При увеличении количества цветов не экономично прямое увеличение памяти буфера
регенерации, поэтому часто используются такие средства, как палитра и таблица цветов. Эти
средства позволяют управлять заданием цвета, используя содержимое элемента буфера не
для управления интенсивностью цвета, а как индекс в палитре или таблице цветов, подлежа­
щий дальнейшей расшифровке дисплейным процессором (см. операторы COLOR, LUI). В
Бейсике цвета обычно пронумерованы, причем эти номера раз и навсегда зафиксированы.

В табл. 6.1 приведены номера цветов в основных версиях языка.
Таблица 6.1

Цвет КУВТ
“КОРВЕТ”

MSX
BASIC

PC IBM Спектрум+2 АГАТ
П1 п2

0 черный прозрачный фон фон черный черный
1 синий черный зел гол синий красный
2 зеленый средне-зел крас фи о л красный зеленый
3
4
5
6
7
8
9
10

голубой
красный
фиолет
желтый
белый

свет-сер
тем-гол
свет-гол
тем-крас
голубой
средне-крас
свет-крас
тем-желт

кор бел ярко-крас
зеленый
циановый
желтый
белый

желтый
синий
фиолет.
голубой
белый
черный
красный
зеленый

174

Окончание табл. 6.1

Цвет КУВТ
**КОРВЕ

MSX PC
Т” BASIC nl

IBM
п2

Спектрум+2 АГАТ

11 свет-желт желтый
12 тем-зел синий
13 васильковый фиолет.
14 серый голубой
15 белый белый

При построении графических изображении важное значение имеют понятия фон (задний
фон), передний фон (план) и граница (бордюр).

В некоторых версиях языка (например, Беисик-Спектрум+2) задний фон именуется
"бумага” (paper), а передний фон — "чернила” (ink). Это образно поясняет смысл переднего и
заднего фонов. На заднем фоне происходит появление точек другого цвета, которые и состав­
ляют изображение, в простейшем случае — это черные точки на белом фоне.

Когда цвет точки переднего фона становится одинаковым с цветом точки заднего фона,
она "исчезает”. Цвета точек заднего и переднего фонов задаются отдельно. Цвет границы
(бордюра) обычно совпадает с цветом фона и служит для заполнения нерабочей области
экрана, улучшая картинку.

Чаще всего управление цветом осуществляет оператор COLOR (HCOLOR). Установленные
в этом операторе цвета переднего и заднего фонов действуют до следующего аналогичного
оператора. Это не исключает того, что каждый графический оператор может "локально”
устанавливать цвета переднего и заднего фонов только на время своей работы.

6.2. Дисплейный процессор
Дисплейный процессор служит для управления работой ГВКУ и, в частности, для задания

режимов его работы. Основными режимами работы ГВКУ являются текстовой и графический.
В текстовом режиме выводится только текстовая информация, в графическом — и текстовая и
графическая. Некоторые типы ПЭВМ (например, ПК8020) не имеют разграничений этих двух
режимов и позволяют всегда выводить и текстовую и графическую Тшформацию.

Дисплейный процессор устанавливает также разрешающую способность ГВКУ. Переклю­
чение режимов работы ГВКУ осуществляется в Бейсике обычно с помощью оператора SCREEN
или с помощью специального оператора для каждого режима (см. HR, HGR). Установленный
режим действует до следующего аналогичного оператора.

В случае развитого дисплейного процессора одним оператором SCREEN задаются режимы
работы ГВКУ (текстовый или графический) и их основные характеристики:

разрешающая способность;
включение или отключение цветности;
номер активной и отображаемой страницы (для текстового и/или графического режима);
способ работы с отдельными УВВ (печать, магнитофон);
способ работы с динамическими изображениями.
Для ПЭВМ, у которых дисплейный процессор не поддерживает управления всеми

указанными выше характеристиками, оператор SCREEN может иметь усеченный вид (см.
SCREEN).

В некоторых версиях языка Бейсик возможно непосредственное управление дисплей­
ным процессором, что ускоряет работу с графикой, но требует знания аппаратных возможнос­
тей процессора (см. VDP, VPEEK, УРОКЕ).

175

Обычно каждому режиму соответствует определенный характер работ, которые можно
выполнять только в нем.

Так, в BASICA в режиме высокого разрешения изображение монохромное и число точек
на экране будет равно 640x200. Кроме того, вывод текстовой информации в этом режиме
производится в формате 25x80 (25 строк по 80 символов каждая).

В режиме среднего разрешения, где только и возможны цветные изображения, числе
точек на экране будет равно 320x200 и текстовая информация выводится в формате 25x40.

В MSX-BASIC имеются четыре режима работы, из которых два - текстовые (0,1) и два -
графические (2,3). При этом вывод текста в графических режимах (например, оператором
PRINT) ограничен и должен задаваться специальным образом с применением устройства с
именем ”GRP:”.

В текстовом режиме существуют понятия активной и отображаемой страниц. Отображае­
мая страница — это та часть буферной памяти, из которой выводится информация на экран в
настоящий момент. Активная страница — это область буферной памяти, которая служит для
накопления информации для последующего вывода. Оператор SCREEN в версии языка
BAS1CA позволяет управлять переключением номера активной и отображаемой страниц.
Оператор SCREEN в Бейсик-КОРВЕТ позволяет переключать активные и отображаемые
области графической памяти.

6.3. Построение изображения
(статическая и динамическая графика)

В настоящее время вся графика ПЭВМ делится на два класса: изобразительную (коммер­
ческую) и анимационную. В первом случае речь идет о построении на экране некоторых
статических изображений (диаграмм, схем, гистограмм, кривых и т. п.). Во втором случае,
особенно в игровых программах, требуется быстро перемещать картинки в определенную
область экрана, создавать столкновения разных картинок, видоизменять картинки в зависи­
мости от их местоположения и связи с другими картинками и т. п. Этот процесс позволяет
"оживлять” изображение на экране, подобно тому, как это делается в мультипликационном
(анимационном) фильме.

Язык Бейсик в более поздних версиях поддерживает оба класса графики. Для этого
разработаны специальные операторы (см. PUT, GET, SPRITE, PUT SPRITE, ON SPRITE GOSUB).
Понятие спрайт (от англ, sprite) — ”дух”, ”эльф”, стало профессиональным термином для
определения картинки, перемещающейся по экрану без разрушения фонового изображения.
Как правило, для "оживления”, "анимации” статического изображения необходимо провести
три операции:

1. Определить некоторый шаблон, обычно фиксированного размера (3x8,16x16 или более
точек) в определенной области памяти. Возможна специальная область памяти, предназначен­
ная только для этой цели. В картинке-шаблоне в "темные" места (передний фон самой картин­
ки) помещаются единицы, а в остальные места (прозрачные для фона изображения) — нули.
Для больших изображений логично создать несколько таких шаблонов (см. GET SPRITES).

2. Собрать все шаблоны и поместить их в нужное место памяти (см. PUT SPRITE). При
этом устанавливается цвет "темных” мест в шаблоне. "Светлые” места шаблонов будут
сохранять цвет изображения, на котором они находятся. Выполняя оператор PUT SPRITE в
цикле и меняя каждый раз координаты точек экрана, в которые помещается спрайт, имитиру­
ется движение картинки по экрану. Оператор PUT SPRITE позволяет легко проводить эту
операцию, использование оператора PUT требует дополнительных действий.

176

3. Определить момент, когда движущиеся изображения будут находиться в одной
области экрана, т. е. когда их темные места пересекутся. В этом случае вызывается прерыва­
ние, которое обрабатывается программным путем (см. ON SPRITE GOSUB, SPRITE ON/
GFF/STOP).

6.4. Операторы звука и музыки

Звуковое сопровождение программ на языке Бейсик может выполнять как вспомога­
тельные функции, так и быть самоцелью. В первом случае звук используется для следующих
целей:

фиксации определенных действий с аппаратурой (нажатие клавиши, сигнал задания
режима, аварии и т. п<);

имитации реальных шумов, особенно в игровых программах (например, выстрел,
столкновение машин, движение автомашины и т. п.);

музыкального сопровождения выполнения игровой программы для создания игровой
обстановки.

Во втором случае программа на языке Бейсик пишется только в целях воспроизведения
какого-либо музыкального произведения и реализуется на ПЭВМ, которые могут подключать­
ся к электромузыкальным инструментам. Это направление в последнее время быстро разви­
вается, причем уже разработан специальный интерфейс, получивший наименование MIDI
(Musical Interface for Digital Instruments).

В простейшем случае для воспроизведения звука в ПЭВМ используется встроенный
динамик. Управляя частотой генератора звука, можно получать простые звуковые сигналы
или одноголосные музыкальные произведения. Длительность и частота сигнала задаются
программируемым таймером.

В более развитых ПЭВМ имеется специальный процессор звука, который позволяет
управлять несколькими голосами, звучащими одновременно, задавать шумовые эффекты,
управлять громкостью каждого голоса, запоминать музыкальные фразы и т. д.

Для управления звуком большая часть версий языка Бейсик использует три оператора:
ВЕЕР, SOUND и PLAY.

Оператор ВЕЕР генерирует звуковой сигнал, обычно с частотой 800 Гц в течение 0,25 с.
Оператор SOUND дает возможность управлять частотой и длительностью звучания. Ис­

пользуя фиксированную таблицу нот, можно воспроизводить простые музыкальные фразы.
Предоставляется также возможность создавать с помощью оператора SOUND шумовые эффекты.

Оператор PLAY позволяет переводить на язык компьютера все основные музыкальные
термины - от номера октавы и ноты в ней до темповых (легато, модерато, стаккато, ларго и
т. п.) и интонационных характеристик обычной музыкальной записи.

Для этого оператор PLAY имеет внутренний макроязык, позволяющий осуществлять
перевод нотной записи в компьютерную.

6.5. Описание инстоукций
Таблица 6.2

Номер версии
Инструкция ---

123456789 10

ATTR +
BASE +

177

Окоичание табл, 6,2

Номер версии
Инструкция 1 2 3 4 5 6 7 8 9 10
ВЕЕР 4 4 4 4 4 4 4 4 4
BORDER +
BRIGHT 4
CIRCLE 4 4 4 4 4 4
CLS 4 4 4 4 4 4 4
COLOR 4 4 4 4 4 4
DRAW 4 4 4 4 4
FLASH 4 4
GET 4
GR 4
HGR 4
INK i
INVERSE 4 4
LINE 4 1 4 4 4
LOT 4 4
MGR 4
NORMAL 4
ON SPRITE 4
OVER 4
PAINT 4 4 4 4 4
PAPER 4
PCLS 4 4
PLAY 4 4 4 4
PLOT 4 4
PLOT TO 4 4
POINT 4 4 4 4 4 4
PRESET 4 4 4 4
PSET 4 4 4 4
PUT 4
PUT SPRITE 4
RELOC 4 4
RIBBON 4
ROT 4
SCALE 4
SCREEN 4 4 4 4 4
SCREENS 4
SCRN 4
SOUND 4 4 4
SPRITE 4
SPRITES 4
TEXT 4
VDP 4
VPEEK 4
VPOKE 4
XDRAW 4

178

6.5.1. Описание графических инструкций

ATTR — функция, которая сообщает значения атрибутов
ATTR (строка, столбец)

Двумя аргументами этой функции являются номер строки и номер столбца, а результатом
работы функции является некоторое число, которое после расшифровки сообщает о цвете
•бумаги” и "чернил”, а также о других атрибутах соответствующей позиции на экране.

Результирующее число является суммой четырех чисел:
128 — если атрибут мерцания установлен и 0 — если равен нулю;
64 — если атрибут яркости установлен и 0 — если не установлен;
8 X (цвет "бумаги”);
1 х (цвет "чернил”).
Например, если в позиции экрана установлено мерцание, нормальная яркость, желтая

бумага и синие чернила, то четыре числа, которые должны складываться при получении
результата работы функции следующие: 128,0,8-6=48 и 1, т. е. результат равен 177.

Например
PRINT AT O,O;FLASH 1;PAPER 6;INK 1;” ”;ATTR(O,O)

BASE — используется как псевдопеременная

BASE (таблица входов) = указатель видеопамяти

X=BASE (таблица входов)

таблица входов — любое числовое выражение от 0 до 19;
указатель видеопамяти — любое числовое выражение от 0 до 14336, значение которого

является допустимым адресом видеопамяти.
Использование инструкции BASE требует знания дисплейного процессора ПЭВМ типа MSX
(типа TMS—9918/28).

Инструкция BASE применяется для запроса и определения местоположения таблиц
видеопамяти (VDP RAM). Двадцать возможных параметров соответствуют двадцати систем­
ным переменным (каждая по 2 байта). Эти параметры разбиты на четыре группы. Каждая из
этих групп, содержащая по пять параметров, определяет базовые адреса видеопамяти соответ­
ственно для режимов SCREEN 0, SCREEN 1, SCREEN 2, SCREEN 3.

Если BASE находится в левой части оператора присваивания, а параметры соответствуют
текущему режиму SCREEN, то регистры VDP корректируются немедленно. В остальных
случаях с помощью псевдопеременной BASE можно прочитать значения системных пере­
менных.

При задании оператора SCREEN эти переменные задают значения в регистрах VDP. Если
BASE находится в левой части оператора присваивания и значение, вычисляемое по выраже­
нию, лишено смысла для регистра VDP, заданного параметром, то фиксируется ошибка Illegal
function (Неверная функция).

Для каждого режима SCREEN имеется пять параметров:
0 — базовый адрес таблицы имен;
1 ~ базовый адрес таблицы цветов (не используется в SCREEN 0 и 3);
2 — базовый адрес таблицы генератора шаблонов;
3 — базовый адрес таблицы атрибутов спрайтов (не используется в SCREEN 0);
4 — базовый адрес таблицы шаблонов спрайтов (не используется в SCREEN 0).
Таким образом, параметр для BASE определяется так:

179

BASE (режим SCREEN*5 + смешение относительного адреса базы)

Инструкция BASE в отличие от SCREEN не выполняет инициализацию режима экрана. Она
избавляет от вычислений, необходимых для преобразования нужных адресов BASE() в
требуемые значения и помещения их в регистры VDP.

Эта псевдопеременная позволяет одновременно вводить в видеопамять содержимое
нескольких различных кадров дисплея, возможно даже в нескольких режимах, по желанию
переходя от одного режима к другому.

Если BASE используется для установки адресов таблиц, то они не меняют положение
курсора, оставляя его в положении, заданном в последнем операторе SCREEN. Например:

10 COLOR 1,15
20 SCREEN О
30 FOR N=0 ТО 19
40 PRINT N"=w;BASB(N),
50 NEXT N
RUN
0 0 2048 0 0
8144 8192 0 6912 14336
6114 8192 0 6912 14336
2048 0 0 6912 14336

Пять чисел в первой строке для режима SCREEN 0:
О - адрес таблицы символов равен 0;
О — для данного режима не используется (база таблицы цветов);
2048 - адрес таблицы начертаний символов (побайтно);
О - для данного режима не используется (база атрибутов спрайтов);
О - для данного режима не используется (база шаблонов спрайтов);

Пять чисел во второй строке для режима SCREEN 1:
6144 - адрес таблицы символов;
8192 — адрес таблицы цветов соответствующих символов;
0 - для данного режима не используется;
6912 - адрес базы атрибутов спрайтов;
14336 — адрес базы шаблонов спрайтов

и так далее для режимов SCREEN 2 и SCREEN 3.

BORDER — оператор, устанавливающий цвет границы бордюра экрана
BORDER п

л - от 0 до 7.

BRIGHT — оператор, устанавливающий яркость изображения символа
BRIGHT п

и — равно 0 или 1.
Оператор BRIGHT устанавливает яркость символа, которая может быть нормальной (п=0) или
повышенной (п-1). Оператор BRIGHT называется атрибутом символа (cm^ATTR, INK).

CIRCLE — оператор, который рисует на экране дисплея эллипс с центром в точке (X, Y)
заданным радиусом

CIRCLE [STEP] (X,Y) .₽адиус[,цвет[.начало [,конец[.аспект]]]]

X - координата по горизонтали, целое число со знаком;
Y — координата по вертикали, целое число со знаком;

180

радиус — расстояние от точки (X,Y), целое число без знака (в допустимом диапазоне
см. 6.1);

цвет — номер цвета 0 < [допустимого номера] (см. 6.1);
начало, конец — начало и конец дуги;
аспект — форма эллипса, безразмерная величина.

Координаты центра могут быть заданы абсолютным или относительным способом. Оператор
CIRCLE не отображает те точки, координаты которых выходят за границы экрана. После
выполнения оператора CIRCLE точка (X,Y) считается последней выполненной.

Параметр цвет задается явно или по умолчанию. По умолчанию он совпадает с цветом
переднего фона, установленным в параметре COLOR.

Начало и конец — угловые параметры, задаются в радианах и могут изменяться от —2л
(—6.21318) до 2 л (+6.21318), где л= 3.141595. Они позволяют задать начало и конец рисунка
эллипса. Если значения углов отрицательны (—0 не допускается), крайние точки дуги будут
соединяться линиями с центром, а значения углов будут обрабатываться так, как если бы они
были положительными (это не то же самое, что прибавление 2*л). Параметр начало может
быть меньше параметра конец.

Параметр аспект — это отношение Х-радиуса к Y-радиусу. Он позволяет управлять
формой эллипса. Если аспект меньше 1, то заданный радиус является Y-радиусом, т. е. эллипс
вытянут по оси Y. Если аспект больше 1, то определяется Х-радиус, т. е. эллипс вытянут по оси
X. Обычно значение параметра аспект изменяется от 1/260 до 260.

В разных ПЭВМ существует стандартное (по умолчанию) значение аспекта, соответст­
вующее окружности (для ПК8020/10 это значение равно 3/2, для PC IBM оно составляет в
среднем разрешении 5/16, а в высоком разрешении 5/12, для MSX - 4/3).

Например:

10 НЕМ "Установите соответствующий режим"
20 CIRCLE(100,100),60,1
30 CIRCLE(100,100),40,1
40 CIRCLE(100,100),20,

Рисуются три концентрические окружности.

10 COLOR 4
20 CIRCLE(128,96),50,,-1,-3
30 GOTO 30

Рисуется сектор.

10 COLOR 4,15
20 SCREEN 2
30 CIRCLE(128,96),50,,-1,-3
40 GOTO 40

Рисуется сектор для MSX-BASIC.
В Бейсик-Спектрум+2 используется упрощенная форма записи

CIRCLE X,Y,радиус
для изображения окружности.

CLS - оператор очистки экрана
CLS

Обычно CLS устанавливает весь экран в цвет фона. В BASICA, MSX-BASIC и аналогичных
версиях CLS действует по-разному в текстовом и графических режимах. В текстовом режиме

181

очищается активная страница (красится в цвет фона) и курсор возвращается в верхнее левое
положение (0,0).

В графическом режиме видеопамять красится в цвет фона и курсор устанавливается в
центр экрана, в точку с координатами (160,100) для среднего разрешения и в точку (320,100)
для высокого разрешения.

В ПК8020/10 оператор CLS стирает всю алфавитно-цифровую информацию с экрана. Для
чистки графической видеопамяти применяется другой оператор — PCLS (см. ниже).

COLOR — оператор, который используется для установки цветов
Формат 1 (только для BASICA).

COLOR[передний фон][,[задний фон]][,[бордюр]]
Формат 2 (только, для BASICA).

COLOR[задний фон][,[палитра]]
Формат 3 (только для MSX-BASIC).

СОЬОИ[цвет][,[цвет]][,цвет]]
Формат 4 (только для Бейсик-ПК8010, Бейсик-ПК8020).

COLOR[передний фон][,задний фон]
Формат 5 (только для Бейсик-АГАТ).

COLOR-арифметическое выражение

Формат 1 (текстовый режим):
передний фон — цвет символа (числовое выражение от 0 до 31);
задний фон — цвет фона (числовое выражение от 0 до 7);
бордюр — цвет границы экрана (числовое выражение в расширенном диапазоне).

Оператор распространяет свое действие на символы, которые будут выводиться на экран в
дальнейшем, цвет символов, уже находящихся на экране, не меняется.

Можно не указывать любой из параметров, но хотя бы один должен быть задан. Бели
параметры не указаны, то сохраняется действие предыдущего оператора COLOR.

Чтобы получить мерцающее изображение символа, необходимо задать в качестве цвета
переднего плана номер цвета, увеличенный на 16.

Для работы с черно-белым экраном используются следующие значения оператора COLOR:
1. Для переднего фона: 0 — черный; 1 — подчеркнутый символ с белым передним фоном;

7 — белый; 15 — интенсивно-белый.
2. Мерцание символа получается указанным выше способом (16—это черный мерцающий).
3. Для заднего фона можно выбрать два цвета: 0 — черный или 7 — белый.
Бели оператор COLOR заканчивается запятой (,), то выдается сообщение Missing operand

(Неверный операнд), но цвет изменяется. Любые значения вне разрешенного диапазона
вызывают ошибку Illegal function call (Неверный функциональный вызов) и остаются преды­
дущие значения цветов.

Данный формат используется во всех версиях языка Бейсик для PC IBM (BASICA,
GWBASIC).

Формат 2 (графический режим):
задний фон — цвет фона, числовое выражение от 0 до 15;
палитра — числовое выражение.

Если значение выражения — четное число, устанавливается палитра 0, если нечетное — палитра
1 (см. 6.1).

182

Формат 3 (графический и текстовый режимы):
цвет — цвет изображения, фона или бордюра в разрешенном диапазоне.

Оператор устанавливает цвета переднего и заднего фонов, бордюра, которые затем действуют
по умолчанию до следующего оператора COLOR.

Любой не указанный операнд сохраняет свое предыдущее значение. Если числовое
значение выходит за разрешенный диапазон, вызывается сообщение Illegal function call
(Неверный функциональный вызов). Отсутствие параметров приведет к сообщению Missing

operand (Неверный операнд).
В данном формате оператор COLOR описан в ГОСТ 27787—88 на язык программирования

Бейсик и применяется в MSX-BASIC.
Оператор используется в режиме среднего разрешения, в режиме высокого разрешения

использование неправомочно. Цвет бордюра всегда совпадает с цветом заднего фона. Сообще­
ния об ошибках те же, что и в формате 1.

Например:

10 НЕМ'Тстановите режим'*
20 COLOR 1,4
30 CIRCLE(100,100),20
40 CIRCLE(100,100),40,7
50 CIRCLE(100,100),60
60 GOTO 60

Действие оператора COLOR распространяется на строку 30 и 50. В строке 40 локально
определен новый цвет, но только на время действия этого конкретного оператора. Строка 60
только для MSX-BASIC.

Формат 4.:
передний фои — значение целочисленного выражения от 0 до 7;
задний фои — значение целочисленного выражения от 0 до 7.

Устанавливает цвета, используемые в графических операторах. Задний фон используется в
качестве неявного параметра в операторах PCLS и PRESET при удалении изображения или
точки.

Задаваемые оператором COLOR цвета с помощью таблицы LUT (см. LUT) преобразуются
в физические цвета. При выходе значений параметров за пределы диапазонов, выводится
сообщение НЕВЕРЕН ВЫЗОВ ФУНКЦИИ. Данный формат оператора COLOR применяется в
Бейсик-ПК8010, Бейсик-ПК8020.

Формат 5 (графический режим). Значение арифметического выражения изменяется от О
до 15 и используется для установки номера цвета отображаемых точек и линий. Данный
формат оператора COLOR применяется в Бейсик-АГАТ.

DRAW — оператор, позволяющий рисовать произвольное изображение, определенное
строкой
Формат 1 (кроме Бейсик-АГАТ и Бейсик-Спектрум+2).

DRAW строка
Формат 2 (только для Бейсик-АГАТ).

DRAW арифметическое выражение

[AT X,Y]
183

Формат 3 (только для Бейсик-Спектрум+2).
DRAW X,Y [.число]

Формат 1:
строка — строковое выражение, состоящее из команд графического макроязыка

Оператор DRAW позволяет рисбвать сложные фигуры отрезками прямых линий. Каждая
команда макроязыка представлена одним символом. Графический макроязык, используемый
в операторе DRAW — это как бы язык в языке; он существует внутри языка Бейсик исключи­
тельно для выполнения операции рисования произвольных фигур. С помощью графического
макроязыка можно управлять движением курсора, рисующего фигуру, что похоже на "чере­
пашью графику”, используемую в языке ЛОГО.

"Программа” на макроязыке состоит из строки длиной до 255 символов. Каждая команда
представлена одним символом.

В одних версиях языка (например, Бейсик-КОРВБТ) команды пишутся подряд, в других
допускается разделение команд пробелами для удобства чтения.

Команды перемещения позволяют рисовать отрезки прямых по вертикали, горизонтали
и диагоналям:

Un — вверх Fn — вправо вниз
Dn — вниз Еп — вправо вверх
Rn — вправо Gn — влево вниз
Ln — влево Нп — влево вверх

где п - число точек экрана, на которые нужно передвинуть курсор. В случае диагональных
команд п=п(х)=п(у).

Все команды перемещения производят движение из точки, определенной предыдущей
координатой. В начальный момент положение курсора перед командой DRAW определено
предыдущим графическим оператором. Рисунок 6.3 иллюстрирует действие команд пере­
мещения.

Команда M(X,Y) пересылает курсор от текущей точки до точки (X,Y). Координаты (X,Y)
могут быть относительными и абсолютными. Если перед X стоит знак ”+” или пересылка
относительная, если нет — абсолютная.

Любой команде перемещения могут предшествовать следующие команды:
В — переслать, но не рисовать;
N — переслать, но возвратить в начальную точку;

А п- установить угол п, угол задается одним и
значений: 0, 1, 2, 3, где 0—0 градусов, 1-9С
градусов, 2-180 градусов, 3-270 градусов;
команда вращает оси координат экрана дисплея
против часовой стрелки на определенное число
градусов и соответственно изменяет направление
перемещения;
АО - установить оси координат в начальное
положение;
Sn- установить масштаб, где п изменяется от 0
до 255; команда устанавливает число точек
экрана для всех последующих команд в соотно­
шении п/4.Начальное значение обычно 84или S0;
Сп-установить цвет рисуемой линии, где п-
номер цвета; ввести строковую переменную,

184

которая используется как подстрока; перед именем переменной ставится X, а после имени —
точка с запятой (;).

В любой из перечисленных выше команд числовой аргумент может быть заменен перемен­
ной. Для этого после команды ставится знак ”=" (равно) и после него пишется имя перемен*
ной. Точка с запятой (;) ставится после имени, обозначая его конец. В команде М точка с
запятой не заменяет запятую.

Как указывалось в описании оператора CIRCLE (см. выше), при рисовании изображений
необходимо учитывать искажение экрана (аспект экрана). Например:

10 BA$=**UR0R60D40L60~
15 REMMAcneKT ПК8020 равен 3/2
20 DRAW MBM100,100,S0XBA$"
30 DRAW NS1XBA8N
40 DRAW •S2XBA»"

Данная программа рисует три квадрата, определенных в строке 10. Комментарий (строка 15)
объясняет количество точек в командах перемещения.

Например:
10 COLOR 1,4
20 SukkEH 2
30 FOR N=4 TO 100 STEP 4
40 DRAW MBM 128,96 S=N; R4 U4 L4 D4“
50 NEXT N
60 DRAW "S4"
70 GOTO 70

Установка режима в примере проведена для MSX-BASIC. Обратите внимание на использова­
ние команды S=N; и S4.

Формат 2. Оператор DRAW в этом формате воспроизводит на экране в режиме высокого
разрешения шаблон или, как еще его называют, "маску”, определенную последовательностью
команд, расположенных в специальной таблице. (Иначе этот шаблон называется "описателем
формы".) Таблица состоит из последовательности закодированных векторов, определяющих
форму объекта. Эта таблица создается до выполнения Бейсик-программы. Каждый байт
шаблона разделен на три секции, каждая из которых описывает вектор, указывающий направ­
ление движения воображаемого "пера", рисующего объект. По команде DRAW интерпретатор
просматривает секцию за секцией шаблона. Когда встречается байт, все биты которого нули,
просмотр заканчивается.

Для использования таблицы в Бейсик-программе необходимо загрузить ее в память
средствами Ассемблера или с помощью оператора РОКЕ.

Если в команде введен параметр АТ, то начало рисунка совпадает с точкой с координата­
ми (X,Y). Если параметр АТ не вводится, рисование начинается с точки, определенной опера­
торами PLOT, DRAW или XDRAW. Значения выражения изменяются от 0 до 255. Диапазоны
изменения X и Y определены координатами экрана.

Формат 3. Служит для рисования прямой линии или дуги:
X,Y — целые числа в разрешенном диапазоне;
число — целое число (в радианах).

Рисование с помощью оператора DRAW начинается либо в той точке, где закончилось послед­
нее предложение PLOT, DRAW или CIRCLE, либо в левом нижнем углу (после операторов
RUN,CLEAR CLS или NEW).

185

Конечная точка линии — это точка, отстоящая на X графических точек вправо и на Y
влево от исходной. Команда DRAW сама не определяет начальную точку. Числа X и Y могут
быть отрицательными.

При задании параметра число можно рисовать дуги, причем число - это число радиан, на
которое производится поворот при построении линии. Если число> 0, то доворот происходит
влево, если число < 0, то вправо. При этом надо учесть, что полный поворот происходит при
числов2п, при числоап будет нарисована полуокружность, при числое0,5п - ее четверть и
т. д. Например:

10 PLOT 100»100 : DRAW 50»50»PI

FLASH — оператор, устанавливающий атрибут мерцания символа
Формат 1 (только для Бейсик-Спектрум+2).

FLASH п
Формат 2 (только для Бейсик-АГАТ).

FLASH
Формат 1:
л равно 0 или 1.

Оператор FLASH устанавливает атрибут мерцания для символа (непрерывная замена цветов
"чернил” и "бумаги”). Мерцание вводится при п-1 и отменяется при п=0.

Формат 2. Используется для установки мерцающего режима вывода текста.

GET — оператор, позволяющий считать информацию об изображении всех точек заданной
области экрана и поместить ее в числовой массив

GET(X1,Y1)-(X2,Y2), имя массива
XI, Yl, Х2, Y2 — координаты, заданные в абсолютной или относительной форме;
имя массива — имя области, в которой информация будет запоминаться./

Оператор GET является парным с оператором PUT. С помощью этих двух операторов можно
создавать динамическую графику. Процесс основан на управлении передвижением прямо­
угольных фрагментов, состоящих из "светлых" и "темных" пятен. Впечатление движения
создается последовательной сменой "кадров" с помощью операторов PUT и GET.

Операнд (X1,Y1)—(X2,Y2) определяет прямоугольную область, задавая координаты
вершин прямоугольника.

Имя массива определяет область памяти, в которую будет помещаться информация,
полученная оператором GET. Информация запоминается в массиве последовательно. Необхо­
димо, чтобы размер массива был равен емкости области памяти в буфере.

Необходимая величина области памяти в байтах составляет 4 + INT((X*A+7)/8)*Y, где
X.Y - длины соответственно горизонтальной и вертикальной сторон прямоугольника (в
графических точках);
А - равно 2 при среднем разрешении и 1 при высоком.
Информация в массиве имеет следующую структуру:

два байта, содержащие размер X (бит);
два байта, содержащие размер Y (бит);
данные.
В среднем разрешении прямоугольник 10х 12 графических точек будет эквивалентен 40

байтам массива.

GR — оператор установки графического режима
GR=n

186

n — номер страницы памяти.
Оператор GR устанавливает графический режим с низким разрешением (64Х 64 точки), п —
номер страницы памяти размером 2 Кбайта, при этом в ПЭВМ АГАТ п изменяется от 2 до 31.
Оператор очищает экран.

HGR — оператор установки графического режима
HGR=n

п - номер страницы памяти.
Оператор HGR устанавливает графический режим с высоким разрешением (25бх 256 точек),
п — номер страницы памяти размером 8 Кбайт. В ПЭВМ АГАТ п изменяется от 1 до 7. Оператор
очищает экран.

INK — устанавливает цвет переднего фона
INK число

число — числовое выражение от 0 до 9.
В соответствии с образами, введенными в Бейсик-Спектрум, для операции графики всегда
"чернилами” рисуют на "бумаге”. "Чернила” (INK) — это передний фон символа. Оператор
INK может задавать восемь (0 — 7) цветов или цвет 9, определяемый как "контрастный”. При
задании цвета 9 автоматически установится цвет "чернил”, противоположный тому, в кото­
рый установлена "бумага” (PAPER).
Цвет 8 определяется как "прозрачный” в том смысле, что сохраняется старый цвет. Оператор
INK относится всегда к определенному элементу экрана и называется атрибутом (см. PAPER,
ATTR). Например:

INK 9 : FOR С=О ТО 7 : PAPER С : PRINT С : NEXT С

INVERSE — оператор инвертирующий цвет точки
Формат 1 (только для Бейсик-Спектрум+2).

INVERSE п
Формат 2 (только для Бейсик-АГАТ).

INVERSE
Формат 1:
п равно 0 или 1.

Оператор INVERSE инвертирует цвет точки. При использовании оператора INVERSE в кон­
тексте работы с символом операнд п=1 изменит образ каждой точки в позиции экрана таким
образом, что цвет "бумаги” будет заменен на цвет "чернил”, и наоборот.

При использовании INVERSE в графических операторах его действие распространяется
только на одну точку.

Формат 2. Инвертирует цвет точки в режиме вывода текста.

LINE — оператор изображения пиний и прямоугольников

LINE[STEP[(XO, YO)]]-[STEP](XI, Y1) [,цвет][,B[F]]

STEP — указывает на возможность задания координат точки в относительной форме;
ХО, Y0 — координаты начальной точки;
XI, Y1 — координаты конечной точки;
цвет — номер цвета (используются только цвета переднего фона);
В — указывает, что рисуется прямоугольник заданным цветом;
F — указывает, что прямоугольник заполняется этим цветом.

При задании координат необходимо учитывать аспект экрана.

187

Оператор LINE рисует линию от точки X0,Y0 до точки X1,Y1 указанным цветом или
цветом переднего фона. Точки, имеющие координаты за пределами экрана, не изображаются.
Если в операторе задан параметр В, то рисуется прямоугольник с диагональными вершинами в
точках (X0,Y0) и (XI,Y1).

Простейшей формой LINE является

LINE-(X1,Y1)
LINE STEP (XI, Yl)

При этом рисуется линия до точки (XI ,Y1) цветом переднего фона. Последней точкой операто­
ра LINE всегда является точка с координатами (XI,Y1).

Например:
10 LINE(0,200)-(511,100),7,В
20 LINECO,100)-(511,200),2
30 LINEC511,100)-(0,200),4

Например (дляMSX BASIC):

10 COLOR 1,15
20 SCREEN 2
30 DRAW "BM128,96"
40 FOR N=1 TO 10
50 LINE STEP(0,0)-STEP(10,10),,B
60 NEXT N
70 GOTO 70

LUT — оператор, определяющий физические цвета. (Только для Бейсик-КОРВЕТ.)
LUT Х(1)

X(i) — имя первого элемента целочисленного массива, содержащего элементы X(i),
X(i+1).......X(i+15).
Программирует таблицу цветов. Элементы массива с индексами от i до i+15 содержат номера
физических цветов, а их порядковый номер соответствует логическим номерам цветов.

При начальной инициализации логические номера цветов от 0 до 7 соответствуют цветам
графики (без алфавитно-цифровых символов), а от 8 до 15 — цветам графики с алфавитно-циф­
ровой информацией.

Соответствие номеров в таблице физическим цветам при начальной инициализации
представлено в операторе COLOR.

Например:

10 DIM ХХ(15)
20 FOR 1=0 ТО 7
30 LINEC100,100)-(200,200) ,4,BF
40 XX(I)=1 : NEXT
50 FOR 1=8 ТО 15
60 XX(I)=15 : NEXT
70 LUT ХХ(0)

MGR — оператор установки графического режима
MGR=n

п - номер страницы памяти, изменяется от 1 до 7.
Устанавливает графический режим со средним разрешением (128x128 точек); п - номер
страницы памяти размером 8 Кбайт.

188

NORMAL — оператор, устанавливающий режим вывода текстовой информации
NORMAL

Отменяет действие операторов INVERSE и FLASH и устанавливает режим вывода текстовой
информации в прямом контрасте и без мерцания.

ON SPRITE GOSUB — обрабатывает прерывания при совмещении спрайтов
ON SPRITE GOSUB номер строки

Оператор ON SPRITE GOSUB связан с аппаратной возможностью фиксировать прерывания в
случае, когда на двух или более плоскостях спрайты находятся в одних и тех же точках
экрана. Такая аппаратная возможность существует в ПЭВМ класса MSX.

Когда спрайты (вернее, их "темные пятна”) накладываются друг на друга в одной и той
же точке экрана, оператор ON SPRITE фиксирует такое событие и обрабатывает его программ­
ным путем, передавая управление подпрограмме обработки прерывания.

OVER — задает наложение символов или точек
OVER п

п — имеет значение 0 или 1
Оператор OVER активизирует операцию наложения. В текстовом режиме при записи в пози­
цию на экране символа старое значение удаляется. При использовании OVER 1 новый символ
накладывается на старое изображение.

При использовании OVER в графических операторах цвет точки изменится. Например:

PLOT O,O:DRAW OVER 1;250,175
PAINT - закрашивает область экрана, ограниченную замкнутым контуром

PAINT [STEP](X,Y)[.цвет закраски[.цвет границы]]
STEP — указывает координаты относительно последней точки;
X,Y - координаты точки в пределах области, которая будет закрашиваться; могут быть

заданы в абсолютной или относительной форме;
цвет закраски - номер цвета закраски;
цвет границы - номер цвета изображения границы области.

Закраска контура начинается с точки (X,Y), которая может находиться в произвольном месте
внутри контура, но не на его границе. Закраска производится заданным цветом до достиже­
ния границы области. Если координаты точки находятся вне контура, будет закрашиваться
весь экран, за исключением замкнутого контура.

Как правило, PAINT работает совместно с другими операторами, позволяющими строить
контур (см. CIRCLE, DRAW, LINE).

Если операнды задания цвета не указаны, то по умолчанию действуют цвета, установлен*
ные оператором COLOR. Оператор PAINT присутствует во всех графических версиях языка
Бейсик, кроме Бейсик-АГАТ и Бейсик-Спектрум+2. Например (Бейсик-КОРВЕТ):

10 COLOR 1,7
20 FOR N=1 ТО 3
30 CIRCLE(150,100),N*10,N
40 NEXT N
50 PAINT(150,100),3,1

Например (MSX-BASIQ:

10 COLOR 1,15
20 SCREEN 3
30 FOR N=3 TO 6

189

40 CIRCLE(129,96),N*10,N
50 NEXT N
60 PAINT(128,96),3,3
70 GOTO 70

PAPER — оператор, устанавливающий цвет фона

PAPER число

число — числовое выражение от 0 до 9.
В соответствии с образами, введенными в Беисик-Спектрум+2, рисуют всегда на "бумаге”
"чернилами”. "Бумага” (PAPER) — это задний фон. Весь экран разделяется на позиции (клет­
ки), в которых рисуют символы. Таких клеток может быть 24 х 32 = 768.
Оператор PAPER устанавливает цвет фона одним из 8 цветов (0 - 7), цвет 8 - прозрачный, цвет
9 - контрастный. Например:

INK9:PAPER8:PRINT AT(0,0);:FOR n=l TO 1000:PRINT
n:NEXT n

PCLS — очищает видеопамять
PCLS

Действие оператора аналогично действию оператора CLS, но производится оно над графической
информацией. Видеопамять очищается цветом заднего фона, графическая информация на
экране исчезает.

PLOT - рисует точку на экране
PLOT X,Y

X,Y — координаты точки в разрешенном диапазоне.
Рисует точку на экране с координатами (X,Y). Цвет точки устанавливается отдельными
операторами (см. COLOR, PAPER, INK, RIBBON).

В случае выхода координат точки за заданные пределы выводится сообщение INTEGER
OUT OF RANGE (Аргумент вне диапазона). Имеется в Бейсик-АГАТ и Бейсик-Спектрум+2.

Например:

10 FOR №0 ТО 255
20 PLOT N,88+80«SIN(N/128*PI)
30 NEXT N

PLOT TO — строит отрезок прямой или ломаной линии

PLOT ТО X,Y

PLOT XIY1 ТО X2Y2

PLOT X1Y1 TO X2Y2 TO X3Y3...

XnYn — координаты точки.
Строится отрезок прямой с началом в текущей точке (PLOT ТО X,Y) или в точке, заданной
координатами (Xi,Yi), и с концом в точке, заданной координатами (Xn,Yп). х

Возможно построение ломаной линии из ш отрезков. Имеется только в Бейсик-АГАТ.

190

POINT - функция, с помощью которой считывается цвет точки
Y=POINT(X,Y)

X.Y - координаты точки в абсолютной форме.
Функция позволяет считать цвет точки и передать номер цвета вызывающему оператору. Если
точка лежит вне экрана, то передается значение — 1. В остальных случаях передается номер
цвета из установленного диапазона (0 ... 7 в Бейсик-КОРВЕТ, 0 ... 15 в MSX-BAS1C, в BAS1CA

О... 2 в среднем разрешении и 0 или 1 в высоком).
В Бейсик-Спектрум+2 функция POINT передает в программу только 0 или 1; 0 - в случае,

если графическая точка цвета "бумаги”, и 1, если графическая точка цвета ’’чернил” (см.
PAPER, INK).

Выводится сообщение об ошибке INTEGER OUT OF RANGE (В), если 0 > X > 255 и
О > Y > 175.

Аналогом POINT в Бейсик-АГ АТ является функция SCRN(X,Y). Функция обычно
используется для проверки достижения определенной области на экране или для проверки
наличия точки на экране.

Например:

10 IF POINT (1,1)<>0 THEN PRESET(1,1) ELSE
PSET(I,1)

PRESET - удаляет точку на экране дисплея
PRESET [STEP](X.Y)[.цвет]

X,Y — координаты точки на экране;
' цвет — числовое значение в заданном диапазоне.

Что означает удалить точку на графическом экране? Для этого существует две возможности:
дать ей цвет заднего фона или сменить в данной точке цвет заднего фона на другой. Обе эти
возможности реализует оператор PRESET.

Если операнд цвета не указан, применяется по умолчанию цвет заднего фона. Если
значения цвета выходят за пределы разрешенного диапазона, выводится сообщение Illegal
function call (Неверный функциональный вызов).

Если координаты точки заданы вне области экрана, то не производится никаких дейст­
вий и не выводится сообщение об ошибке.

PSET — рисует точку в заданном месте экрана заданным цветом
PSET [STEP](X,Y)[,цвет]

X,Y — координаты точки экрана, в которой необходимо нарисовать графическую toukv .
могут задаваться в абсолютной или относительной форме;

цвет — числовое значение в заданном диапазоне.
Оператор позволяет нарисовать точку в произвольном месте экрана. Если операнд цвет не
указан, принимается по умолчанию цвет переднего фона.

Если значение цвета выходит за пределы разрешенного диапазона, выводится сообщение
Illegal function call (Неверный функциональный вызов). Если координаты точки заданы вне
области экрана, то не производится никаких действий и не выводится сообщение об ошибке.

Например:

10 RKM "Установите режим"
20 FOR N=100 ТО 120
30 FOR М=80 ТО 100
40 PSET(M.N)
50 NEXT M.N

J 91

60 FOR N=100 TO 120
70 FOR M=80 TO 100
80 FRESET(X'Y)
90 NEXT M
100 NEXT N
110 GOTO 110

PUT — оператор воспроизводит на экране изображение, которое хранится в числовом
массиве

POT(X.Y).имя массива[.действие] '
X,Y — координаты левого верхнего угла передаваемого на экран изображения. Задается

в абсолютной или относительной форме;
имя масеива — имя области памяти, которая содержит передаваемую информацию;
действие - одно служебное слово из следующих: PSET, PRESET, XOR, OR, AND.

Оператор PUT является парным оператору GET. С помощью этих двух операторов можно
создавать динамическую графику. Процесс основан на управлении передвижением прямо­
угольных фрагментов, состоящих из ’’светлых” и "темных” пятен. При этом впечатление
движения создается последовательной сменой операторов PUT и GET.

Оператор PUT воспроизводит на экране изображение, которое хранится в числовом
массиве, созданном оператором GET. Эта картина, представленная числовым массивом, может
быть передана в любое место экрана. Каким способом будет воспроизведена эта картинка на
экране? Это определяет операнд действие.

Самый простой способ — использование служебного слова PSET. В этом случае картинка
будет воспроизведена точно в том виде, в котором она сохранилась оператором GET.

При использовании служебного слова PRESET цвета всех точек картинки будут заменены
на противоположные. Это означает, что цвет 0 заменяется на 3, и наоборот, а цвет 1 заменяется
на 2, и наоборот (в среднем разрешении).

В обоих указанных выше действиях старый цвет точек экрана, на который выводится
картинка, игнорируется.

При использовании служебных слов AND, OR и XOR производятся соответствующие
логические операции над точками ”старой” картинки (уже существующей на экране) и новой
(из массива, созданного оператором GET).

Правила этих логических операций следующие (в среднем разрешении, поэтому номер
цвета 0 — 3):

AND XOR

Номер
цвета

Значение точек
массива

Номер
цвета

Значение точек
массива

Номер
цвета

Значение точек
массива

0 1 2 3 0 1 2 2 0 1 2 _3
0 0 0 0 0 0 0 1 2 3 0 0 1 2 3
1 0 1 0 1 1 1 1 3 3 1 1 0 5 2
2 0 0 2 ’ 2 2 2 3 2 3 2 2 3 0 1
3 0 1 2 3 3_____ 3 3 3 3 3_____ 3 2 1 _0

Как видно из этих таблиц, AND используется только для пересылки картинки, если эта
картинка уже существует "под” передаваемым изображением; OR используется для суперпо­
зиции передаваемой картинки, существующие точки сохраняются. Особое значение имеет
действие XOR:
192

если картинка накладывается на такое же изображение, то это изображение удаляется с
экрана (восстанавливается цвет фона);

если проделать предыдущую операцию дважды, то прежнее изображение восстанавливается;
при изменении координат (X,Y) и повторении действия XOR создается иллюзия движения

картинки по экрану;
если никакое действие в операторе не указано, по умолчанию выполняется действие XOR.
Если передаваемая картинка слишком велика, появляется сообщение Illegal function call

(Неверный функциональный вызов), конечная точка не устанавливается.

PUT SPRITE — управляет размещением графического объекта
PUT SPRITE Nспрайта[,[STEP](X,Y)[,цвет][спробраз]

N спрайта — арифметическое выражение, задающее один из 32 спрайтов движущихся
изображений, с которыми будет производиться работа;

STEP — обеспечивает возможность относительной адресации;
X — арифметическое выражение, значение которого определяет Х-координату (столбец),
—37768 <=Х< =32767;

Y — арифметическое выражение, значение которого определяет Y-координату (строку),
—37768<=Y< =32767;

цвет — арифметическое выражение в диапазоне 0 — 15 или 0 — 255 (в зависимости от
значения параметров оператора SCREEN), значение которого определяет, какой из шаблонов
(образов), созданных оператором SPRITES, связывается со спрайтом;

спробраз — описание шаблона графического образа.
Оператор PUT SPRITE действует со спрайтами (движущимися изображениями), а также с
образами, созданными с помощью оператора SPRITES.

Оператор PUT SPRITE устанавливает связь образа со спрайтом. Его цвет и определяет
местоположение на экране. Допускается 32 видимых спрайта с ограничением не более 4
спрайтов в одной строке.

Координаты X и Y всегда вычисляются по модулю размера экрана, причем точка (X,Y)
задает верхний левый угол спрайта.

Значение координат может быть отрицательным, при этом спрайт размещается так, что он
будет виден на экране частично.

Например, при Y=—1 спрайт поместится в самую верхнюю часть экрана, еще меньшее
значение совсем выведет спрайт за пределы экрана. Спрайт двойного размера (32 х 32) пол­
ностью выйдет за пределы экрана при Y=— 33.

Операнд цвет задает цвет "темных пятен” спрайта. По умолчанию присваивается цвет,
совпадающий с цветом образа, при этом надо иметь в виду, что спрайт всегда одноцветный.
Размерами спрайтов управляет оператор SCREEN. Сам спрайт можно представить в виде
картинок на прозрачном носителе (типа слайда), которые накладываются на экран с графи­
ческим изображением и текстом. При этом как бы существует столько плоскостей наложения,
сколько имеется спрайтов. Так, спрайт с номером 31 будет наложен прямо на изображение на
экране, спрайт с номером 30 — на спрайт 31, поэтому спрайт с более низким номером имеет
более высокий приоритет и накладывается всегда на спрайт с более высоким номером. Таким
образом, удаляться с экрана в качестве лишнего спрайта будет спрайт с более высоким но­
мером.

Разноцветные картинки могут быть получены двумя способами:
1. Создать картинку из нескольких спрайтов (используя оператор SPRITES, в котором с

помощью конкатенации объединяются несколько шаблонов разного цвета, например, разные
193

7 — 6301

цвета рубашки и брюк, а также разные цвета рук и ног бегущего человека) и рассматривать
этот спрайт как целое или как несколько спрайтов, находящихся всегда рядом.

2. Накладывать один спрайт на другой в разных плоскостях. Однако в этом случае нельзя
использовать оператор ON SPRITE GOSUB.

Для ускорения работы со спрайтами часто используется оператор VDP. Использование
таблиц шаблонов спрайтов и таблиц цветов спрайтов может быть ускорено с помощью опера­
торе VPOKE.

Оператор PUT SPRITE имеется только в версии MSX-BASIC. Например:

10 SCREEN 2,0
20 COLOR 15,1,1
30 CLS
40 SPRITES(0)=CHR$(126)+STRINGS(6,CHRS(255)+

CHRSU26))
50 SPRITE$l=STRING$(3,CHRS0))+CHRS(24)+CHRS(24)4

STRINGS(3,CHRS(0))
60 FOR 1=0 TO 6.28 STEP 0.2
70 X^XH.5
80 Y=Y+1
90 X1=30*COS(I)
100 Yl=30*SIN(I)
110 X2-15*COS(I)
120 Y2 15*SIN(I)
130 PUT SPRITE 0,(X,Y),ll,0
140 PUT SPRITE 1,(Xl+X,Yl+Y),9,1
150 PUT SPRITE 2,(X2+X,Y2+Y),15,1
160 NEXT
170 GOTO 60

Данный пример демонстрирует движение планет вокруг Солнца. Строка 10 устанавливает
черный задний фон и белый передний. Строка 40 (спрайт 0) - это Солнце. Строка 70 и 80 -
Солнце помещается на экран. Строки 90 —120 — установка координат X и Y для двух планет.
Строка 130 - перевод Солнца на новую позицию. Строки 140 и 150 - перевод планет 1 и 2 на
новые позиции.

RELOC - оператор, устанавливающий начало координат при работе с графическими
операторами

RELOC (X,Y)
X,Y — координаты начальной точки.

Оператор устанавливает ” локальную” систему координат, в которой в дальнейшем будут
действовать все графические операторы. Это позволяет выделить области внутри графического
эк •'ан?, как бы графические ’’окна”, в которых происходят локальные действия, не затраги­
вающие других частей графического экрана.

Например:

10 RELOC (100,100)
20 LINE (0,0)-(200,200),4,BF

Линия будет рисоваться в абсолютных координатах (0,0), (200,200), но начальная точка отсчета
будет находиться в точке 100,100.

194

RIBBON — устанавливает код цветности
RIBBON=n

n — выражение от 0 до 7.
Оперотор RIBBON устанавливает код цветности выводимых в текстовом режиме символов в
соответствии с таблицей цветов.

ROT - оператор, устанавливающий угол поворотавот=х
Оператор ROT устанавливает угол поворота графических изображений по часовой стрелке.
Образы должны быть заданы в таблице шаблонов. Значение берется по модулю 64. Нуль — от­
сутствие угла поворота. При s16; 32; 48 угол поворота составляет 90°; 180°; 270° соответственно.
Значение ROT связано со значением оператора SCALE.

При SCALE-1 все четыре значения ROT сохраняются. При SCALE-2 возможны восемь
значений ROT - 0, 8, 16, 24, 32, 40, 48, 56.

SCALE — установка масштаба
SCALE=n

п — изменяется от 1 до 255.
Устанавливает масштаб воспроизведения графических изображений, которые должны быть
заданы оператором DRAW или XDRAW. При SCALE-1 воспроизводится имеющееся изображе­
ние, при SCALE=2 точка увеличивается вдвое и т. д.

SCREEN — оператор установки текстового или графического режима (в форматах 1 - 3) и
функция передачи в программу значения символа знакоместа (в форматах 4 и 5)
Формат 1 (только для BASICA).

SCREEN [режим][,[цветность][[,активная страница]

[,отображаемая страница]]]

Фермат 2 (только для MSX-BASIC).

SCREEN [,режим][,размер спрайта][,звук клавши]

[,скорость ленты][,печать]

Формат 3 (только для Бейсик-КОРВЕТ).
SCREEN [N][»M][»R]

Формат 4 (только для BASICA).
Z=SCREEN ((Y,X)[fZ])

Формат 5 (только для Бейсик-Спектрум+2).
Z=SCREENS (X,Y)

Формат 1:
режим — целочисленное выражение, равное 0 — 3;
цветность - числовое выражение;
активная страница — целочисленное выражение со значениями 0 — 3 при ширине

экранной строки 80 символов и 0 — 7 при ширине экранной строки 40 символов;
отображаемая страница — целочисленное выражение с теми же значениями, что и

активная страница.
195

Параметр режим задает режим работы дисплея:
О — символьный режим;
1 — графический режим среднего разрешения (320 X 200 точек);
2 — графический режим высокого разрешения (640 х 200 точек).

Параметр цветность включает или отключает цветное изображение и может принимать два
значения: 0 ("нуль”) и U ("не нуль”). Значение "нуль” в символьном режиме отменяет цвет­
ность, а в графическом режиме среднего разрешения означает поддержку цветности. Соот­
ветственно значение "не нуль" в графическом режиме означает отмену Цветности, а в символь­
ном — включение цветности. В режиме высокого разрешения цветность не имеет значения,
изображение всегда черно-белое.

Параметр активная страница задает страницу видеопамяти, на которую будет выводиться
информация, а параметр отображаемая страница — страницу видеопамяти, содержимое
которой выводится на экран. Оба параметра допустимы только в символьном режиме.

При выполнении оператора устанавливается новый режим дисплейного процессора, экран
чистится и устанавливается передний фон белый, а задний фон — черный.

Если параметр режим не указан, изменяется только изображение в соответствии с содер­
жимым отображаемой страницы.

В операторе может отсутствовать любой параметр. Для всех параметров, кроме отобража­
емой страницы, устанавливаются старые значения. В случае ошибочной установки диапазонов
параметров выводится сообщение Illegal function call (Неверный функциональный вызов).

Например:
10 SCREEN 0,1,0»О

Установлен символьный режим без цветности, активная и отображаемая страницы имеют один
и тот же номер 0.

Например:
10 SCREEN 1,1

Установлен графический режим среднего разрешения; изображение черно-белое.
Например:

10 SCREEN 2,,0,0
Установлен режим высокого разрешения.

Например:

10 SCREEN 1
20 COLOR 2,0

Установлен режим среднего разрешения, зеленый фон и палитра 0.
Формат 2. Установка режима графической системы и ряда устройств ввода-вывода:
режим — арифметическое выражение от 0 до 3;
размер спрайта - арифметическое выражение от 0 до 3;
звук клавиши — арифметическое выражение от 0 до 255;
скорость ленты — арифметическое выражение от 0 до 255;
параметр печати - арифметическое выражение от 0 до 255.

Любой параметр может отсутствовать, но вместо него ставится запятая.
Оператор SCREEN устанавливает текущий режим экрана и некоторые важные параметры

ввода-вывода. Если какой-либо параметр выходит за допустимые пределы, выводится
сообщение Illegal function call (Неверный функциональный вызов), в противном случае
устанавливается соответствующий параметр. Если параметр не указан, то он не изменится,
принимается старое значение.
196

Параметр режим. Устанавливает режим работы экрана. Если параметр задан, то происхо­
дит очистка экрана и производится сброс всех регистров.

Существует четыре режима работы экрана:
1. SCREEN 0 - только текст, бордюр отсутствует, 40 строк по 24 символа, спрайты недо­

пустимы, монохромный режим;
2. SCREEN 1 — действует по умолчанию; 32 строки по 24 символа, спраиты допустимы,

группы по восемь символов на экране могут иметь цвет переднего или заднего фона;
3. SCREEN 2 — графический режим; текст выводится на экран в графическом изображе­

нии; графический экран размером 256 х 192 графических точек; собственный цвет (один из
двух) могут иметь только группы из восьми графических точек; спрайты допустимы; в этом
режиме наиболее высокое разрешение. #

4. SCREEN 3 — графический режим, текст выводится на экран в графическом изображе­
нии, размер графического экрана 64 х 40 графических точек, каждая графическая точка имеет
свой собственный цвет (от 0 до 15); спрайты допустимы.

Только при работе экрана в текстовом режиме (SCREEN 0 и SCREEN 1) допустимо
применение оператора PRINT и INPUT. Только в графическом режиме (SCREEN 2 или SCREEN
3) экран воспринимает графические команды и операторы; допустим также вывод текста в
графическом изображении с помощью специального устройства вывода ”GRP:”. (Необходимо
также иметь в виду, что оба графических экрана и все операции со спрайтами используют одну
и ту же координатную сетку 256 х 192.)

Следует отметить, что только SCREEN 0 поддерживает вывод символов размером 6x8
графических точек, режимы SCREEN 1* — SCREEN 3 ирпользуют размер 8x8. Только режим
SCREEN 0 не допускает спрайтов, цветных границ или какого-либо другого индивидуального
цветового управления (SCREEN 1 имеет управление цветом для группы символов, для чего
необходимо использовать оператор VPOKE). Для режимов SCREEN 0 и SCREEN 1 можно
использовать оператор WIDTH.

Параметр размер спрайта. Режим экрана SCREEN 0 не допускает спрайтов. Для осталь­
ных режимов параметр размер спрайта принимает следующие значения:

0 - все спрайты 8x8 графических точек, каждый занимает 8 байт данных, допустимо 256
спрайтов;

1 - аналогично 0, за исключением того, что спрайты выводятся на экран вдвое большего
размера;

2 — все спрайты размером 16x16 графических точек, каждый занимает 32 байта данных,
допустимо 64 спрайта;

3 — аналогично 2, за исключением того, что спрайты выводятся вдвое большего размера.
Все спрайты должны быть одного и того же размера по числу байтов и масштабу. Эти

значения определяют размеры массива, выбираемого из таблицы, находящейся в видеопамяти
при задании псевдопеременной SPRITE$().

Параметр звук клавиши. Если это значение было установлено в 0, то нажатие клавиш
будет происходить без звукового сопровождения; любое другое значение (например, 1)
вызовет звуковое сопровождение нажатия клавиш. По умолчанию принимается значение,
равное 0.

Параметр скорость ленты. Определяет скорость вывода информации (в бодах). Если
значение параметра равно 1, то устанавливается наиболее надежная скорость передачи 1200 бод
(по умолчанию), если 2, то скорость становится 2400 бод, т. е. в два раза быстрее. Можно
изменить скорость вывода командой CSAVE.

197

Параметр печати. Этот параметр устанавливает тип печатающего устройства. Если пара­
метр равен 0, то это печатающее устройство (принтер) совместимо со стандартом MSX и будет
распечатывать каждый графический символ из набора MSX. Если параметр не равен 0, то это
устройство не совместимо с системой MSX и при печати графические символы преобразуются в
пробелы. По умолчанию этот параметр равен 0.

При обращении к оператору SCREEN могут быть заданы все параметры или любая их
комбинация; если параметры не указаны (заменены запятыми), старые значения остаются
неизменными.

Важное назначение оператора SCREEN — это определение типа и размера спрайта. Можно
изменить размер спрайта в любой момент, но это удалит из памяти шаблон спрайта. Точно так
же можно использовать SCREEN для выбора режима и это не повлияет на спрайты, но это
удалит текущее содержимое экрана.

Надо иметь в виду, что в режимах SCREEN 0,1 начальный цвет экрана устанавливается
оператором COLOR, ширина текста — оператором WIDTH, положение курсора устанавливается
с помощью POS(), CSRLIN и LOCATE. Действует оператор PRINT. Графические операторы в
этих режимах не действуют.

В режимах SCREEN 2,3 оператор PRINT не действует. Возможно использование всех
графических операторов (LINE, DRAW, CIRCLE и т. п.). Цвета экрана устанавливаются как
оператором COLOR, так и некоторыми графическими операторами. При возникновении
ошибки в операторе SCREEN появляется сообщение Illegal function call (Неверный функцио­
нальный вызов). Такая же ошибка появляется при использовании графических операторов в
режимах SCREEN 0 и SCREEN 1 или при использовании SPRITE в режиме SCREEN 0.
Данный формат используется в MSX-BASIC. Например:

10 COLOR 1,15
20 SCREEN 1
30 FOR N=192 TO 255
40 PRINT CHR»(N);
50 NEXT

Высвечиваются на экране символы русских букв.
Формат 3. Переключает графические страницы памяти и устанавливает текстовый режим

расширенных символов:
N - номер графической страницы отображения, целочисленное выражение от 0 до 3;
М — номер активной графической страницы, целочисленное выражение от 0 до 3;
R - целочисленное выражение, принимающее значение 0 или 1.

Особенностью ПЭВМ ПК8020/10 является аппаратно реализованная возможность совмещения
вывода текста и графики на экран. Поэтому оператор SCREEN Бейсик-КОРВЕТ, реализован­
ный на ПЭВМ ПК8020/10, не нуждается в средствах переключения режимов. Другой особен­
ностью ПК8020/10 является возможность работы с четырьмя графическими страницами,
каждая размером 48 Кбайт (три слоя по 16 Кбайт). Для переключения их используются пара­
метры N и М.

Параметр R используется для расширения символов, выводимых на экран (32 символа
вместо 64).

В случае, если значения параметров заданы неверно, выводится сообщение НЕВЕРЕН
ВЫЗОВ ФУНКЦИИ.

Например:
10 SCREEN 0,0
20 COLOR 4,3 ;рисуется и отображается линия в

нулевой странице
198

30 LINE-(100,200),5
40 SCREEN 0,1
50 CIRCLE(100,200),100 ; рисуется окружность в

_ первой странице
60 SCREEN 1,1 ; отображается первая страница
70 SCREEN ,,1 ; задается режим расширенных

символов

Формат 4. Функция SCREEN передает в программу код символа, находящегося в указан­
ном знакоместе:

Y - числовое выражение от 1 до 25;
X — числовое выражение от 1 до 40 или от 1 до 80 в зависимости от ширины строки

экрана, заданной оператором WIDTH;
Z - числовое выражение, по умолчанию Z=0.
Функция SCREEN действует как в текстовом, так и в графическом режимах. В тексто­

вом режиме имеются два варианта работы функции, в зависимости от значения Z. Если Z=0, то
результатом работы функции будет код символа (в ASCII или КОИ-8), находящегося в зна­
коместе с координатами (X,Y). Если Z<>0, результатом работы функции является атрибут
цвета (АЦ) — целое число в диапазоне от 0 до 255. Оно расшифровывается следующим образом:

(АЦ MOD 16) — цвет переднего фона;
((АЦ — цвет переднего фона)/16)МОО 128 — цвет заднего фона;
АЦ > 127 — ИСТИНА (—1), если символ мерцает, и ЛОЖЬ (0), если не мерцает.
В графическом режиме функция SCREEN действует так же, как и в символьном, если в

точке (X,Y) находится символ. Если в этой точке находится графическое изображение (точка,
линия и т. п.), то в программу передается нуль.

Функция SCREEN имеется во всех версиях языка Бейсик для PC IBM и ЕС 184Х.
Например:

10 Х=SCREEN(10,10)
20 X=SCREEN(1,1,1)

Если в знакоместе (10,10) стоит символ А, то Х=65. В строке 20 передается атрибут цвета
символа, находящегося в верхнем левом углу экрана.

Формат 5. Функция передает значение символа, считанного в заданных координата^
X - номер строки;
Y - номер столбца.
Функция SCREENS предназначена для чтения символа в заданном месте экрана. Функ­

ция не может считывать знаки, определенные пользователем, графические символы, а т жже
строки, нарисованные с помощью PLOT,DRAW или CIRCLE. Попытка считать вышеуказанные
символы приведет к выводу нуля.

Например: ___
10 PRINT АТ 0,0 ; SCREENS(11,16);

Будет считан символ в центре экрана и он же будет выведен в верхнем левом углу экрана.

SCRN — функция, с помощью которой считывается цвет точки (Бейсик-АГАТ)
Z=SCRN(X,Y)

X,Y — координаты точки в абсолютной форме.
Функция позволяет считать цвет точки и передать номер цвета вызывающему оператору.
Номер цвета находится в разрешенном диапазоне. В режиме низкого разрешения координаты

199

точки должны быть в диапазоне 0...47. Для разных версий Бейсик-АГАТ существуют особен­
ности задания X и Y координат в функции SCRN.

SPRITES — позволяет установить и проверить шаблон спрайта (псевдопеременная)

SPRITES(АВ)=строка

L$=SPRITES(АВ)

АВ — арифметическое выражение в диапазоне 0...255 для SCREEN 0 или SCREEN 1 и в
диапазоне 0...63 для SCREEN 2 или SCREEN 3;

строка — любое строковое выражение.
Псевдопеременная SPRITES предоставляет доступ к шаблонам спрайтов, находящимся в

видеопамяти. Допустимо в этой области видеопамяти 64 32-байтных спрайта или 256 8-байт-
ных. Число и размер спрайтов устанавливается оператором SCREEN (см. SCREEN формат 2).
Размер области видеопамяти, отводимой под спрайты составляет 2 Кбайта.

Работает переменная SPRITES следующим образом.
Сначала вычисляется строковое выражение из параметра строка и его байты пересылают­

ся в соответствующий значению АВ (значение, равное номеру' спрайта) образ спрайта. Если
строка слишком велика, то она укорачивается, если коротка — дополняется справа байтами
нулей до длины спрайта.

Если SPRITES (АВ) используется в каком-либо выражении, то в программу передается 8
или 32 байта содержимого видеопамяти, соответствующего значению арифметического выра­
жения (номеру спрайта).

Использование SPRITES приведем на примере. Представим себе, что мы хотим получить
следующую картинку на экране:

Картинка состоит из 8 строк следующего вида: 01000001, 01010101 и т. д. Единицами (X на
картинке) обозначены темные пятна, нулями — светлые пятна (см. раздел 6.4). Заметим, что
нулевая строка — это двоичный код символа А, вторая строка — символа U и т. д. Например:
200

10 COLOR 1,15
20 SCREEN 1
30 FOR N=1 TO 8
40 READ A$
50 A$=*'AB“+A$
60 C$=C$+CHR$(VAL(A$))
70 NEXT N
80 SPRITE$(1)=C$: PRINT SPRITE$(1)
90 DATA 01000001
100 DATA 01010101
110 DATA 01000001
120 DATA 01010101
130 DATA 01000001
140 DATA 01010101
150 DATA 01000001
160 DATA 01010101

В примере все картинки записаны в операторах DATA (см. DATA, READ), строки 90-160.
В строках 30—70 происходит чтение восьми строк спрайта, конкатенация с двоичным

признаком — &В и числа преобразуются из строкового выражения в числовой массив спрайта 1
(строка 60). Можно было написать следующее:

SPRITE$(1) = “ AUAUAUAU"
Однако такое написание требует развитого образного мышления, поэтому картинка

спрайта обычно рисуется на бумаге. Использование массивов, созданных с помощью SPRITES,
см. на примере оператора PUT SPRITE.

SPRITE ON/OFF/STOP - оператор управления процессом прерывания при совмещении
(**столкновении**) спрайтов

ON

SPRITE OFF

STOP
Оператор SPRITE ON/OFF/STOP управляет процессом прерывания при совмещении

спрайтов. Когда задан SPRITE ON, любое совмещение спрайтов (см. ON SPRITE GOSUB)
вызывает прерывание (по окончании выполнения текущего оператора) и затем переход к
соответствующей подпрограмме. Автоматически устанавливается SPRITE STOP и, когда
происходит возврат из подпрограммы, вновь устанавливается SPRITE ON. Оператор SPRITE
STOP временно отключает обработку прерываний. Если ’’столкновение” происходит, то этот
факт фиксируется, но никаких действий не происходит, однако, если позже будет выпол­
няться SPRITE ON, то будет выполняться ранее зафиксированное прерывание.

Оператор SPRITE OFF задает режим игнорирования любого ’’столкновения” спрайтов,
действует до ближайшего ON SPRITE. Определение номеров спрайтов, участвующих в ”столк­
новении”, производится программно.

Например:

10 ON SPRITE GOSUB 110
20 SCREEN 2,0
30 SPRITE$(0)=STRING$(8,CHR$(255))
40 SPRITE$(1)=STRING$(8,CHR$(255))
50 SPRITE ON
60 FOR 1=10 TO 240

201

70 PUT SPRITE 0,(1,100),11,0
80 PUT SPRITE 0,(250-1,100),15,0
90 NEXT I
100 GOTO 50
105 REM “Подпрограмма обработки столкновения”
110 SPRITE OFF
120 BEEP
130 RETURN

В примере два спрайта: желтый и белый. Когда они сталкиваются, работает подпрограмма
(строка ПО). Оператор SPRITE OFF позволяет избежать зацикливание подпрограммы, посколь­
ку во время ее выполнения будут продолжаться * столкновения* спрайтов.

VDP — функция, обеспечивающая операции чтения и записи в восемь регистров БИС
дисплейного процессора (VDP)

X-VDP(номер регистра)

VDP(номер регистра)-числовое выражение

номер регистр* - числовое выражение от 0 до 7;
числовое выражение - числовое выражение от 0 до 255..

Дисплейный процессор ПЭВМ типа MSX имеет 8 регистров только для записи и 1 регистр
только для чтения. Доступ к этим регистрам осуществляется с помощью функции VDP.

Регистры 0 — 7 позволяют записывать информацию, например VDP(1)=2 (в регистр 1
заносится число 2). Считать эту информацию непосредственно нельзя. Однако копия этой
информации находится в системной области ОЗУ. Регистр 8 можно только прочитать, например
PRINT VDP(8). Ошибки при записи в VDP приводят к зависанию компьютера, поэтому нужна
особая тщательность при использовании этой функции.

Назначение регистров VDP:
Регистр 0 - два значащих бита 0 и 1:

бит 1 — предназначен для выбора режима экрана и работает с регистром 1 (обознача­
ется М3).
Регистр 1 - семь значащих битов 0,1, 3,4,5, 6, 7:

бит 0 - управление величиной графической точки (1X1 или 2x2);
бит 1 - 0 - спрайт 8x8 графических точек и 1 - спрайт 16 х 16 графических точек;
бит 3 - обозначается М2, используется для выбора режима экрана;
бит 4 - обозначается Ml, в комбинации с М2 и М3 управляет выбором режима экрана:

Ml М2 М3
ООО - текстовый режим (1)
0 0 1 - высокое разрешение (2)
0 10 - многоцветная графика (3)
10 0 - текстовый режим (0)

бит 5 - 0 - запрет прерываний VDP и 1 - разрешение прерываний VDP;
бит 6 - 0 - запрет высвечивания экрана и 1 - разрешение высвечивания экрана;
бит 7 - выбор размера видеопамяти.

Регистр 2 - четыре значащих бита (0 - 3). Эти биты определяют старшие 4 бита из 14-битового
адреса таблицы имен.
Регистр 3 — восемь значащих битов. Определяет адрес таблицы цветности (старшие 8 бит из
14-битового адреса).

202

Регистр 4 - три значащих бита (0 - 2). Определяет 3 старших бита (из 14-битового адреса) для
таблицы шаблонов, символов или таблицы генератора мультицветности (в зависимости от
режима).
Регистр 5 — семь значащих битов (кроме 8). Определяет адрес таблицы атрибутов спрайтов (7
старших битов из 14-битового адреса).
Регистр 6 - три значащих бита (0 - 2). Определяет три старших бита для 14-битового адреса
таблицы шаблонов спраитов.
Регистр 7 — состоит из двух частей. Первая часть (биты 0-3) определяет цвет заднего фона, а
вторая часть (биты 4 - 7) - переднего фона в текстовом режиме.
Регистр 8:

биты 0 - 4 - содержат номер пятого спрайта на линии;
бит 5 — флаг устанавливается при совмещении спрайтов;
бит 6 - флаг устанавливается в конце растра;
бит 7 — флаг прерывания при совмещении спрайтов или наличии пятого (лишнего)

спрайта на линии.

VPEEK - функция для чтения информации из видеопамяти
X=VPEEK(адрес)

адрес - числовое выражение от 0 до 16383.
Функция позволяет читать содержимое видеопамяти. Содержимое любой ячейки от 0 до 16383
может быть прочитано только с помощью VPEEK, так как эта память недоступна для других
инструкций. Обычно VPEEK используется совместно с BASE(O) и VPOKE. Если адрес находится
вне области видеопамяти, выдается сообщение Illegal function call (Неверный функциональ­
ный вызов).

Например:

10 COLOR 1,15
20 SCREEN О
30 FOR N=1 ТО 8
40 PRINT VPEEK(2048+65*8+N-l)
50 NEXT N

VPOKE - служит для записи информации в видеопамять

VPOKE адрес,данные

адрес - числовое выраже^и* от 0 до 16383;
данные — числовое выражение от 0 до 255.

Оператор VPOKE позволяет поместить информацию в любой байт видеопамяти. Если этот байт
находится в таблице экрана, то сразу высветится результат. Оператор VPOKE - единственный
способ поместить данные в видеопамять. Если параметры выходят за пределы диапазона, то
выводится сообщение Illegal function call (Неверный функциональный вызов).

Например:

10 SCREEN О
20 COLOR 1,15
30 FOR N=0 ТО 7 STEP 2
40 VPOKE 2048+32*8+N,170
50 VPOKE 2048+32*8+N+l,85
60 NEXT N

203

XDRAW — оператор, позволяющий рисовать произвольные изображения
XDRAW арифметическое выражение [AT X,Y]

Действие оператора аналогично действию оператора DRAW в формате 2 с той разницей, что
изображение воспроизводится цветом, дополнительным к цвету экрана.

6.5.2. Описание звуковых инструкций

ВЕЕР — оператор генерации звукового сигнала
Формат 1 (кроме Бейсик-Спектрум+2).

ВЕЕР
Формат 2 (только для Бейсик-Спектрум+2).

ВЕЕР t,f
Формат 1. Оператор вызывает звучание динамика. Как правило, частота звучания 800 Гц,

длительность звучания - 0,25 с.
Формат 2. Генерирует звуковой сигнал:
t — длительность (в секундах);
f - высота (в полутонах).
Оператор ВЕЕР вызывает звучание динамика. Высота задается от точки отсчета ноты С

(до) первой октавы, высота которой принята за 0. Прочие ноты в зависимости от этого располо­
жены ниже или выше этой ноты и будут иметь соответственно отрицательные или положитель­
ные значения. Каждой ноте октавы ставится в соответствие некоторое число с интервалом в
полтона между этими числами. Например:

10 FOR f=l ТО 8
20 READ note
30 ВЕЕР 0.5,note
40 NEXT f
50 DAT 0,2,4,5,7,9,11,12

PLAY — оператор генерации музыкальных фраз
Формат 1 (кроме Бейсик-Спектрум+2).

PLAY команда
Формат 2 (только для Бейсик-Спектрум+2).

PLAY строка
Формат 1:
команда — строковое выражение, состоящее из команд музыкального макроязыка.

Оператор PLAY позволяет создавать музыкальные фразы, записанные в строковом выраже­
нии. Как и в операторе DRAW, здесь использован "язык в языке” — музыкальный макроязык.
Использование этого языка позволяет создавать музыкальные фразы па ПЭВМ, держа перед
глазами общепринятую нотную запись.

Программа на музыкальном макроязыке состоит из стороки длиной 255 символов.
Каждая команда представлена одним или двумя символами. Команды пишутся подряд в
Бейсик-КОРВЕТ и Бейсик-Спектрум+2, в других версиях они могут быть разделены пробела­
ми. Ниже приведены команды музыкального макроязыка и их содержание:

A—G - звучит заданная нота (С - до, D - ре, Е - ми, F - фа, G - соль, А - ля, В - си);
f или + - после ноты обозначает диез;
— - после ноты обозначает бемоль;
Ln — устанавливает длительность каждой ноты: L1 — целая нота, L2 — половина, L4

— четверть и т. д.; т. е. действительная длительность ноты — это 1/п, где и изменяется от

204

1 до 64; длительность может быть указана за нотой, если необходимо изменить длительность
только одной ноты, например, запись А16 эквивалентна L16A;

MF — музыкальный передний фон; музыка (запрограммированная оператором PLAY
или SOUND) будет звучать на переднем фоне, т. е. каждая последовательная нота или звук не
зазвучит, пока не закончится предыдущая нота или звук; музыкальный передний фон — состо­
яние по умолчанию;

МВ — фоновая музыка; музыка будет звучать на заднем фоне, т. е. значение каждой
ноты или звука будут размещены в буфере, позволяющем программе продолжить выполне­
ние, пока музыка звучит на заднем фоне; одновременно может звучать до 32 нот или пауз;

MN - обычный режим воспроизведения звука, каждая нота звучит 7/8 времени,
заданного длительностью L;

ML — легато (legato), каждая нота звучит полный период, установленный длитель­
ностью L;

MS - стаккато (staccato), каждая нота звучит 3/4 времени, заданного длитель­
ностью L;

Nn — звучит нота п; аргумент п изменяется от 0 до 84; в семи возможных октавах
существуют 84 ноты; п=0 означает паузу;

On - октава; Установить текущую октаву; существует 7 октав: от 0 до 6; каждая октава
от ноты С до ноты В;

Рп - пауза; аргумент п изменяется от 1 до 64 и определяет длительность паузы тем же
способом, что и L;

Тп - темп (tempo); устанавливает число четвертей ноты в секунду; аргумент п изменяет­
ся от 32 до 255, по умолчанию 120;

Хстрока - выполняет заданную строку;
. - точка, указанная после ноты, заставляет ноту звучать как удлиненную, т. е. ее

длительность умножается на 3/2.
После ноты можно указать больше одной точки и длительность будет увеличиваться

соответственно. Например, "А...” будет звучать 9/4 заданной длительности L. Точки также
можно указывать после паузы Р. Во всех этих командах аргумента может быть константой,
например ”12”, или переменной, записанной как "-переменная”, где "переменная” - имя
переменной. Для звучания связанных нот можно соединять несколько записей.

Можно использовать команду X, чтобы запомнить мелодию в единой строке и вызывать
ее повторно с различными темпами или октавами из другой строки.

Например:

10 А$="ВВ-С"
20 В$-*'О4ХА$; ”
30 C$=*'L1CT5ON3N4N5N6’*
40 RLAY ”Р2ХА$;ХВ$;ХС$;"

В MSX-BASIC команды музыкального макроязыка несколько отличаются от ранее
описанных. В частности,

Rn — пауза (то же, что и Рп), по умолчанию п=4;
¥п — громкость (volume); аргумента изменяется от 0 до 15, по умолчанию 8;
Мп - модуляция, устанавливает период огибающей; аргумент п изменяется от 1 до 65535,

по умолчанию 255;
Sn — форма огибающей; аргумент п изменяется от 1 до 15, по умолчанию 1 (формы

огибающей, установленные этой командой, приведены на рис. 6.4).
205

Рис. 6.4

Пример смотри в гл. 7, программа ’’Танец
маленьких лебедей”.

Формат 2. Генерирует музыкальные фразы:
строка - строковое выражение, состоящее из

параметров.
В Бейсик-Спектрум+2 оператор PLAY исполь­

зует следующие параметры, задаваемые в строке:
a-g(A-G) - высота ноты в пределах текущей

октавы;
$ - после параметра знак строчной

переменной перед нотой как бемоль;
f — перед нотой как диез;
О - номер используемой октавы,

определяемой номером октавы (0-8);
1—12 — длительность используемых нот;
& — пауза;
_ - (подчеркивание) знак легато;
N - разделяет два числа;
V - уровень звука, определяемый

числом 0—15;
W - задание формы огибающей;
U - задание шума;
X — длительность шума, определяе­

мая числом 0 — 65535;
Т - темп музыки, определяемый

числом 60—240;
() - (скобки) указывает, что вклю­

ченная в скобки фраза должна повторяться;
!! — комментарии в строке;
Н - останов оператора PLAY:

М - номер канала интерфейса MIDI, определяемый числом 1—63
Y - включение каналов MIDI, затем следует код 1—16
Z — задание кода программирования MIDI, затем следует номер кода;
, — (запятая) разделитель голосов.
Например:

10 LET t$=”T120”
20 LET a$=t$+"o4cCcCgGgG"
30 LET b$="o6CaCc$bd$bD"
40 PLAY a$,b4

оператор PLAY

PLAY — функция для опроса состояния звукового канала
Y=PLAY (п)

п — числовое выражение от 0 до 3.
Образует информацию о состоянии звукового канала. Поскольку звуковой канал может
состоять из трех голосов, п может изменяться от 0 до 3. Если п=0, то сообщается, есть ли еще в

206

буфере информация о несыгранных звуках. Если п=1, 2 или 3, то образуется -1, если очередь
еще в обработке, т. е. звучит соответствующий голос, иначе — 0.

SOUND - оператор генерации звука
Формат 1 (только для BASICA).

SOUND частота, продолжительность
Формат 2 (только для Бейсик-КОРВЕТ и MSX-BASIC).

SOUND регистр,значение
Формат I:
частота - частота в герцах; числовое выражение от 37 до 32767;
продолжительность - числовое выражение от 0 до 65535, задается аппаратно во внутрен­

них квантах времени (1000/18,2 мс).
Оператор позволяет генерировать любой звук, однако желательно использовать темперирован­
ную гамму. Когда с помощью оператора SOUND генерируется звук, выполнение программы
продолжается до тех пор, пока не появится другой оператор SOUND или END. Если продолжи­
тельность нового оператора SOUND равна 0, то текущий оператор SOUND выключается. Иначе
программа ожидает до тех пор, пока не закончится действие старого оператора SOUND. Инфор­
мация о вызываемых звуках будет находиться в специальном буфере, при этом выполнение
старого оператора SOUND не останавливается при встрече нового оператора SOUND. Если
оператор SOUND не выполняется, то новый SOUND X, 0 не действует.

Для создания периодов пауз рекомендуется использовать оператор SOUND 32767,
продолжительность.

Значения частот, соответствующих принятой нотной записи, приведены в табл. 6.3.

Таблица 6.3

Нота Частота Нота Частота

С(до) , 130.810 С*(до)_ 523.250

D(pe) 146.830 D(pe) 587.330

Е(ми) 164.810 Е(ми) 659.260

Е(фа) 174.610 Р(фа) 698.460

G(соль) 196.000 G(соль) 783.990

А(ля) 220.000 А(ля) 880.000

В(си) 246.940 В(си) 987.770

С(до) 261.630 С(до) 1046.500

D(pe) 293.660 D(pe) 1174.700

Е(ми) 329.630 Е(ии) 1318.500

Г(*а) 349.230 F(*a) 1396.900

207

Окончание табл. 6.3

Нота Частота Нота Частота
в(сояь) 392.000 G(соль) 1568.000

А(ля) 440.000 А (ля) 1760.ООО

В(си) 493.880 В(си) 1975.500

Например:

10 FOR 1=440 ТО 1000 STEP 5
20 SOUND 1,0.5
30 NEXT
40 FOR 1=1000 ТО 440 STEP -5
50 SOUND 1,0.5
60 NEXT

Формат 2:
регистр — арифметическое выражение от 0 до 10, определяющее номер регистра;
значение — арифметическое выражение, задающее значение регистра.

Команда позволяет пользователю добиться различных звуковых эффектов управлением
программируемым синтезатором звука. Управление осуществляется заданием значений 11
регистров (для ПЭВМ типа MSX - 14 регистров).

В табл. 6.4. описывается назначение этих регистров.

Таблица 6.4

Номер
регистра

Назначение регистра
в Бейсик-КОРВЕТ в MSX-BASIC

0 Задает коэффициент
деления звука для первого
голоса

Младшие 8 бит час­
тоты первого голоса

1 То же для второго
голоса

Старшие 4 бита час­
тоты первого голоса

2 То же для третьего
голоса

Младшие 8 бит час­
тоты второго голоса

3 То же для четвертого
голоса

Старшие 4 бита час­
тоты второго голоса

4 Задает коэффициент
деления для лума

Младшие 8 бит час­
тоты третьего голо-
са

208

Окончание табл. 6.4

Номер Назначение регистра
регистра____________в Бейсик-КОРВЕТ_____________ в MSX-BASIC

5 Управляет звуком или
шумом по голосам

Старшие 4 бита час­
тоты третьего голо­
са

6 Задает громкость, форму
огибающей для первого
голоса

5 битов для задания
пума

7 То же для второго
голоса

Управляющий регистр
смешивания. Возмож­
ность управления
тоном и шумом

8 То же для третьего
голоса

Управление амплиту­
дой и режимом кана­
ла первого голоса

9 То же для четвертого
голоса

То хе для второго
голоса

10 Задает период огибающей То хе для третьего
голоса

11 - Младшие 8 бит упра­
вления длительно­
стью шума

12 - Старшие 8 бит упра­
вления длительно­
стью шума

13 Задает форму огиба­
ющей

Коэффициент деления определяется по следующей формуле: #зв=/вх//зв, где /вх -
входная частота задается аппаратно; /зв — частота звука, которую необходимо получить на
выходе синтезатора звука.

При задании огибающей формула приобретает вид: Nor-/Bx//or*256. Формы огибающих,
которые можно получить, приведены на рис. 6.4.

Оператор SOUND позволяет воспроизводить звуки, дополняющие музыкальные фразы,
воспроизводимые с помощью оператора PLAY.

209
8—6301

Глава 7

Примеры построения программ на языке Бейсик

Наибольшее распространение получили программы для решения математических и
инженерных задач, для обучения, игровые программы и программы для решения бытовых
задач.

Программы для решения математических задач выполняют такие функции, как преобра­
зование чисел, различные действия над числами, тригонометрические вычисления, формиро­
вание последовательности случайных чисел, задачи математической логики, определение
площадей фигур и т. п.

Постановка инженерных задач производится в прикладной форме (расчет конструкций,
линейных фильтров, экономические расчеты и т. п.). Они более сложны и сводятся к различ­
ным математическим описаниям:

системам линейных и нелинейных алгебраических уравнений;
трансцендентным уравнениям;
системам обыкновенных дифференциальных уравнений;
системам уравнений и уравнениям с частными производными.
Часто эти задачи ставятся как задачи отыскания оптимальных вариантов, как задачи

исследования объектов и обработки экспериментальной информации. Методы решения задач
этого плана подробно описаны в обширной литературе по методам цифровых и аналоговых
вычислений. Применение языка Бейсик к решению инженерных задач в силу простоты
овладения языком расширяет круг пользователей.

Обучающие программы классифицируются по уровню учебных заведений, для которых
они предназначены; особое место занимают программы для самообучения. Для каждого
уровня учебного заведения программы классифицируются по предметному признаку (химия,
физика, программирование и т. п.). Особый интерес у школьников приобретают программы
проверки знаний, содержащие элемент самообучения.

В последние годы ПЭВМ значительно расширили свои возможности в части представле­
ния графических образов, цвета и звука. Это, как уже было сказано в гл. б, нашло свое
естественное отражение в составе операторов языка Бейсик. Применение графики и цвета в
обучающих, математических и инженерных задачах резко увеличивает иллюстративные
возможности ПЭВМ и упрощает восприятие выходной информации, а также организацию
диалога с пользователем. Особое значение графика, цвет и звук приобретают в игровых
программах.

Игровые программы предназначены для решения двух основных задач — разумного
использования свободного времени и приобретения навыков к работе с ПЭВМ. Все игровые
программы можно условно разделить на статические игровые программы и динамические
игровые программы.

К статическим программам относятся программы, предполагающие деление игры на
последовательные этапы, каждый из которых делится на два цикла. В первом цикле игрок
делает "ход”; во втором цикле "ход” делает машина, а игрок ждет ответа машины.

В динамических играх игрок и машина действуют "параллельно” — любое действие
игрока или машины вызывает немедленную реакцию машины или игрока соответственно.

Бытовые программы предлагают пользователям возможность записи и поиска адресов и
телефонов (электронная картотека), построения памяток дел, которые нужно выполнить в
ближайшие дни (электронный секретарь), ведения и контроля расходов в семье и ряд других
возможностей, использование которых может облегчить быт семьи.
210

Ниже приведены примеры, демонстрирующие работу различных операторов языка
Бейсик для математических расчетов, построения графических картин, создания музыкаль­
ных программ.

* Арифметика* — программа выполнения четырех арифметических действии

100 INPUT "Количество цифр в числе ";D
110 D=INT(D) : IF D<=0 OR D>=3 THEN 100
120 DEF FNR(X)=INT(RND(l)*10~X)
130 OP=INT(RND(1)*4)+1
140 ON OP GOSUB 190,220,260,290
150 PRINT "Чему равно ";N1;OP$;N2;
160 , INPUT A : PRINT
170 IF AoEX THEN PRINT "Ответ неверен.

Попытайтесь efte раз." : GOTO 150
180 PRINT "Правильно."
190 OP$="+"
200 N1=FNR(D) : N2=FNR(D)
210 EX=N1+N2 : RETURN
220 OP$="-"
230 N1=FNR(D) : NN=FNR(D) : IF NN<=N1 THEN N2=NN :

GOTO 250
240 N2=N1 : N1=NN
250 EX=N1-N2 : RETURN
260 OP$="*"
270 N1=FNR(D) : N2=FNR(D)
280 EX=N1*N2 : RETURN
290 OP$="/"
300 N2=FNR(D) : IF N2=0 THEN 300
310 N1=FNR(D)
320 EX=N1/N2 : RETURN

Строки 100—180 являются основной программой, а строки 190-210, 220-250, 260-280,
290—320 содержат четыре подпрограммы.

В строках 100-120 переменной D присваивается количество цифр в числах для этой
задачи и определяется функция FNR, которая задает числа, используемые в этой задаче.

В строках 130-140 выбирается одна из четырех арифметических операций (сложение,
вычитание, умножение и деление) и вызывается нужная подпрограмма.

В строках 150—180 формируется ответ.
Перевод числа — программа перевода десятичного числа в число с основанием больше

десяти

50 DIM А(15)
90 В$="0123456789ABCDEFHIJKLMN"
100 PRINT "Новое основание";
110 INPUT В
120 PRINT "Первое и последнее число, которые надо

перевести,
130 INPUT F,L
140 FOR I=F TO L
150 PRINT
160 GOSUB 1480
170 REM Печать результируюцей таблицы

211

180 PRINT I;TAB(6);
190 FOR D=J TO 1 STEP-1
200 PRINT MID$(B$,A(D)+1,1);
210 NEXT D
220 NEXT I
230 END
1480 REM Программа перевода строки
1500 11=1
1510 J=1
1520 Q=INT(I1/B)
1530 R=I1-Q*B
1535 I1=Q
1540 A(J)=R
1545 J=J+1
1550 IF Q>=B THEN GOTO 1520
1560 A(J)=Q
1570 RETURN

"Шахматные фигуры" — программа иа языке Бейсик-Спектрум+2 вводит графические
символы, определенные пользователем для следующих клавиш, которые должны изображать
шахматные фигуры: В — для слона (bishop); К - для короля (king); R - для ладьи (rook); Q —
для ферзя (gueen); Р — для пешки (pawn); N — для коня (knight).

5 b=BIN01111100 : c=BIN00111000 : d=BIN00010000
10 FOR n=l TO 6 : READ p$: REM 6 фигур
20 FOR f=0 TO 7 : REM Считать фигуры в 8 байт
30 READ а : POKE USR P$+f,a
40 NEXT f
50 NEXT n
55 REM Шахматные фигуры
60 REM Слон
70 DATA'b",0,d,BIN00101000,BIN01000100,

BIN01101100,c,b,0
80 REM Король
90 DATA "k",0,d,c,d,c,BIN01000100,c,0
100 REM Ладья
110 DATA "r",0,BIN01010100,b,c»c,b,b,0
120 REM Ферзь
130 DATA “q",0,BIN01010100,BIN00101000,

BIN011011,BIN00101000,b,b,0
140 REM Пеыка
150 DATA "p",0,0»d,c,c,d,b,0
160 REM Конь
170 DATA "n",0,d,c,BIN01111000,BIN00011000,

c,b,0

- слон К - КОРОЛЬ R - ЛАДЬЯ

1 1 111
1 1 111 11111

1 1 1 111
11 11 111 111

111 1 1 11111
11111 111 11111

212

Каждый графический символ, определенный пользователем, размещается в сетке из 8х 8
точек, каждая из которых может быть включена или выключена. Графический символ имеет
свой образ, который хранится в виде восьми чисел, каждое из которых соответствует одной
строке сетки. Числа в программе можно записать в виде ключевого слова BIN, за которым
будут следовать 8 нулей или единиц (0 - для "бумаги”; 1 - для "чернил”).

Эти восемь чисел запоминаются в восьми байтах. Адрес первого байта определяет USR”X”
(где X — символ, при нажатии которого будет появляться на экране графический символ,
определенный пользователем). Адрес второго байта USR”X” + 1 и т. д. до 8-го байта, адрес
которого USR”X”+7. Строковый аргумент функции USR должен быть единственным символом.

Q - ФЕРЗЬ P - ПЕШКА N - КОНЬ

111 1
1 1 1 111

11 11 111 1111
1 1 111 11

11111 1 111
11111 11111 11111

"Пятнашки* — игровая программа

100 DIM А(16),В(16)
110 CLS : PCLS : REM БЕЙСИК-КОРВЕТ
115 REM НАРИСОВАТЬ И ЗАКРАСИТЬ ПРЯМОУГОЛЬНИК
120 LINE (152,48) (362,190),1,В
130 PAINT (153,49),4,1
135 REM РАЗДЕЛИТЬ ПРЯМОУГОЛЬНИК НА 16 РАВНЫХ

ЧАСТЕЙ
140 FOR YI=59 ТО 180 STEP 32
150 FOR XI-160 TO 340 STEP 48
160 LINE (XI,YI)-(XI+42,YI+26),1,B
170 NEXT XI : NEXT YI
180 FOR 1=1 TO 16
190 B(I)=I : NEXT I
200 FOR J=1 TO 16
210 K=INT(RND(1)*16+1)
220 IF B(K)=0 THEN 210
230 A(J)=K : B(K)=0 : NEXT J
240 1=1
245 REM РАССТАНОВКА ЦИФР В КВАДРАТАХ
250 FOR YI=5 TO 12 STEP 2
260 FOR XI=22 TO 44 STEP 6
270 LOCATE XI,YI
280 IF A(I)<>16 THEN PRINT A(I) : GOTO 300
290 PRINT : X=XI : Y=YI : 11=I :

PAINT (X*8+l,Y*16+l),5,1
300 1=1+1
310 NEXT XI : NEXT YI
320 K$=INKEY$
330 DX=O : DY=0
335 REM ВНИЗ
340 IF K$=”N” AND Y>6 THEN DY=-2 : J=-4 :

GOTO 390
213

345 REM ВВЕРХ
350 IF K$="W" AND Y<11 THEN DY=2 : J=4 :

GOTO 390
355 REM ВЛЕВО
360 IF K$='L" AND X<38 THEN DX=6 : J=1 :

GOTO 390
365 REM ВПРАВО
370 IF K$="P" AND X>22 THEN DX=-6 : J=-l

GOTO 390
380 GOTO 320
385 REM СДВИГ МАЛЕНЬКИХ КВАДРАТОВ
390 LOCATE X,Y : PAINT(X»8+1,Y*16+l),4,1
400 PRINT A(II+J) : A(II)=A(II+J)
410 II=II+J : A(II)=0
420 X=X+DX : Y=Y+DY
430 LOCATE X,Y : PRINT "

PAINT(X*8+1,Y*16+1),5,1
440 FOR 1=1 TO 15
450 IF A(I)<>I THEN 320
460 NEXT I
470 END

"Узор" — программа построения цветного узора с помощью датчика случайных чисел

10 REM Цветной узор
20 CLS
30 PRINT "Введите максимальные вертикальные и

горизонтальные "
40 PRINT "значения для этого режима разрешения"
50 INPUT XM,YM
60 ХС=ХМ/2
70 YC=YM/2
80 CLS
90 REM Установка графического режима
100 FOR Х=0 ТО ХМ
110 C=INT((RND(1)*8)) : REM
120 COLOR C,0

Номер цвета случаен

130 LINE (XC,YC)-(X,0)
140 NEXT X
150 FOR Y=0 TO YM
160 C=INT((RND(1)*8)) : REM
170 COLOR C,0
180 LINE (XC,YC)-(XM,Y)
190 NEXT Y
200 FOR X=XM TO 0 STEP -1

Номер цвета случаен

210 C=INT((RND(1)»8)) : REM
220 COLOR C,0
230 LINE (XC,YC)-(X,YM)
240 NEXT X
250 FOR Y=YM TO 0 STEP -1

Номер цвета случаен

260 C-INT((RND(1)*8)) : REM
270 COLOR C,0
280 LINE (XC,YC)-(0,Y)
290 NEXT Y
300 END

Номер цвета случаен

214

"Построение подобных треугольников* - программа предназначена для обучения
школьников визуальной оценке подобия треугольников

10 PRINT “Укажите координаты первого угла
основного треугольника*’

20 INPUT "Х0=“;Х0
30 INPUT "Y0=“;Y0
40 PRINT “Укажите длину стороны основного

треугольника”
50 INPUT ”L1=”;L1
60 PRINT “Укажите значение прилежащих углов

(в градусах)”
70 INPUT "F1=";F1 : INPUT "F2=";F2
80 F1=F1*3.141593/180 : F2=F2*3.141593/180
90 PRINT “Для построения основного треугольника”;
100 PRINT " нажмите одну из клавиш из ряда 1-6“
110 INPUT А
120 IF А=1 OR А=2 OR А=3 OR А=4 OR А=5 OR А=6 THEN

GOSUB 1000
130 PRINT “Хотите ли вы изменить параметры

основного треугольника?”
140 PRINT "Если да - нажмите клавишу 1; если нет -

клавишу 0"
150 INPUT В
160 IF В=1 THEN GOTO 10
170 PRINT "Задайте коэффициент подобия

треугольников (от .1 до 2)"
180 PRINT “Задайте координаты первого угла

подобного треугольника”
190 INPUT “К-";К : INPUT "ХЗ=”;ХЗ : INPUT "Y3=";Y3
200 L2=K*L1
210 PRINT "Для построения подобного треугольника";
220 PRINT " нажмите одну из клавиш из.ряда 1-6"
230 INPUT А
240 IF А-1 OR А=2 OR А=3 OR А=4 OR А=5 OR А=6 THEN

GOSUB 1100
250 PRINT "Хотите вы изменить параметры подобного

треугольника?"
260 PRINT "Если да - нажмите клавишу 1; если нет -
клавишу 0"
270 INPUT В
280 IF В-1 THEN GOTO 180
290 IF В=0 THEN PRINT "Хотите вы изменить

параметры основного треугольника?";
300 PRINT "Если да - нажмите кнопку 1; если нет -

0"
310 INPUT В
320 IF В=1 THEN GOTO 10 ELSE END
1000 X1=XO+L1*COS(F1) : Y1=YO-L1*SIN(F1)
1010 X2=X1-ABS(Y0-Y1)*1/TAN(F1+F2)
1020 LINE(XO,YO)-(X1,Y1),A
1030 LINE-(X2,Y0),A
1040 LTNE-(X0,Y0),A

215

1050 RETURN
1100 X4=X3+L2*COS(F1) : Y4=Y3-L2*SIN(F1)
1110 X5=X4-ABS(Y3-Y4)*1/TAN(F1+F2)
1120 LINE (X3,Y3)-(X4,Y4),A
1130 LINE-(X5,Y3),A
1140 LINE-(X3,Y3),A
1150 RETURN

"Мяч” — программа, демонстрирующая графические возможности интерпретатора
BASICA для PC IBM

10 REM Программа BALL
20 PLAY "mfl32t067“
30 DEFINT A-Z : DIM B(280) : DIM A(150)
40 CLS : SCREEN 1,0 : COLOR 8,0 : KEY OFF
50 CIRCLE (160,100),10,2 : REM Рисование мяча
60 PAINT (160,100),2,2
70 GET (150,90)-(170,110),A : REM Запомнить

рисунок мяча в массиве А
80 CLS : LINE (19,0)-(299,177),,В : REM Рамка
90 LINE (20,1)-(300,178),,В
100 IXJCATE 24,11 : PRINT "Для выхода нажмите ESC";
110 FOR Х=20 ТО 280 STEP 4
115 REM Затухаюцая синусоида
120 B(X)=159-CINT(ABS(SIN(X«.0785398)*X)/2)
130 NEXT : L=7 : Y2=150
140 LINE (223,3)-(253,175),3,BF
150 LINE (191,3)-(222,175),2,BF
160 LINE (160,3)-(190,175),1,BF
170 FOR D=0 TO 1
180 S=20+D*260 : E=280-D-260
190 FOR X=S TO E STEP 4-8*D
200 Y=B(X) : N=(170-Y2)/5 : PLAY "L=L;T255;N=N;"
210 IF F THEN PUT (X2,Y2),A : REM Рисунок на экран
220 PUT (X,Y),A : X2=X : Y2=Y : F=-l : NEXT
230 L=(L+7) MOD 64 : NEXT

•Танец маленьких лебедей* - программа демонстрирует работу оператора PLAY

10 PRINT "Танец маленьких лебедей"
20 A$="R1R8A8A8A8A8.G«32A32B8A8G«8B8B8B8B8.А32В32

O5C#8O4B8A8O5C#8F#8E#8C#8O4G#8O5C#16O4B16A1
6G#16A8O5C#8F#8E#8C#8O4G#8O5C#16O4B16A16G#1
6"

30 B$="R1R8F#8F#8F#8F#8.R16R8F#8E#8R8G#8G#8G#8.R16
R8GB8F«8R4G88E«8RGR4R4R8G»8E»8R4R8"

40 C$="R1RRRR"
50 D$="O2F#8O3C#8O2F«8O3C#8O2F#8O3CB8O2F#8O3C#8

O2F#8O3C#8O2F#8O3C#8O2F#8O3C#8O2F#8O3C#8
O2F#8O3C#8O2F#8O3C#8O2F#8O3C#8O2F#8O3C#8
O2F#8O3C#8O2F#8O3CI»8O2F#8O3C#8O2F#8O3C#8
O2F«8O3C«8O2Fi»8O3C»8O2F<t8O3C»8O2F»8R8

216

оо Oto , 0 Ю to

2 X 5 к

Ю 0 to 0 0^0 0 00HN
0 to СО

0
0

CD 00 о

S и 0 0
U

0 to
00 00 00

S s

СО
0 0

0 to СМ
оо х О 0 0 to 0 f-t 0 0 to

со
О 0 0CD гЧ 0

0
со 00 со

0 00 0
0 0
W

0 0 to
О 0 CM 0

со
О 0

со 0
0 о

ООО
ООО0 0 0
to to to
см см см ООО 0 0 0

см
0

о

s
’§ §

2
§

8

toCM

0
Z
О

X

to 0
to ЯС* 0 m о 0 to оо

000 0
о и о
CO 0 0

00
> ю •*
: *-• e

9
&

Z

to 0 0 ю см
0 О СО

0 to 0 0
«—i 0
00

О оо со

со оо to

00
0 *-1 см

0 0

to0

О m 0 о0 to 00 0
со

к
© о
0 *

00 О to

00 0 U

0 0 0 <
0 0 0 0 ri co

СМ СМ СМ
00 00 00 -.-СМ ..

to е^ е

со СО СО to £

О 0 0 0 0 0 «Н . u to to 0 0 0
to to

2g

О 0 0 0 О 0 0 0 CM
0 0 О

00 00 п
ы о оо

to to 0
0 CD U

о 0 со 0 00

toO<^O000O
II
е
w

ее
to 0

H
e

CD

S

0

• 0 0 0
0 0
0 0

0
0 0
0
0

H e

S

яс’смсмсмисмХ^*
OOOOtoH -о

CM
0

CM CM CM CM
0 О О О О

см со

0

§

8
&
I

&
X
s

ё
X

2
&

s
X

s
x

£
X

Ё
п

5
!

0
x
S

S

S

с
Л
= g

л
X (X ЖО0ОCM 0

о см

Ю CD гЧ

0 X

см

см

II
Z

S

&

3
X
& cd 8

HBD3DKDX0
££g88£8SS

0 28%
g
5

3

3
X
з

s
s> s

§
£
X

2
X

п

ё

s
X

£
Й

3
g
s M
X

S

й

g
& X
g
X ё
as s

х

%
2

й

g
S
§

8

с

X

w

& X
g
х

X

3
s
!

X
I
&
X

I

II

§ s
S 5 c >*

S *

9 е
5

g 5

10 A=INT(100*RND(5))+200
20 B=INT(20*RND(5))+10
30 XA=249 : YA=250
40 FOR 1=1 TO (A+B+50)
50 PSET(I,YA),5
60 NEXT
70 FOR I=A TO (A+B)
80 PSET(I,XA),5
90 NEXT
100 L=1
110 PRINT "Введите нужную скорость (от 10 до 50

м/сек)"
120 INPUT V0
130 PRINT "Введите угол бросния (от 5 до 60)"
140 INPUT Y0 : YP=Y0*3,14/180
150 VX=VOCOSYP - VY=VOSINYP
160 X=0 : Y=250
170 FOR 1=1 TO 800
180 VX=VX-0.05
190 VY=VY-0.1
200 X=X+0.01+VX
210 Y=Y-0.01*VY
215 PLAY "FD+FGA+A+BA+","D+DDGO2GAAA",

"FFFCCCCC"
220 IF X>500 THEN 260
230 IF VY<0 AND Y>250 THEN 260
240 PSET(X,Y),5
250 NEXT
260 IF A<X AND A+B>X THEN PRINT "Молодец"

GOTO 280 ELSE PRINT "Повторите"
270 L=L+1 : GOTO 110
280 PRINT "Число попыток"; L
290 END

"Лобовой удар" — с помощью этой программы можно определить потерю энергии и
скорость двух тел массой Ml и М2 после соударения

10 PRINT "Введите массы соударяющихся тел"
20 INPUT "М1=";М1 : INPUT "М2=";М2
30 PRINT "Введите скорости тел до соударения"
40 INPUT "V1=”;V1 : INPUT "V2=";V2
50 PRINT "Введите коэффициент восстановления"
60 INPUT К
70 Е=М1*V1+M2*V2:М=М1+М2:V0=(VI-V2)»К
80 V01=(E-VO»M1)/М:V02=(E+V0*M2)/М
90 PRINT “Скорость первого тела после

соударения";V01
100 PRINT "Скорость второго тела после

соударения";V02
110 W=M1*M2*(V1-V2)“2*(1-K*2)/2M
120 PRINT "Потеря энергии после удара";W
130 END

218

^Простые числа* — программа находит заданное количество простых чисел 1, 2, 3 и т. д.
Так как все последующие простые числа нечетные, то в программе проводится определение
следующего простого числа путем деления его на все предыдущие простые числа

10 PRINT "Сколько простых чисел Вы хотите найти?**
20 INPUT N
30 IF N<=3 THEN M=3 ELSE M=N
40 DIM P(M)
50 P(l)=l : P(2)=2 : P(3)=3
60 IF N<=3 THEN 150
70 1=3 : REM I - количество уже найденных простых

чисел
80 К=3 : REM К - значение очередного проверяемого

числа
90 К=К+2
100 FOR J=2 ТО I
110 IF INT(K/P(J))=K/P(J) THEN 90
120 NEXT J
130 1=1+1 : P(I)=K
140 IF I<N THEN 90
150 FOR J=1 TO N
160 PRINT P(J);
170 NEXT J
180 END

Сложные проценты — необходимость в определении сложных процентов возникает
во всех тех случаях, когда сумма, на которую начисляются проценты, является результатом
предыдущих расчетов с учетом процентных начислении. Примером таких расчетов является
расчет стоимости оборудования с учетом амортизации или определение вклада в сберкассе

10 PRINT "Введите начальное значение суммы’
20 INPUT S
30 PRINT "Введите процент (со знаком)"
40 INPUT Р
50 PRINT "Введите число параметров"
60 INPUT N
70 W=(l+P/100)*N
80 PRINT "Конечное значение суммы”;W
90 END

^Таблица умножения* — достаточно простая программа для проверки знания таблицы
умножения у школьников младших классов. Для ответа на каждый вопрос дается три попыт­
ки. В первой части программ (строки 10 — 60) формируется таблица умножения, во второй
части (строки 90 — 130) выдается запрос школьнику и контролируется его ответ, а в третьей
части производится подсчет правильных и неправильных ответов (К — число ошибок, L -
число правильных ответов, N — число попыток для каждого вопроса) и содержатся строки для
продолжения проверки знаний.

10 DIM Т(9,9)
20 FOR 1=1 ТО 9
30 FOR J=1 ТО 9
40 T(I,J)=I*J
50 NEXT J

219

60 NEXT I
70 K=0:L=0
80 F=0
90 I=INT(9*RND(9))
100 J=INT(9*RND(9))
110 PRINT "Чему равно произведение'*; I; "X" ; J
120 INPUT P
130 IF P=T(I,J) THEN 250
140 PRINT “Ответ неверен**
150 F=F+1
160 IF F<3 THEN 110
170 K=K+F
180 PRINT "Будете продолжать?**
190 PRINT “Если да, нажмите клавиву 1, если нет -

0“
200 INPUT D
210 IF D=1 THEN 80
220 PRINT “Число правильных ответов" ;L
230 PRINT “Число неверных ответов" ;К
240 END
250 L=L+1
260 GOTO 180

Приложение 1

Перечень ключевых слов

Таблица П. 1.1

Ключевое Бей сик-си стена Тип инструкции Глава
слово

123456789 10

ABS 4 4 4- 4- 4 4- 4- 4 4- 4 функция
ACS 4- функция
AND + 4- 4- 4- 4- 4- 4- 4- 4- 4- оператор
APPEND 4- команда
ASC 4 4- 4- 4- 4- 4- 4- 4- 4- функция
ASN 4- функция
ASSIGN 4- команда
AT 4- оператор
ATN 4- 4- 4- 4- 4- 4- 4- 4 4 4- функция
ATTR 4- функция
AUTO 4- 4- 4- 4- 4- 4- 4- оператор
BASE 4 оператор
BCD 4- функция
BEEP 4- 4- 4- 4- 4- оператор
BIN 4- 4- Функция
BIN$ 4- 4- 4 4- 4-. функция

220

Продолжение табл. П. 1.1

Ключевое
слово 1

Бейсик-система Тип инструкции Глава

2 3 4 5 6 7 8 9 10
В LOAD 4 4 команда 4
BORDER 4 оператор 6
BRIGHT 4 оператор 6
BSAVE 4 4 команда 4
CALL 4 4 4 4 4 оператор 3
CAT 4 команда 4
CATALOG 4 команда 4
CDBL 4 4 4 4 4 4 функция 3
CHAIN 4 4 4 оператор 4
CHR$ 4- 4 4 4 4 4 4 4 4 4 функция 3
CINT 4 4 4 4 4 4 функция 3
CIRCLE 1 4 4 4 4 4 оператор 6
CLEAR 4 4 4 4 1 4 4 4 4 оператор 3,4
CLOAD + 4 4 команда 4
CLOSE 4- 4 4 4 4 4 4 4 оператор 4
CLOSE# 4 оператор 4
CLR 4 оператор 3
CLS 4 4 4 4 4 4 оператор 6
CODE 4 оператор 4
COLOR + 4 4 4 4 4 оператор 6
COM 4 4 4 оператор 4
COMMON 4 4 оператор 4
CON# 4 оператор 4
CONT 4 4 4 4 4 4 4 4 4 оператор 5
CONTINUE 4 оператор 5
COPY 4 команда 4
COS 4 4 + 4 4 4 4 4 4 4 Функция 3
CSAVE 4 4 4 команда 4
CSNG 4 4 4 4 4 4 Функция 3
CSRLIN 4 4 4 4 4 Функция 4
CVD 4 4 4 4 4 функция 4
CVI 4 4 4 1 4 Функция 4
CVS 4 4 4 4 4 функция 4
DATA 4 4 4 4 4 4 4 + 4 4 оператор 3
DATES 4 функция 4
DEF 4 4 4 4 4 4 4 4 4 оператор 2,3
DEFDBL 4 + + + 4 4 4 оператор 2
DEFFN 4 оператор 3
DEFINT 4 4 4 4 4 4 4 оператор 2
DEF SEG 4 оператор 3,4
DEFSNG 4 4 4 4 4 4 » оператор 2
DEFSTR 4 4 4 4 4 4 4 оператор 2
DEL 4 оператор 5
DELAY 4 оператор 4
DELETE 4 4 4 4 4 4 4 4 < оператор 4,5
DIM 4 4 4 4 4 4 4 4 4 4 оператор 2
DIR 4 команда 4
DISABLE 4 оператор 4

221

Продолжение табл. П. 1.1

Ключевое
слово 1

Бейсик-система Тип инструкции Глава

2 3 4 5 6 7 8 9 10
DRAW -1 4 4 4 4 4 оператор 6
DSKF 4 функция 4
EDIT 4 4 4 4 4 4 оператор 5
ELSE 4 F 4 4 4 4 4 4 оператор 2
ENABLE 4 оператор 4
END 4 4 4 4 1 4 4 1 оператор 3
EOF 1 1 14 4 1 I функция 4
EQV 4 4 4 4 4 4 оператор 2
ERASE 4 4 4 4 4 4 оператор 2,4
eRL 4 4 4 4 4 4 F оператор 5
ERR 4 4 4 4 4 4 4 оператор 5
ERROR 4 4 4 4 4 4 1 оператор 5
EXEC 4 оператор 3
EXP 4- 1 4 4 4 4 4 4 4 4 функция 3
FIELD 4 4 4 4 4 оператор 4
FILES 4 4 4 4 4 команда 4
FIRST 4 функция 3
FIX 4- 4 4 4 4 4 4 функция 3
FLASH 4 4 оператор 6
FN 4 4 4 4 4 4 4 4 4 4 оператор 3
FOR 4 4 4 4 4 4 4 4 4 4 оператор 3
FORMAT 4 оператор 4
FRE 4 4 4 4 4 4 4 4 функция 3
FRE$ 4 функция 3
FROM 4 оператор 3
GET 4 4 4 4 4 4 4 функция 3,4,6
GET$ 4 функция 3

GO SUB 4 оператор 3
GO TO 1 оператор 3
GOSUB 4 4 4 4 14 4 4 4 оператор 3
GOTO 4 4 4 4 1 4 4 4 1 оператор 3
GR 4 оператор 6
HEX$ 4 4 4 4 4 1 функция 3
HGR 4 оператор 6
HIMEM 4 функция 3
HOME 4 оператор 4
HTAB 4 оператор 4
IF 4 4 4 4 4 4 4 1 1 4 оператор 3
IMP 4 4 4 4 4 1 оператор 3
IN 4 функция 3
IN# 4 4 оператор 4
INK 4 оператор 6
INKEYS 4 4 4 4 4 4 4 1 функция 3
INP 4 4 4 1 функция 3
INPUT 4 4 4 4 4 4 4 4 4 4 оператор 3,4
INSTR 4 4 4 4 4 4 4 F функция 3
INT 4- 1 4 4 4 4 4 4 4 4 функция 3

222

Продолжение табл. П. 1.1

Ключевое
слово

Бейсик-система Тип инструкции Глава

1 2 3 4 5 6 7 8 9 10
INTERVAL 4 оператор 4
INVERSE 4 4 оператор 6
IOBYTE 4- функция 4
JOIN 4 оператор 3
KEY 4- 4 4 оператор 4
KILL 4 4 4 4 4 команда 4
LAST 4- Функция 3
LEFTS 4- 4 4 4 4 4 4 4 4 Функция 3
LEN 4- 4- 4 4 4 4 4 4 4 4 функция 3
LET 4 4 4 4 4 4 4 4 4 4 оператор 3
LFILES 4 4 4 4 4 команда 4
LINE 4 4 4 4 4 4 4 4 оператор 6
L INPUT 4 оператор 3,4
LIST 4 4 4 4 4 Г 4 4 4 4 оператор 5
LLIST 4 4 4 4 4 4 команда 5
LN 4 оператор 3
LOAD 4 4 4 4 4 4 4 4 4 4 команда 4
LOC 4 4 4 4 4 функция 4
LOCATE 4 4 4 4 оператор 3
LOF 4 4 4 4 4 функция 4
LOG 4 4 4 4 4 4 4 4 4 Функция 3
LOMEM 4 Функция 3
LPOS 4 4 4 4 4 Функция 4
LPRINT 4 4 4 4 4 4 4 оператор 4
LSBYTE 4 Функция 3
LSET 4 1 ♦ 4 4 оператор 4
LSHIFT 4 Функция 3
LST# 4 оператор 4
LUT 4 4 оператор 6
MARGIN 4 оператор 4
MAXFILES 4 оператор 4
MEM 4 функция 3
MERGE 4 4 4 4 4 14 команда 4
MGR 4 оператор 6
MID$ I 4 4 4 4 4 4 4 4 функция 3
MKD$ 4 4 4 4 4 функция 4
MKI$ 4 4 4 4 4 функция 4
MKS$ 4 4 4 4 4 функция 4
MOD I 4 4 4 4 4 4 оператор 3
MOVE 4 4 оператор 3
MOTOR I 4 4 4 4 команда 4
MSBYTE 4 Функция 3
NAME 4 4 4 4 4 команда 4
NEW 4 4 4 4 4 4 4 4 4 4 команда 5
NEXT 4 4 4 4 4 4 4 4 4 4 оператор 3
NORMAL 4 оператор 6
NOT 4 4 4 4 4 4 4 4 4 4 оператор 2

223

Продолжение табл. П. 1.1

Ключевое
слово 1

Бейсик-система Тип инструкции Глава

2 3 4 5 6 7 8 9 10
NOTRACE 4 оператор 5
NULL 4 4 оператор 3
ОСТ$ 4 4 4 4 4 4 Функция 3
OFF 4 4 4 4 4 оператор 4,6
ON 4 4 4 4 4 4 4> 4 оператор 3,5,1
OPEN 4 4 4 4 4 4 4 4 оператор 4
OPEN# 4 оператор 4
OPTION 4 4 4 оператор 2
OR 4 4- 4 4 4 4 4 4 k 4 оператор 2
OUT 4 4 1 4 4 4 оператор 3
OVER 4 оператор 6
PAD 4 Функция 4
PAINT 4 4 4 4 4 оператор 6
PAPER 4 оператор 6
PAUSE 4 оператор 4
PCLS 4 4 оператор 6
PDL 4 4 функция 4
PEEK 4 4 4 4 4 4 4 4 4 4 функция 3
PEN 4 оператор 4
PI 4 оператор 3
PLAY 4 4 4 4 оператор 6
PLOT 4 4 оператор 6
POINT 4 4 4 4 4 4 4 функция
POKE 4 4 4 4 4 4 4 4 4 4 оператор 3
POP 4 оператор 3
POS 4 1 4 1 4 4 4 4 4 функция 3,4
POSITION I оператор 4
PR# 4 оператор 4
PRESET 4 4 4 4 оператор 6
PRINT 4 1 1 ♦ k 4 4 4 4 4 оператор 3,4
PSET 1 4 4 4 4 оператор 6
PUN# k оператор 4
PUT 4 k k 4 4 оператор 4,6
RANDOM k оператор 3
RAND IM I ZE 1 4 1 k k 4 оператор 3
RDR# k оператор 4
READ 4 4 4 1 4 4 4 k 4 4 оператор 3,4
RELOC 4 4 оператор 6
REM к 4 1 4 4 k k 4 4 4 оператор 2
RENAME k команда 4
RENUM < k 4 4 4 k оператор 2
RESET 4 4 4 4 команда 3,4
RESTORE к 4 4 4 4 4 4 4 4 k оператор 3
RESUME 1 1 1 k 4 k 4 4 оператор 5
RETURN 4 4 4 4 4 4 4 4 4 4 оператор 3
RIBBON 4 оператор 6
RIGHTS

224
4 k 4 k 4 k k k k Функция 3

Продолжение табл. П. 1.1

Ключевое
слово 1

Бейсик-система

23456789 10
END 4 1 1 4 4 4 4 4 1 4
ROT 4-
ROTATE
RSET 1

♦
4 4 4 4

RSHIFT
RUN 4 4 4 4 4 4 1 < 4 4
SAVE 4 4 4 4 4 4 4 4 4 4
SCALE 4
SCALL 4
SCRATCH
SCREEN 4

4
4 * 4 4

SCREEN$ 4
SCRN
SENSE 4

4

SET 4 4
SGN 4- 4 4 4 4 4 4 1 4 4
SIN 4 44 4 4 4 4 1 1 4
SNG
SOUND

4
4 4 4

SPACE$ 4 4 4 4 4 4
SPC(4 4 4 4 4 4 4
SPEED 4 4 4 4
SPRITES 4
SQR 4 4 4 4 4 4 4 4 4 4
STEP 4 4 4 4 4 4 4 4 4 4
STICK 4 4 4
STOP 4 4 4 4 4 4 4 1 4 4
STR 4
STR$ 4 4 4 4 4 4 4 4 4 4
STRIG 4 4 4
STRINGS 4 4 4 4 4 4 4
SWAP 4 4 4 4 4
SYSTEM 4 4 4 4
JSYSTEM 4
ТАЙ(4 4 4 4 4 4 4 1 4 1
TAN 4 4 4 4 4 4 4 4 4 4
TEST
TEXT

4
4

THEN 4 4 4 4 4 4 4 4 I 4
TIME 4 4 4
TIMES 4 4
TIMER 4
TO 4 4 4 4 4 4 4 4 4 4
TRACE 4 4
TRAP
TROFF 4

4
4 4 4 4 4 4

TRON 4 4 4 4 4 4 4

Тип инструкции

Функция
оператор
оператор
оператор
функция
команда
команда
оператор
оператор
команда
оператор
функция
оператор
функция
оператор
функция
функция
оператор
оператор
функция
оператор
оператор
функция
функция
оператор
функция
оператор
оператор
функция
функция
функция
оператор
команда
команда
оператор
функция
оператор
оператор
оператор
оператор
Функция
оператор
оператор
команда
команда
команда
команда

Глава

225
9-6301

Окончание табл, П. 1.1

Ключевое
слово

Бейсик-система Тип инструкции Глава

1 2 3 4 5 6 7 8 9 10
UNS 4 оператор 3
UNTRACE 4 команда 5
UNTRAP I команда 5
USING 4 I 4 4 4 4 4 оператор 3
USR 4 4 4 4 4 4 4 4 Функция 3
VAL 4 4 14 4 4 4 4 4 4 функция 3
VAL$ 4 Функция 3
VARPTR 4 t 4 4 4 4 функция 3,4
VDP 4 оператор 6
VERIFY 4 команда 4
VPEEK 4 Функция 6
VPOKE 4 оператор 6
VTAB 4 оператор 4
WAIT 4 4 4 4 4 оператор 3
WEND 4 4 4 4 оператор 3
WIDTH 4 4 4 4 4 оператор 3
WHILE 4 4 4 4 оператор 3
WRITE 4 4 4 оператор 3,4
XDRAW 4 оператор 6
XOR 4 4 4 4 4 4 4 оператор 2
— M •• м. _ • _ _ _ — _ _ ____ -_____ __ _ — -- —____________ _____

Таблица П. 1.2

Составное Глава Составное Глава
ключевое слово ключевое слово

FOR . . . NEXT 3 ON ERROR GOSUB 5
GOSUB ... RETURN 3 ON ... GOTO 3
IF ... GOTO 3 ON ... GOSUB 3
IF ... THEN 3 ON ... KEY 4
IF ... THEN ... ELSE .. 3 ON PEN GOTO 4
INTERVAL ON 4 ON SPRITE GOTO 6
INTERVAL OFF 4 ON STRIG GOTO 4
INTERVAL STOP 4 PEN ON 4
KEY LIST 4 PEN OFF 4
KEY ON 4 PEN STOP 4
KEY OFF 4 PEN (n) ON 4
KEY STOP 4 PEN (n) OFF 4
KEY (n) ON 4 PEN (n) STOP 4
KEY (n) OFF 4 PRINT USING 3
KEY (n) STOP 4 PRINT USING # 4
LINE INPUT 3 PUT SPRITE 6
LINE INPUT # 4 SPRITE ON 6

226

Окончание табл. 1.2

Составное Глава Составное Глава
ключевое слово ключевое слово

LPRINT USING 3 SPRITE OFF 6
MOTOR ON 4 SPRITE STOP 6
MOTOR OFF 4 STRIG ON 4
ON COM (n) 4 STRIG OFF 4
ON COM (n) GOSUB 4 STRIG STOP 4
ON ERROR GOTO 5 WHILE ... WEND 3

Приложение 2

Внутреннее представление программ, написанных
на языке Бейсик

При внутреннем представлении программ* инструкции и знаки операций представлены
определенными 16-ричными кодами или наборами кодов, перечень которых для MBASIC
приведен в табл. П.2.1 - П.2.3.

Программа на языке Бейсик записывается на НГМД с помощью команды SAVE. В зави­
симости от параметров в команде SAVE программа сохраняется на диске в трех различных
форматах. Рассмотрим небольшую программу PRIMER .BAS и ее внутреннее представление**.

10 А=1:В%=ЫП:СХ=аО1
20 PRINT ”TABL“
30 А=А+1
40 BVBX+1
50 С%=С%+1
60 PRINT А;ТАВ(10);НЕХ$(ВХ);ОСТ(С%)
70 IP А=100 THEN END
80 GOTO 30

Если программа будет записана на НГМД с помощью команды SAVE *PRIMER.BAS ,А,
то каждый символ программы сохранится в коде ASCII (КОИ-8) и ее внутреннее представле­
ние будет следующим:

* Дано на примере Бейсик-системы MBASIC.

**Ниже в приведенных распечатках содержимого памяти используются 16-ричные числа.

31 30 20 41 3D 31 20 ЗА 20 42 25 3D 26 48 31 20
ЗА 20 43 25 3D 26 4F 31 OD OA 32 30 20 50 52 49
4E 54 20 22 54 41 42 4C 22 OD OA 33 30 20 41 3D
41 2B 31 OD OA 34 30 20 42 25 3D 42 25 2B 31 OD
OA 35 39 20 43 25 3D 43 25 2B 31 OD OA 36 30 20
50 52 49 4F 54 20 41 3B 54 41 42 28 31 30 29 3B
48 45 58 24 28 42 25 29 2C 4F 43 54 24 28 43 25
29 OD OA 37 30 20 49 46 20 41 3D 31 30 30 20 54
48 45 4E 20 45 4F 44 OD OA 38 30 20 47 4F 54 4F
20 33 30 OD OA

227

В этой записи два байта с кодами 0D ОА указывают на конец программной строки. Файлы
в коде ASCII (КОИ-8) будут занимать больше памяти, но могут использоваться как файлы
данных последовательного доступа.

Бели программа будет записана на НГМД с помощью команды SAVE ”PRIMER.BAS,P, то
программа сохранится в закодированном двоичном формате и ее представление будет сле­
дующим:

FE 24 ID 2В С1 ЕВ 07 95 48 6Е 4F 6С Е6 DF Е9 11
59 52 70 ЕВ Al F0 С5 В9 2В ЕО 87 88 G2 20 BE ЕЕ
4А С9 52 А2 4F 34 7А 70 12 АЕ ОЕ 17 2В 4В 6С 3D
1В 05 7А ВА А8 2С 68 74 08 АА 6D 11 В5 F6 90 3D
DF D5 9Е ВС 11 FC 47 F0 02 ЕЗ 38 Е6 F2 64 4F 3D
55 70 7D 36 8С С7 2В 4А 5В 1F 60 2А 8Е 2А BF BE
43 8А 52 50 ВС 88 С8 F0 87 F7 96 71 ЕС 8В 92 ВА
38 89 88 6Е 02 9D DE 4В 8С 69 7D 5А А7 AF 21 1А

Такую программу нельзя ни отредактировать, ни распечатать.
Если программа записана на НГМД с помощью команды SAVE •PRIMER.BAS*, то про­

грамма будет сохраняться в упакованном формате и ее внутреннее представление будет
следующим:

FF Е4 61 ОА 00 41 F0 12 20 ЗА 20 42 25 F0 ОС 01
00 20 ЗА 20 43 25 F0 ОВ 01 00 00 F1 61 14 00 91
20 22 54 41 42 4С 22 00 FB 01 1Е 00 41 F0 41 F2
12 00 07 62 28 00 42 25 F0 42 25 F2 12 00 13 62
32 00 43 25 F0 43 25 F2 12 00 2Е 62 ЗС 00 91 20
41 ЗВ DO OF ОА 29 ЗВ FF 9А 28 42 25 29 2С FF 99
28 43 25 29 00 3D 62 46 00 8В 20 41 FO OF 64 20
CF 20 81 00 47 62 50 00 89 20 ОЕ 1Е 00 00 00 00

Программа сохраняется в формате, в котором все синтаксические элементы хранятся в
упакованном виде. Ключевые слова представляются однобайтовыми 16-ричными кодами. Эти
коды имеют значения больше 80. Код FF является признаком встроенной функции. Ниже
приводится перечень ключевых слов и их кодов.

Коды команд и операторов
Таблица П. 2.1

Команда/
оператор

Код Команда/
оператор

Код Команда/
оператор

Код Команда/
оператор

Код

AUTO AB ERR D7 MOD FC RESET cc
AND F7 EQV FA NEXT 83 RANDOMIZE BB
CLOSE C3 FOR 82 NULL 96 STOP 90
CONT 9A FIELD CO NAME C7 SWAP A5
CLEAR 92 FILES C6 NEW 94 SAVE CB
CALL B6 FN D3 NOT D5 SPC D4
COMMON B8 GOTO 89 OPEN BF STEP DI
CHAIN B9 GOSUB 8D OUT 9D STRINGS D8
DELETE AA GET Cl ON 95 SYSTEM BD
DATA 84 INPUT 85 OR F8 THEN CF
DIM 86 IF 8B OPTION BA TRON A3
DEFSTR AD INSTR DA PRINT 91 TROFF A4
DEFINT AE IMP FB PUT C2 TAB(DO

228

Окончание табл. П. 2.1

Команда/ Код Команда/ Код Команда/ Код Команда/ Код
оператор оператор оператор оператор
DEFSNG AF INKEYS DD POKE 99 TO CE
DEFDBL BO KILL C8 RETURN 8E USING D9
DEF 98 LPRINT 9E READ 87 USR D2
ELSE A2 LLIST 9F RUN 8A VARPTR DC
END 81 LET 88 RESTORE 8C WIDTH Al
ERASE A6 IX) AD C4 REM 8F WHILE B4
EDIT A7 T.SET C9 RESUME A9 WEND B5
ERROR A8 LIST 93 RSET OA WRITE B7
ERL D6 MERGE C5 RENUM AC XOR F9

Коды функций

Функция Код Функция Код Функция Код Функция Код

Таблица П. 2.2

ABS FF 86 CHRS FF 96 LOC FF BO PEEK FF 97
ATN FF 8E EXP FF 8B LEN FF 92 RIGHTS FF 82
ASC FF 95 EOF FF AF LEFTS FF 81 RND FF 88
CTNT FF 9C FRE FF 8F LOF FF Bl SGN FF 84
CSNG FF 9D FIX FF 9F MKI$ FF B2 SQR FF 87
CDBL FF 9E HEX$ FF 9A MKSS FF B3 SIN FF 89
CVI FF AB INT FF 85 MKD$ FF B4 STRS FF 93
CVS FF AC INP FF 90 MIDS FF 83 SPACES FF 98
CVD FF AD LPOS FF 9B OCT$ FF 99 TAN FF 8D
COS FF 8C LOG FF 8A POS FF 91 VAL FF 94

Таблица П, 2.3
Коды операций

Операция Код

> EF
+ F2
/ F5

Операция Код Операция Код

= F0 < Fl
- F3 * F4

F6 \ FD

При записи на диск в разных форматах, примеры которых представлены выше, имена
переменных могут состоять из букв и цифр, т. е. их коды расположены между кодами 30 и
5А включительно. В коде ASCII (КОИ-8) коды русского алфавита расположены между кодами
СО и FE включительно, поэтому их нельзя использовать в именах переменных; строки, содер­
жащие буквы русского алфавита, в операторах REM и DATA должны заключаться в кавычки.
Иначе, когда программа будет выводиться на экран по команде LIST, вместо букв русского
алфавита будут печататься инструкции языка Бейсик. Например, вместо прописной буквы ”Э”
появится MOD (код FQ, а вместо строчной буквы ”6” — PUT (код С2) и т. д.

При записи по команде SAVE (без параметра А или Р) коды 0Е, 1С, ОС и 0В указывают,
что в следующих двух байтах находятся соответственно номер строки (после кодов, соответст-

229

вующих GOTO и GOSUB), целое число, 16-ричное число и 8-ричное число. Код 1D указывает,
что в следующих четырех байтах находится число одинарной точности. Код 1F указывает, что
в следующих восьми байтах находится число двойной точности.

Десятичное число представляется следующим образом:
если положительное число меньше или равно 9, то оно задается одним байтом, значение

которого лежит в диапазоне 11 — 1А, т. е. О = И, 1 = 12........9 e 1 А;
если число меньше или равно 255, но больше или равно 10, то оно задаемся двумя байта*

ми, код первого байта 0F, а второй байт — число, т. е. число 10 представляется как 0F0A.
Байт со значением 00 является концом программной строки.
Интерпретатор BASIC размещает программу на языке Бейсик в ОЗУ с определенного

адреса (для MBASIC — 61С9). В ячейке 61С9 расположен байт со значением 00. При записи
программы на НГМД значение этого байта меняется на FF. В ячейках памяти ОЗУ 603В и 603С
находится адрес, максимально допустимый для программы на языке Бейсик.

Каждая программная строка занимает N байтов и находится в памяти в формате, пред­
ставленном в табл. П.2.4.

Таблица П. 2.4

Момер Содержимое памяти
байта

1-2 Адрес памяти первого байта следуюцей
строки программы

3-4 Номер строки

5-(N-l) Упакованная строка

N Конец строки (ООН)

В табл. П.2.5 и П.2.6 даны коды и соответствующие им ключевые слова для рассматривав*
мых в справочнике версий языка Бейсик. Число версий в табл. П.2.6 ограничено пятью, так
как в соответствии с построением интерпретаторов в остальных версиях языка функции
включены в состав табл. П.2.5.

Таблица П. 2.5

Ключевые слова в версиях
Код

XYBASIC Бейсик Бейсик Бейсик MBASIC
СПВКТРУМ+2 АГАТ TRS-80

80 END END
81 FOR FOR END
82 NEXT RESET FOR
83 DATA SET NEXT
84 INPUT CLS DATA
85 DEL CMD INPUT
230

Продолжение табл. П. 2.5

Ключевые слова в версиях
Код XYBAS1C Бейсик Бейсик Бейсик MBASIC

______ СПЕКТРУМ+2 _АГАТ________ TRSr80___________

86 DIM RANDOM DIM
87 READ NEXT READ
88 LET GR= DATA LET
89 IF TEXT= INPUT GOTO
8А FOR PR# DIM RUN
8В NEXT IN# READ IF
8С GOTO CALL LET RESTORE
8D GOSUB PLOT GOTO GOSUB
8Е PRINT RUN RETURN
8F INPUT & IF REM
90 READ (a) MGR= RESTORE STOP
91 RETURN (b) HGR- GOSUB PRINT
92 DEF (c) RIBBON= RETURN CLEAR
93 DIM (d) A REM LIST
94 DATA (e) DRAW STOP NEW
95 RESTORE (f) XDRAW ELSE ON
96 STOP (S) HTAB TRON NULL
97 END (h) HOME TROFF WAIT
98 NULL (i) ROT- DEFSTR DEF
99 CALL (J) SCALE DEFINT POKE
9А SCALL (k) SHLOAD DEFSNG CONT
9В OUT (1) TRACE DEFDBL
9С POKE (m) NOTRACE LINE
9D WAIT (n) NORMAL EDIT OUT
9Е UNTRACE (o) INVERSE ERROR LPRINT
9F TRACE (P) FLASH RESUME LLIST
АО UNTRAP (Q) COLOR= OUT
А1 TRAP (r) POP ON WIDTH
А2 BREAK (3) VTAB OPEN ELSE
АЗ UNBREAK SPECTRUM HIMEM: FIELD TRON
Л4 ENABLE PLAY (ti) LOMEM: GET TROFF
А5 DISABT.E RND ONERR PUT SWAP
Аб RANDOMIZE INKEY$ RESUME CLOSE ERASE
А7 REM PI RECALL LOAD EDIT
А8 DELAY FN STORE MERGE ERROR
А9 SAVE POINT SPEED- NAME RESUME
АА LOAD SCREENS LET KILL DELETE
АВ LIST ATTR GOTO LSET AUTO
АС CLEAR AT RUN RSET RENUM
AD NEW TAB IF SAVE DEFSTR
АЕ RUN VALS RESTORE SYSTEM DEFINT
AF CONT CODE A LPRINT DEFSNG
ВО AUTO VAL GOSUB DEF DEFDBL
В1 DELETE LEN RETURN POKE LINE
В2 EDIT SIN REM PRINT
ВЗ RENUM COS STOP CONT

231

Продолжение табл. П. 2.5

Код
Ключевые!

XYBASIC Бейсик
СПЕКТРУМ+2

слова в версиях
Бейсик
АГАТ

Бейсик MBASIC
TRW_____________

В4 MOVE TAN ON LIST WHILE
В5 EXEC ASN WATT LLIST WEND
Вб OPEN ACS LOAD DELETE CMjL

В7 CLOSE ATN GAVE AUTO WRITE
В8 LINPUT LN DEF CLEAR COMMON
В9 MARGIN EXP POKE CLOAD CHAIN
ВЛ DIR INT PRINT BSAVE OPTION
вв SCRATCH SQR CONT NEW RANDOMI
ВС ASSIGN SGN LIST TAB(
BD TIME ABS CLEAR TO SYSTEM
BE ON PEEK GET FN
BF FN IN NEW USING OPEN
СО USR TAB(VARPTR FIELD
С1 I STR$ TO USR GET
С2 — CHRS FN ERL PUT
СЗ Ж NOT SPC(ERR CLOSE
С4 BIN THEN STRING LOAD
С5 \ OR AT INSTR MERGE
С6 AND NOT POINT FIT.ES
С7 <- < = STEP TIMES NAME
С8 > = MEM KILL
С9 <> INKEYS LSET
СА > - LINE Ж THEN RSET
СВ <> THEN NOT SAVE
СС — TO STEP RESET
CD < STEP AND 4-
СЕ > DEF FN OR — TO
CF AND CAT > Ж THEN
DO XOR FORMAT — / TAB(
D1 OR MOVE < **• STEP
D2 MOD ERASE SGN AND USR
D3 JOIN OPEN# INT OR FN
D4 GET CLOSE# ABS > SPC(
D5 FRE MERGE USR — NOT
D6 RND VERIFY FRE < ERL
D7 POS REEP SCRN(SGN ERR
D8 FIRST CIRCLE PDL INT STRING
D9 LAST INK POS ABS USING
DA EOF PAPER SQR FRE INSTR
DB UNS FLASH RND INP
DC INT BRIGHT LOG POS VARPTR
DD SQR INVERSE EXP SQR INKEYS
DE EXP OVER COS RND
DF LOG OUT SIN LOG
EO SIN LPRINT TAN EXP
El COS LLIST ATN COS

232

Окончание табл. П. 2.5

Ключевые слова в версиях
Код XYBASIC Бейсик Бейсик Бейсик MBASIC

СПЕКТРУМ+2 АГАТ TRS-80

Е2 TAN STOP PEEK SIN
ЕЗ ATN READ LEN TAN
Е4 BINS DATA STR$ ATN
Е5 НЕХ$ RESTORE VAL PEEK
Е6 OCTS NEW ASC CVI
Е7 CHR$ BORDER CHR$ CVS
Е8 STR$ CONTINUE LEFTS CVD
£9 ASC DIM RIGHTS EOF
ЕЛ LEN REM MID$ LOC
кН VAL FOR LOF
ЕС LEFTS GOTO MKI$
ED RIGHTS GOSUB MKS$
ЕЕ MID$ INPUT MKD$
EF INSTR LOAD CINT >
F0 IOBYTE LIST CSNG —
F1 SGN LET CDBL <
F2 ABS PAUSE FIX
F3 MSBYTE NEXT LEN —
F4 LSBYTE POKE STR$ *
F5 BCD PRINT VAL /

F6 BIN PLOT ASC
F7 PEEK RUN CHRS ANDF8 ROTATE SAVE LEFTS OR
F9 TEST RANDOMIZE “RIGHTS XOR
FA SENSE IF MID$ EQV
FB RSHIFT CLS IMP
FC LSHIFT DRAW MOD
FD RESET CLEAR \
FE SET RETURN
FF IN COPY

Таблица П. 2.6

Кол ----------------------
Ключевые слова в версиях

Бейсик
ПК8010

Бейсик
ПК8020

MSX-BASIC BASICA

80
81 END END END END
82 FOR FOR FOR FOR
83 NEXT NEXT NEXT NEXT
84 DATA DATA DATA DATA
85 INPUT INPUT INPUT INPUT
86 DIM DIM DIM DIM87 READ READ READ READ
88 LET LET LET LET
89 GOTO GOTO GOTO GOTO
8А RUN RUN RUN RUN
8В IF IF IF IF
8С RESTORE RESTORE RESTORE RESTORE8D GOSUB GOSUB GOSUB GOSUB
8Е RETURN RETURN RETURN RETURN8F REM REM REM REM
90 STOP STOP STOP STOP
91 PRINT PRINT PRINT PRINT
92 CLEAR CLEAR CLEAR CLEAR
93 LIST LIST LIST LIST
94 NEW NEW NEW NEW
95 ON ON ON ON
96 WAIT WAIT
97 COM DEF DEF
98 DEF DEF POKE POKE
99 POKE POKE CONT CONT
9А CONT CONT CSAVE
9В CLOAD
9С OUT OUT
9D MOTOR MOTOR LPRINT LPRINT
9Е LPRINT LLIST LLIST
9F LLIST CLS
АО WIDTH WIDTH
А1 WIDTH WIDTH ELSE EI.SE
А2 ELSE TRON TRON.
?3 TRON TRON TROFF TROFF
А4 TROFF TROFF SWAP SWAP
А5 SWAP SWAP erase ERASE
Аб ERASE ERASE error EDIT
А7 EDIT EDIT RESUME ERROR
А8 ERROR Error DELETE RESUME
А9 RESUME resume AUTO DELETE
АА DELETE DELETE RENUM AUTO
АВ AUTO AUTO DEFSTR RENUM

234

Продолжение табл. П. 2.6

Ключевые слова в версиях
Код Бейсик

ПК 8010
Бейсик
ПК 8020

MSX-BASIC BASICA

АС RENUM RENUM DEFINT DEFSTR
AD DEFSTR DEFSTR DEFSNG DEFINT
АЕ DEFINT DEFINT DEFDBL DEFSNG
AF DEFSNG DEFSNG LINE DEFDBL
ВО DEFDBL DEFDBL OPEN LINE
В1 LINE LINE FIELD WHILE
В2 SPEED SPEED GET WEND
ВЗ PUT CALL
В4 CLOSE
В5 LOAD
Вб MERGE
В7 FILES WRITE
В8 LSET OPTION
В9 RSET RANDOMIZE
ВА SAVE OPEN
вв RANDOMIZE LFILES CLOSE
ВС BEEP BEEP CIRCLE LOAD
BD SYSTEM COLOR MERGE
BE DRAW SAVE
BF OPEN PAINT COLOR
СО BEEP CLS
С1 PLAY MOTOR
С2 PSET BSAVE
СЗ CLOSE PRESET BLOAD
С4 LOAD LOAD SOUND SOUND
С5 MERGE MERGE SCREEN. BEEP
С6 FILES VPOKE PSET
С7 NAME SPRITE PRESET
С8 KILL VDP SCREEN
С9 BASE KEY
СА CALI. LOCATE
СВ SAVE SAVE TIME
СС KEY TO
CD LFILES MAX THEN
СЕ CLS CLS MOTOR TAB(
CF PCLS PCLS BLOAD STEP
DO COLOR COLOR BSAVE USR
D1 CIRCLE CIRCLE DSKO FN
D2 DRAW SET SPC(
D3 PAINT PAINT NAME NOT
D4 PSET PSET KILL ERL
D5 PRESET PRESET IPL ERR
D6 LOCATE LOCATE COPY STRING
D7 SCREEN SCREEN CMD USING
D8 LOCATE INSTR
D9 LOT LUT TO

235

Окончание табл. П. 2.6

Ключевые слова в версиях
Код Бейсик Бейсик MSX-BASIC BASICA

ПК 8010 ПК 8020

DA RELOC RELOC THEN VARPTR
DB TAB(CSRLIN
DC TO TO STEP POINT
DD THEN THEN USR OFF
DE TAB(TAB(FN INKEYS
DF STEP STEP SPC(
EO USR USR NOT
El FN FN EHL
E2 SPC(SPC(ERR
E3 NOT NOT STRINGS
E4 EHL ERL USING
E5 ERR ERR INSTR
E6 STRING? STRINGS « >
E7 USING USING VARPTR
E8 INSTR INSTR . CSRLIN <
E9

VARPTR
< ATTRS +

EA VARPTR DSKIS
EB CSRLIN CSRLIN OFF *EC OFF OFF INKEYS
ED INKEY$ INKEYS POINT
EE
EF
FO
Fl
F2
F3
F4
F5

POINT
>

<
+

♦

POINT
>

<
+

♦

>

<
+

*

A

AND
OR
XOR
EQV
IMP
MOD
\

F6 *■ AND
F7 AND AND OR
F8 OR OR XOR
F9 XOR XOR EQV
FA EQV EQV IMP
FB IMP IMP MOD
FC MOD MOD \
FD \ \
FE
FF

Таблица П. 2.7

Функции в версиях
Код

MBASIC
« •• — * « — -- - — — — « — — — — — —’ — — — — —

Бейсик
ПК8010

Бейсик
ПК8020

MSX-BASIC BASICA

01 LEFTS LEFT$ LEFTS LEFTS LEFTS
02 RIGHTS RIGHTS RIGHTS RIGHTS RIGHTS
03 MIDS MIDS MIDS MIDS MIDS
04 SGN SGN SGN SGN SGN
05 INT INT INT INT INT
06 ABS ABS ABS ABS ABS
07 SQR SQR SQR SQR .SQR
08 RND RND RND RND RND
09 SIN SIN SIN SIN SIN
0Л LOG LOG LOG LOG LOG
ОВ EXP EXP EXP EXP EXP
ОС COS COS COS COS COS
0D TAN TAN TAN TAN TAN
ОБ ATN ATN ATN ATN ATN
OF FRE FRE FRE FRE FRE
10 INF BINS BINS INP INP
11 POS POS POS POS POS
12 LEN LEN LEN LEN LEN
13 STRS STR$ STRS STRS STRS
14 VAL VAL VAL VAL VAL
15 ASC ASC ASC ASC ASC
16 CHRS CHRS CHR$ CHRS CHRS
17 PEEK PEEK PEEK PEEK PEEK
18 SPACES SPACES SPACES VPEEK SPACES
19 OCTS OCTS OCTS SPACES OCTS
1А BEXS HEXS HEXS OCTS HEX$
1В LPOS LPOS HEXS LPOS
IC CINT CINT CINT LPOS CINT
ID CSNG CSNG CSNG BINS CSNG
IE CDBL CDBL CDBL CINT CDBL
IF FIX FIX FIX csHg FIX
20 CDBL PEN
21 FIX STICK
22 STICK •STRIG
23 STRIG EOF
24 PDL LOC
25 PAD LOF
26 DSKF
27 FPOS
28 CVI
29 CVD
2A CVS
2B CVI EOF
2C CVS LOC

237

Окончание табл. П. 2.7

Функции в версиях
Код MBASIC Бейсик Бейсик MSX-BASIC BASICA

ПК 8010 ПК 8020
2D CVD LOF
2Е MKI$
2F EOF EOF MKS$
30 LOC LOC MKD$
31 LOF LOF
32 MKI$
33 MKS$
34 MKD$

Список литературы

1. ГОСТ 27787—88. Язык программирования Бейсик. .
2. Кетков Ю. Л. Диалог на языке Бейсик для мини- и микроЭВМ. — М.: Наука, 1988. — 368 с.
3. Морил Г. Бейсик для ПК ИБМ:Пер. с англ./Под рад. С. В. Черемных. — М.: Финансы и

статистика, 1987. - 208 с.
4. Пул Л. Работа на персональном компьютере. - М.: Мир, 1986. - 383 с.
5. Корчак А. Е. Язык программирования Бейсик для микроЭВМ. - М.: Изд. МЦНТИ,

1988.- 130 с.
6. Башмакова Б. С., Либеров А. Б. Язык программирования Бейсик. — М.: Изд.

МЦНТИ, 1987. -184 с.
7. Кучура Н. А., Ходош М. В., Цагельский В. И. Персональные ЭВМ единой системы.

Бейсик. - М.: Финансы и статистика, 1988. -149 с.

8. Блэнд Г. Основы программирования на языке Бейсик в стандарте MSX: Пер. с англ. —
М.: Финансы и статистика, 1989. - 208 с.

9. Дьяконов В. IL Применение персональных ЭВМ и программирование на языке Бей­
сик. — М.: Радио и связь, 1989. - 304 с.

10. Уолш Б. Программирование на Бейсике: Пер. с англ. — М.: Радио и связь, 1988. — 336 с.

Оглавление
стр.

Предисловие.. 3

Г лав а 1. Язык Бейсик и его место в системах программирования.............. 5

1.1. Основные характеристики и версии языка Бейсик... 5
1.2. Отечественные Бейсик-системы... 8
1.3. Основные отличия версий языка Бейсик............. .. 8
1.4. Основные концепции Государственного стандарта языка Бейсик........................... 10
1.5. Загрузка интерпретаторов и выход в операционную систему.................................. 11
1.6. Трансляторы языка Бейсик... 16

Глава 2. Основные элементы языка Бейсик............................... 17

2.1. Режимы работы... 17
2.2. Формат программной строки.. 18
2.3. Синтаксические элементы программы... 19
2.4. Данные и их описание... 24
2.5. Перевод чисел одной точности в числа другой точности.. 29
2.6. Выражения, типы операции.. 30
2.7. Строковые операции.. 36
2.8. Описание инструкций... 37

Глава 3. Основы программирования на языке Бейсик....................... 39

3.1. Общие рекомендации... 39
3.2. Ввод-вывод данных.. 40
3.3. Изменение последовательности выполнения программы... 50
3.4. Встроенные функции.. 56
3.5. Работа с оперативной памятью и портами ввода-вывода.. 59
3.6. Описание инструкций.. 61

Глава 4. Работа с внешними устройствами................................ 96

4.1. Файловая организация... 9b
4.2. Работа с функциональными клавишами.. 122
4.3. Дополнительные возможности работы с экраном дисплея... 125
4.4. Работа с периферийными устройствами.. 126
4.5. Работа с временными интервалами... 131
4.6. Работа с коммуникационными сетями...135

Глава 5. Работа с программами, написанными на языке Бейсик, и средства отладки
программ...138

5.1. Ввод новой программы... 138
5.2. Редактирование программ.. 140
5.3. Работа программиста по исправлению ошибок...150
5.4. Моделирование ошибочных ситуаций.. 162
5.5. Описание инструкций.. 163

239

Глава 6. Работа с графическими операторами и операторами звука.............. 172

6.1. Графический экран... 172
6.2. Дисплейный процессор... 175
6.3. Построение изображения (статическая и динамическая графика)........................... 176
6.4. Операторы звука и музыки.. 177
6.5. Описание инструкций.. 177

Глава 7. Примеры построения программ, написанных на языке Бейсик...........210

Приложение 1. Перечень ключевых слов................................ 220
Приложение 2. Внутреннее представление программ, написанных на языке Бейсик............ 227
Список литературы.............. 238

Справочное издание

Башмакова Елена Станиславовна, Витенберг Исаак Моисеевич,
Либеров Александр Борисович, Пашков Александр Леонидович

ПРОГРАММИРОВАНА МИКРОЭВМ НА ЯЗЫКЕ БЕЙСИК

Справочник

Заведующая редакцией Г. И. Козырева
Редактор В.И. Ченцова

Переплет художника Н. А. П а ш у р о
Художественный редактор А.В.Прбценко
Технический редактор А. Н. Золотарева

Корректор А. К. Акименкова

ИБ№1778

Подписано в печать с оригинал-макета 22.02.91 Формат 60X 881 /16 Бумага офсетная №
Гарнитура "пресс-роман” Печать офсетная Усл.печ.л. 14,70 Усл.кр.-отт. 14.
Уч.изд.л. 16,21 Тираж 50 000 экз. Изд. № 22259 Зак. № 6301 Цена 3 р.

Издательство "Радио и связь”. 101000 Москва, Почтамт, а/я 693

Ордена Октябрьской Революции и ордена Трудового Красного Знамени МПО "Первая Образцовая
типография" Государственного комитета СССР по печати 113054, Москва, Валовая, 28.

