
ОБЩЕСТВО «ЗНАНИЕ» РСФСР

Ленинградская организация

А. Ю. БУРАГО;
В. А. КИРИЛЛИН,

кандидат физико-математических наук;
И. В. РОМАНОВСКИЙ,

доктор физико-математических наук

ФОРТ —язык для
МИК РОПРОЦЕССОРОВ

(В помощь лектору)

Ленинград
1989

ББК32.973
Б91

Бураго А. Ю., Кириллин В. А., Романовский И. В.
Б91 Форт — язык для микропроцессоров- — Л.: Знание. 1989.

36 с.
(О-во «Знание» РСФСР. Ленингр. организация). 26 000 экз.Рассказывается о недавно появившемся и бурно завоевывающем популяр­ность языке программирования. Он служит простым и эффективным средством программирования для мини- и микро-ЭВМ. Его легко приспособить для конкрет­ных областей применения. Язык Форт получил широкое распространение как язык для непосредственного управления оборудованием, в том числе роботами: Форт включен в состав школьного компьютера.Брошюра предназначена для лекторов, а также для лиц, изучающих и инте­ресующихся программированием на мини- и микро-ЭВМ, и для широкого круга читателей.

Б 2405000000—02628__88 ББК32.973
073(02)—89

Издание рекомендовано секцией пропаганды естественнонауч­
ных знаний при Правлении Ленинградской организации общест­
ва «Знание» РСФСР.

Рецензенты: С. Н. Баранов, кандидат физико-математических наук;
С. М. Се ле дж и.

© О-во «Знание» РСФСР.
Ленингр. организация, 1989 г. „

Эта брошюра является начальным, но обстоятельным пособием
для изучения языка Форт (от англ. FORTH — вперед) и для само­
стоятельной работы на компьютере. Если Вы профессионал и зна­
комы с другими языками программирования, то на время забудьте-
их. Для работы с системой Форт необходимо знать лишь основы
программирования.

Форт — необычный язык программирования. Основной его
нрйнцип — в простоте.

Форт — это язык одновременно высокого и низкого уровней,
набор модулей-инструментов для создания программ и методоло­
гия программирования.

Форт — это скорость, компактность, мобильность. Он реализо­
ван практически на всех отечественных и зарубежных компьютерах
и особенно эффективен при разработке программ для микропроцес­
соров и микро-ЭВМ. Известно, что Форт сокращает время разра­
ботки программ благодаря модульности и диалогу.

Форт применяется:
при разработке трансляторов и операционных систем;
для управления станками, роботами, медицинским оборудова­

нием;
в системах управления базами данных;
в задачах машинной графики;
₽ системах искусственного интеллекта.
Во всем этом есть одна тонкость. Форт дает разнообразные сред­

ства, но возлагает на программиста большую, чем в других языках,
ответственность за эффективность их использования.

Программирование на Форте отличается прежде всего тем, что
Форт — диалоговая система, вся работа на нем выполняется в при-

■ еутствии человека, который должен дать ЭВМ задание и в процес­
се выполнения этого задания может или даже должен вмешивать­
ся в вычисления.

■ Для общения Форт предоставляет человеку возможность вво­
да информации в ЭВМ и получения информации. Обычно в совре­
менных условиях для ввода и вывода используется дисплей — уст­
ройство, по-видимому, уже хорошо известное. Возможность. «раз­
говора с машиной» неопытного человека может испугать: если яс­
но, что машина может написать на экране дисплея вполне понят­
ный текст, то другая часть общения («что же я скажу машине?»)
действительно загадочна.
- Нужно знать, о чем Вы хотите поговорить с ЭВМ. В языке Форт
имеется сравнительно небольшой словарь, с которым можно быст­
ро освоиться и при его помощи дать машине задание.

В процессе диалога с ЭВМ Вы можете договариваться с ней о
3

введении новых слов, которые Вы ей сами объясняете с помощью
уже известных. Это дает возможность каждому человеку формиро­
вать свой лексикон для общения с машиной, отражающий его соб­
ственные привычки, вкусы и вычислительные потребности. Можно
переименовывать и первоначальные слова, например, если Вам не
понравится слово SWAP (это английский глагол), его можно заме­
нить русским словом ПЕРЕСТАВЬ, что будет хотя и понятнее, но
длиннее.

Опыт показывает, что люди, работающие с Фортом, очень быст­
ро привыкают к его первоначальному словарю и правилам форми­
рования слов, так что такие замены остаются упражнениями для
новичков.

Форт представляет большой интерес и тем, какой набор слов
его авторы сочли необходимым включить в минимум. Первоначаль­
но многое может показаться необычным. Но не торопитесь делать
критические выводы. Описываемые здесь средства были выбраны
в результате долгой работы и внимательного анализа большим кол­
лективом опытных программистов.

СЛОВА И ИХ ВЫПОЛНЕНИЕ

Система Форт предназначена для работы в диалоговом режи­
ме. Программист, работающий с системой, имеет в своем распоря­
жении какое-либо техническое устройство, позволяющее ему вво­
дить нужные тексты и получать ответы. Чаще всего в качестве та­
кого устройства используется видеотерминал — своеобразное со­
четание телевизора и пишущей машинки. На экране телевизора
текст выглядит как на странице книги или машинописи (наверное,
читатель уже видел персональные компьютеры или дисплеи круп­
ных вычислительных машин или терминалы системы для продажи
железнодорожных билетов). Текст появляется на экране по коман­
дам ЭВМ или, если инициатива передана работающему, при нажа­
тии им клавишей клавиатуры.

При начальном запуске система представляется и передает
управление программисту, ожидая от него ввода йнформации.
Обычно в этом случае на экране появляется «подсказка» — услов­
ный значок, показывающий ожидание ввода. Программист должен
набрать после «подсказки» необходимый текст, проверить и испра­
вить его, если требуется, и передать системе нажатием клавиши
ввода.

После этого система начинает исполнять приказы программис-'
та, причем в этих приказах может быть предусмотрена печать тек­
стов на экране. Действия, вызывающие появление текстов на экра­
не дисплея, очень похожи на действия с пишущей машинкой, и мы
будем называть такие действия печатью, хотя переноса информа­
ции на бумагу, так привычную для термина «печать», здесь обычно
не бывает.

После того, как система выполнила все переданные ей приказы,
4)

она переходит в состояние ожидания ввода. Программист наби­
рает новый текст и снова нажимает клавишу ввода, тем самым
продолжая диалог с Форт-системой.

Тетерь о тексте, который программист передает системе. Основ­
ным понятием системы Форт является слово. Слово — это любая
последовательность символов, отличных от пробелов.

Некоторые слова Форт-системе знакомы, другие — она узнает
из вводимых текстов.

Текст — это любая последовательность слов, разделенных про­
белами.

Вот пример текста:
Не забудь, пожалуйста , выключить электроприборы .
Этот текст состоит из семи слов, так как вторая запятая и точ­

ка в нашем определении слова — отдельные слова (очень важ­
ные для Форта).

АРИФМЕТИЧЕСКИЙ СТЕК
В языке Форт стеком называется хранилище целых чисел, ис­

пользуемое для размещения аргументов и результатов операций
Языка.

На каждое число в стеке отводится 2 байта (элемента памяти). ’
Хранимые в стеке числа упорядочены по положению. Будем

считать, что последнее число находится справа. Позиция, занятая
крайним правым числом, называется вершиной стека. Стек харак­
теризуется тем, как выполняются основные операции хранили­
ща — добавление и удаление информации. При Добавлении числа
в стек оно приписывается справа от имеющихся, при снятии числа
со стека удаляется крайнее правое число.

Введенное число всегда помещается на вершину стека. Слово
DROP (снять) снимает число с вершины стека. Слово • (точка)
берет из стека число и печатает его. Слово S. печатает весь стек,
оставляя его неизменным.

В дальнейшем действие слов, служащих для изменения состоя­
ния стека, будем показывать на диаграмме

стек до операции стек после операции,
причем не затрагиваемую операцией часть стека будем изображать
многоточием.

Например, слово DUP (дублировать) добавляет в стек еще од­
но значение, равное • тому, которое находится на вершине стека.
Это слово представляется диаграммой
DUP (дублировать) ... а а а

Далее без комментариев
DROP (снять) ... а
SWAP (обменять) ... а b b а
OVER (через) ...aj> . а b а
ROT (вращать) ... а b с с a
—ROT ... а b с с а b

5

2DROP ... a b -^ ...
2DUP ...ab . a b a b
2SWAP ...abed c d a b . ,
2OVER ...abed . a b c d a b
PICK (взять) ... a {n чисел) n ->- ... а {те же n чисел) a
(В частности, 0 PICK эквивалентно DUP, а 1 PICK — слову OVER).

ROLL (повернуть) ... a {n чисел) n -> ... а {те же n чисел) a
(В частности, 1 ROLL эквивалентно SWAP, a 2 ROLL слову ROT).
Слово DEPTH (глубина) кладет в стек число, равное глубине сте­
ка •— количеству чисел, находившихся в стеке.

Проследим, например, выполнение следующего текста.
1 2 3 DOP DEPTH —ROT 2OVER S.

Выпишем текст в столбик, сопровождая каждое слово состоя­
нием стека после его исполнения.

DEPTH (1 2 3 3 4)
—R OT (1 2 4 3 3)
2OVER (1 2 4 3 3 2 4)

1
2
3
DUP

(1)
(1 2)
(1 2 3)
(1 2 3 3)

А теперь сами:
1 2 3 OVER 5 —ROT DROP 7 2SWAP ROT S.

Какие слова надо выполнить, чтобы изменить стек в соответст­
вии со следующей диаграммой:

nl п2 пЗ п4 -*• п4 пЗ п2 nl

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Арифметический стек — основное поле для выполнения ариф­
метических действий и хранения промежуточных .результатов вы­
числений. Даже простейшие арифметические операции берут аргу­
менты из стека и помещают результаты обратно в стек.

Знак операции (точнее слово, обозначающее операцию) пишет­
ся после того, как аргументы в стеке уже размещены. Текст

13 3 —
помещает в стек число 10, так как слово — (минус) извлекает из
стека два числа, сперва вычитаемое, потом уменьшаемое, и поме­
щает в стек их разность:

— ... а b -► ... а—b
С другими операциями все обстоит аналогично:

4- ... а b -► ... а+Ь
X ... а b ^ ... аХЬ
ABS (абсолютное значение) ... а -> ... |а|
NEGATE (обратный знак) ... а —а

С

г/ ... a b целая часть
MOD ... а b -> ... остаток
/MOD ... а b -* ... остаток целая часть

В трех последних словах имеются в виду остаток и целая часть
частного от деления а на Ь.

Таким образом, если в стеке лежат числа 26 и 7, то слово / пре­
вратит их в 3, слово MOD в 5, а слово /MOD в пару чисел 5 и 3.

Имеются специальные слова для действий с 1 и 2 (они выпол­
няются немного быстрее):

1+ ... а -> ... а+1
Аналогично работают 1— 2+ 2— 2Х 2/ .

Числа на стеке могут восприниматься различным образом в за­
висимости от того, какое слово их использует. В отводимых двух
байтах (16 двоичных разрядах) может уместиться лишь 2,6=65536
различных значений числа. Обычно они трактуются как числа из
диапазона от —215 до 215—1, но есть слова, которые воспринимают
их как числа от 0 до 216—1. Следующие слова выполняют пораз­
рядные логические операции над двоичным представлением чисел;
в этих операциях числа трактуются как наборы из шестнадцати
битов:

AND (И) ... а b -> ... aANDb
OR . (ИЛИ) ... a t> -> ... aORb
NOT (НЕ) ...а -> ... NOTa
XOR (ИСКЛЮЧАЮЩЕЕ ИЛИ) ,а b . aXORb

НОВЫЕ СЛОВА

Помимо уже существующих в системе слов можно создавать
новые, определяя их действия через уже известные системе. Ис­
полнение созданного слова — это исполнение действий, входящих
в его описание. Описание начинается словом : (двоеточие) и кон­
чается словом ; (точка с запятой). Сразу после слова : стоит опи­
сываемое слово, и далее — входящие в него действия. Например,
текст:

: S2 DUP X SWAP DUP X + ;
определяет слово S2, вычисляющее сумму квадратов двух чисел
из стека,

S2 ... а b аХа+ЬХЬ

При разработке новых слов нужно внимательно следить за измен
нениями стека, делать комментарии. Комментарии ограничиваются
скобками: слово ((открывающая скобка) пропускает следующий
за ним текст до первого символа) (закрывающая скобка), напри­
мер,

7

S2 (a b -> аХа+ЬХЬ)
DUP (...abb — теперь только результат)
X SWAP (... b X b a — » »)
DUP X (... b X b a X a — » » »)
+ ; (определение закончено)

После выполнения описания слова сразу же могут использо­
ваться и в вычислениях и в определении других слов. Например,
сумму четырех квадратов можно определить так:

: S4 (а b с d -> aXa+bXb+cXc+dXd)
S2 —ROT S2 + ;

Слово WORDS (слова) выводит на экран список всех уже из­
вестных системе слов (от самых новых к самым старым). Можно
отменить уже определенное слово («забыть» его), но при этом за­
бываются также и все слова, определенные позже. Для этого нужно
выполнить текст из слова FORGET (забыть) и забываемого слова:

FORGET S2
Такой способ «забывания» вполне естественен: система распо­

лагает в памяти машины информацию о вновь определенных сло­
вах подряд, и забывание — это освобождение памяти тоже подряд,
т. е. всей памяти, начиная с некоторого места. Можно сказать, что
память, отведенная для определений слов, организована как стек.

Вы наверное обратили внимание на то, что при выполнении
описания (например, описания слова S2) входящие в него уже из­
вестные слова не должны выполняться сразу же (слово DUP не
дублирует вершину стека и т. д.), иначе не получится заготовки
слова для последующего исполнения. В любой момент времени си­
стема находится в одном из двух состояний — исполнения или
компиляции. Обычно система находится в первом состоянии, в ко­
тором вводимые слова сразу же исполняются. Исполнение слова :
(Двоеточие) переводит систему в состояние компиляции, при кото­
ром вводимые слова запоминаются для последующего исполнения.

Приведем еще два примера. Слово 8M0D эквивалентно тексту
8 MOD, но использует логические операции. Интересно слово
LAST1 (последний бит), выделяющее в двоичном разложении чис­
ла младшую единицу.

: 8M0D 7 AND ;
: LAST1 DUP DUP 1— XOR AND ;

Это последнее слово — хорошее упражнение на применение логи­
ческих операций.

Слово ; завершает компиляцию и переводит систему в режим
Исполнения. Таким образом, само это слово не компилируется, а
исполняется, несмотря на режим компиляции. Это происходит по-
тому> что оно обладает специальным признаком немедленного ис­
полнения.
8

УСЛОВНОЕ ИСПОЛНЕНИЕ
При определении нового слова могут потребоваться знакомые

Вам из других языков конструкции, организующие условное и ци­
клическое исполнение. Для этого должны быть предусмотрены и
логические величины, принимающие традиционные значения исти­
на и ложь. Эти значения представлены целыми числами, причем
истина соответствует числу —1 (двоичные разряды этого числа
состоят из 16 единиц), а ложь соответствует 0 (16 двоичных ну­
лей). Для них имеются и стандартные константы TRUE (истина) и
FALSE (ложь), кладущие на стек соответственно числа —1 и 0.
Логические значения получаются при выполнении некоторых слов,
предназначенных для сравнения чисел.

Слова арифметического сравнения:
> ... а b -> ... а>Ь (т. е. при a>b TRUE

иначе FALSE)
< ... а b -> ... а<Ь
= ... а b -> ... а=Ь
0= ... а —. а=0
0> ... а -> ... а>0
0< ... а -*• ... а<0

Над логическими значениями можно совершать логические опе­
рации, приведенные ранее; заметим, что константы TRUE и FALSE
подобраны так, что после выполнения логических операций над ло­
гическими значениями снова получаются логические значения. Опи­
сываемые дальше управляющие конструкции воспринимают числа
из стека как логические значения следующим образом: 0 соответ-*
ствует значению ложь, любое другое число — истине.

Для организации условного исполнения в языке Форт преду­
смотрены слова IF (если), ELSE (иначе) и THEN (то). Они исполь­
зуются в конструкциях

IF <часть-если> ELSE <часть-иначе> THEN
IF <часть-если> THEN.

Слово IF берет из стека логическое значение, и, в случае, если
это значение — истина, т. е. не нуль, исполняет текст <часть-ес-
ли>; в противном же случае исполняется <часть-иначе>, если
она есть. Дальше управление передается на текст, следующий за
THEN. Заметим, что использование управляющих слов требует со­
стояния компиляции; таким образом, можно использовать их толь­
ко при определении новых слов.

Пример. Стандартное слово ABS можно было бы определить
так:

: ABS (... а ... |а|)
DUP 0 < (а а<0)
IF (а)
NEGATE THEN ;

9

Пример другой конструкции разберите сами и постарайтесь
улучшить.

: МАХ (... а b -*• шах {а, Ь})
2DUP > IF DROP ELSE SWAP DROP THEN ;

Слово MAX и аналогичное ему MIN входят в стандарт языка Форт.
Конечно же, конструкции IF могут быть вложенными; нужно

только следить за скобочными соответствиями слов IF и THEN.

циклы

Для организации циклов в языке Форт предусмотрены слова
BEGIN (начало), WHILE (пока), REPEAT (повторить) и UNTIL
(пока — не), используемые в конструкциях
BEGIN <часть-начало> WHILE <часть-повторение> REPEAT

BEGIN «участь-начало > UNTIL.
В последней конструкции после исполнения текста <часть-на-

чало> слово UNTIL берет из стека оставленное этим текстом ло­
гическое значение; в том случае, если это значение ложь, снова ис­
полняется «участь-начало>, потом UNTIL и т. д.; итерации пре­
кращаются, когда UNTIL возьмет из стека значение истина. При­
мер вычисления факториала может выглядеть так:
: FACT (... п —>■... n I)

DUP 2< IF DROP 1 (1 если п<2; то n! = l —)
ELSE (п иначе)
DUP (n n s=n k=n)

(Теперь лежащие в стеке числа будут представлять)
(s — накопленное произведение и к — множитель)

BEGIN
1—
SWAP OVER X SWAP
DUP 1 =
UNTIL
DROP THEN ;

(s к
(s к' k'=k—1
(s' k' s'=sXk
(s к к=1 если k=l, to s=n!
(n! 1 иначе повторить
(n!

Конструкция цикла типа WHILE
BEGIN ' «участь-начало >• WHILE «участь-повторение >

REPEAT используется, когда в цикле есть действия, которые в за­
ключительной итерации не нужны: первоначально выполняется
«участь-начало>, слово WHILE снимает со стека логическое зна­
чение и, если это истина, то выполняются тексты «участь-повторе­
ние >, <часть-начало>, снова слово WHILE и т. д. Когда слово
WHILE снимет со стека ложь, выполнение цикла закончится и нач­
нет выполняться текст, следующий после REPEAT.
10

Отметьте, что значение истина здесь соответствует продолже­
нию вычислений, в отличие от циклов типа UNTIL.

Пример 1. Наибольший общий делитель двух положительных
чисел.

по Евклиду): НОД (а b -> НОД [а, b]
2DUP < IF SWAP THEN
BEGIN DUP
WHILE
2DUP MOD
ROT
DROP
REPEAT DROP ;

(теперь a > = b)
(abb >

(пока b > 0)
(a b aMODb)
(b aMODb a)
(a' b' — новые значения а и b)
(НОД (a. b) (все))

: UNITS (а -> число единиц в а)
Пример 2. Подсчет числа единиц в двоичном разложении числа.

0 SWAP (0 а)
(В стеке лежат два числа: счетчик числа единиц s)
и постепенно изменяемое число а)

BEGIN . (s а').
DUP (sa' а')
LAST1 DUP (s a'd d)
WHILE (пока d > 0)

— (s a")
SWAP 1+SWAP (s' a")
REPEAT 2DROP ; (s)

Более сложная конструкция цикла — цикл со счетчиком —
описана дальше.

КОНСТАНТЫ И ПЕРЕМЕННЫЕ

Вы уже познакомились с одним из способов введения новых
слов при помощи определяющего слова : . Сейчас появятся еще два
определяющих слова:

Слово CONSTANT (константа) в тексте
CONSTANT <имя>

определяет новое слово <имя> как константу со значением, рав­
ным числу на вершине стека, и снимает со стека это число. В даль­
нейшем выполнение слова <имя> кладет это число в стек. Так,
после исполнения текста

80 CONSTANT LINESIZE
слово LINESIZE (длина строки) будет класть в стек число 80.

Определяющее слово VARIABLE (переменная), которое исполь­
зуется в конструкции:

VARIABLE <имя>
11

резервирует в памяти компьютера 2 байта под значение переменной
<имя>. Исполнение слова <имя> кладет в стек число — адрес
зарезервированного места. Этот адрес может использоваться дру­
гими словами.

Вот три важных слова, использующих адреса:
Слово ! (восклицательный знак, читается «запомнить») служит

для записи числа по данному адресу (addr):
! ... a addr -> ... [addr] : =а

Слово @ (читается «взять») кладет в стек число, лежащее по
адресу, взятому из стека:

@ addr~>...a а= [addr]
Слово + ! прибавляет величину а к числу по адресу addr:

+ ! ... a addr ... [addr] : = [addr] +а
Пример. Текст

А @ 5 + В ! (АиВ — переменные)
соответствует оператору В : =А+5 других языков программиро­
вания.

Слова, определенные с помощью CONSTANT и VARIABLE,
практически ничем не отличаются от других слов. В частности, их
можно «забывать» с помощью слова FORGET. Сами слова
CONSTANT, VARIABLE и : являются частньши случаями более об­
щих конструкций — определяющих слов. Со способами их задания
читатель познакомится ниже.

КОДОФАЙЛ
Основной участок памяти, находящийся в распоряжении про­

граммиста, называется кодофайл. В нем, в частности, располага­
ется и словарь системы, включая память, зарезервированную под
константы и переменные. Память распределяется по возрастанию
адресов — свободная память находится в конце кодофайла. Та­
ким образом, кодофайл тоже представляет собой стек — стек па­
мяти. Мы будем называть вершиной кодофайла первый свободный
байт памяти. Как видите, в кодофайле размещены как программа,
так и информационные объекты. Такое размещение требует от про­
граммиста особой осторожности в работе с памятью — изменения
в ячейках памяти с неправильным адресом нарушают работу си­
стемы.

Вот некоторые базовые слова для работы с кодофайлом.
На стек кладется адрес вершины кодофайла:

HERE (здесь) ... ~> ... addr
Слово ALLOT резервирует п байтов свободной памяти — адрес

вершины кодофайла увеличивается на п (а при п<0 уменьшав
ется):

ALLOT (занять) ... п .
12

Занятие двух байтов в кодофайле и запись туда п:

При работе с памятью кодофайла широко используются слова
@ и ! .

Пример. Следующее слово резервирует в кодофайле память под
и целых чисел (число п берется из стека) и кладет в стек адрес на­
чала зарезервированного места:

: 2ALLOT
HERE
SWAP
2 X ALLOT ;

(n а)
(па)
(an)

Теперь легко описать, например, слова, заменяющие привычную
по другим алгоритмическим языкам конструкцию массива:

: (I) [i а-> a (i)]
OVER + + ;

После выполнения следующего текста
N (N — константа — число элементов массива)1
2ALLOT (на стеке адрес начала массива
CONSTANT В

текст В (I) будет снимать со стека номер элемента в массиве В и
класть в стек адрес этого элемента.

В (I) (i addr)
Разумеется, никаких проверок корректности номера элемента

не делается. ' *

СИМВОЛЫ

Для представления символьной информации отводится по од­
ному байту памяти на каждый символ. Таким образом, каждому
символу сопоставляется число от 0 до 255, которое называется
его кодом. В разных ЭВМ используются разные кодировки. В оте­
чественных машинах, где требуется добавить к множеству симво­
лов кириллицу, наиболее распространена кодировка КОИ-8, яв­
ляющаяся расширением распространенной в мире кодировки
ASCII. Кодировка КОИ-8 приведена в приложении К.

Имеются слова для работы с отдельными символами:
С@ ... addr ~> . .. с

В стек помещается число, равное содержимому байта по адресу
addr. (Отметьте, что адрес обычного двухбайтового целого чис­
ла — это адрес его правого байта).

С ! ... с addx* .
18

В байт по адресу addr записывается символ с.
С, ... с

Слово, аналогичное слову , (запятая), но резервирующее (и запи­
сывающее) только один байт.

KEY (клавиша) ... -> .. . с (ожидание)
При выполнении этого слова система переходит в ожидание, пока
не будет нажата клавиша какой-либо литеры на клавиатуре дис­
плея. Код этой литеры и кладется в стек.

EMIT (выдать) ... с -> ...
Символ с будет напечатан.

Слово BL кладет в стек код пробела. Во многих реализациях
встречается очень полезное слово С", которое кладет в стек код
первой следующей за ним литеры, не являющейся пробелом. Сло­
во С" делает текст более наглядным, чем при непосредственном ис­
пользовании кодов. Например, чтобы напечатать знак плюс, нужно
выполнить текст

С" + EMIT ।
А как быть с кодом пробела? Его кладет в стек слово BL.

РАБОТА С УЧАСТКАМИ ПАМЯТИ М

Часто приходится выполнять действия сразу над большими
участками памяти. Участок памяти в таких действиях определяет­
ся адресом его начального байта и длиной.

FILL (запомнить) . .. addr п с
Содержимое п байтов, начиная с адреса addr, заполняется млад­
шим байтом с.

BLANK (заполнить пробелами) . . . addr п -> . ..
Эквивалентно FILL с заполнением кодом пробела.

ERASE (стереть) ... addr п .
Эквивалентно тексту О FILL.

CMOVE (переслать) .. . addr 1 .addr2 n -> ...
Перемещение участка в п байтов с началом addri по адресу addr2.

Слово CMOVE> отличается от CMOVE тем, что начинает пе­
ремещение с последнего байта участка. Различие этих слов суще­
ственно при перекрытии участков. Вот небольшой пример. Пусть
на вершине стека лежит адрес участка памяти в 12 байтов, где
записан текст «Форт-система». Тогда исполнение

DUP 4 + 8 CMOVE
превратит этот текст в «ФоргФортФорт», а если выполнить

14

CMOVE >> вместо CMOVE, то получится «ФортФорт-сис». Заме­
тим, что с помощью этих слов можно выполнить иногда очень важ­
ные действия — размножить маленькие участки памяти внутри
больших (например, числа внутри массивов) подобно тому, как в
нашем примере размножилось слово «Форт».

Для заполнения участка памяти информацией, вводимой непо­
средственно с клавиатуры, имеется слово EXPECT (ожидать)

EXPECT ... addr n -> ...
Участок памяти от адреса addr длиной п байтов заполняется от
начала к концу вводимыми с клавиатуры символами до тех пор,
пока не заполнится весь участок или программист не завершит
ввод (нажав клавишу ввода). Переменная SPAN содержит число
введенных символов. Результат ввода автоматически выводится
«на печать».

СТРОКИ
Строкой со счетчиком (в дальнейшем просто строкой) назы­

вается участок памяти, в первом байте которого, находится счет­
чик — байт, хранящий длину участка (без учета байта длины).
Адресом строки считается адрес счетчика.

Слово " «кавычка» употребляется в конструкции
/,<текст>'/ ... -> ... addr

Текст <текст> будет превращен в строку, расположенную во вре­
менном буфере, адрес этой строки кладется в стек. Слово COUNT
преобразует адрес строки в адрес и длину ее текста:

COUNT ... addr -> ... addr + 1 n ,
а слово TYPE выводит текст (участок памяти) по его адресу и
длине:

TYPE (напечатать) .. . addr в -> ...
В качестве примеров работы со строками рассмотрим тексты:
" МОЛОДЕЦ " COUNT TYPE (напечатается МОЛОДЕЦ)
" МОЛОДЕЦ " COUNT 3 — TYPE (напечал ается МОЛО)
Разберите следующие примеры: слово S, размещает в кодофай-

ле строку с данным адресом, а слово Т, — ее текст. Оба слова ос­
тавляют на стеке адрес получившегося объекта:
: Т, (al — адрес строки а2 — адрес в кодофайле)

HERE SWAP (a2 al)
COUNT (a2 al-f-1 n)
HERE OVER ALLOT (a2 al-f-1 n a2)
SWAP CMOVE ;

: S,
(a2
(al — адрес строки -> a2 — адрес

строки в кодофайле

)

15

HERE SWAP
DUP C (cd 1+ (a2 al n-H)

HERE OVER ALLOT (a2 al n-f-1 a2 — отведено n-J-1 байт)
SWAP CMOVE ;
Слово . " употребляется в конструкции

. " <текст> " ,
при выполнении которой текст <текст> будет выведен на терми­
нал.

Упомянем еще несколько возможностей вывода: слово CR пе­
реводит строки, а слово SPACE вставляет в выходной текст пробел
(т. е. оно эквивалентно BL EMIT или . 7/ ").

циклы СО СЧЕТЧИКОМ

Выше рассматривались циклы типа WHILE и UNTIL. Всем из­
вестно, что не менее важны, в частности, для работы с участками
памяти, перечислительные циклы, в которых используется параметр
цикла — целочисленная переменная, пробегающая нужное мно*
жество значений. Для организации таких циклов используется
(внутри определений слов) конструкция:

DO <тело-цикла> +LOOP
или
DO <тело-цикла> LOOP

Слово DO (делать) берет из стека два значения:
DO ... b а->•,

где а — начальное значение параметра цикла, а b — пороговое.
Слово +LOOP (цикл) прибавляет в каждой итерации к парамет­
ру цикла число, которое берет из стека. Текст <тело-цикла> ис­
полняется до тех пор, пока очередное значение параметра цикла
не «перепрыгнет» через границу, проходящую между b—1 и
Конструкция

DO ... +LOOP
допускает и отрицательные приращения параметра цикла; именно
с учетом этого и дана такая хитрая формулировка правила завер­
шения цикла. Используемое чаще слово LOOP эквивалентно
1 +LOOP. В конструкции с этим словом <тело-цикла> исполнит­
ся b—а раз при Ь>а. При Ь^а цикл DO ... LOOP выполняется
65536 + b—а раз.

Слово I помещает в стек текущее значение параметра цикла.
Естественно, что циклы могут быть вложенными; значение пара­
метра объемлющего цикла помещается в стек словом J.

Пример. Сумма квадратов первых п натуральных чисел:
: SS2 (п сумма)

О SWAP 1+ 1 DO I DUP X + LOOP ;
16

Слово LEAVE обеспечивает немедленный выход из цикла (са­
мого глубокого).

Возникает естественный вопрос, куда же деваются значения а
и Ь, которые DO снимает со стека, и откуда берется текущее зна­
чение параметра цикла.

В системе есть еще один стек — стек возвратов, о нем будет
рассказано ниже.

СЛОВАРНАЯ СТАТЬЯ

Теперь более подробно рассмотрим, как функционирует Форт-
система. Она может быть устроена по-разному, но наиболее рас­
пространены два способа организации — с помощью прямого и
косвенного шитых кодов. Там, где это возможно, мы будем опи­
сывать устройство и работу систем независимо от способа реали­
зации; в остальных же случаях будем придерживаться реализации
с помощью прямого шитого кода.

Для каждого слова при его определении система создает сло­
варную статью — расположенный в кодофайле информационный
объект, содержащий перечень входящих в слово действий и уст­
роенный так, чтобы был возможен его поиск по имени слова в сло­
варе системы.

Можно считать, что словарная статья состоит из системной ча­
сти, служащей для ее хранения и поиска, и программной части,
описывающей действия и информацию, связанные с этим словом.

В системной части естественно выделяются:
1. Поле имени, содержащее имя слова, представленное в виде

строки со счетчиком.
2. Поле связи — адрес словарной статьи предыдущего слова,

служащий для организации списка словарных статей.
В программную часть включаются:
1. Поле кода, или исполняемая часть, представляющая собой

вызов интерпретатора (для прямого кода это — машинная коман­
да, передающая управление специальной программе — адресно­
му интерпретатору).

2. Поле параметра, или данные — область памяти, используе­
мая словом (например, зарезервированная память в слове, опре­
деленном с помощью VARIABLE).

При выполнении введенного слова его прежде всего ищут в сло­
варе; если слово найдено, то оно исполняется, т. е. управление пе­
редается на поле кода этого слова. Для выполнения каждого из
этих двух действий по отдельности служат следующие слова:

слово ' (читается штрих) употребляется в конструкции

<слово> ... -> ... addr
Слово <слово> должно быть уже определено. При выполнении
этой конструкции адрес исполняемой части слова <слово> кла­
дется на стек.
2 А. Ю. Бураго, В. А. Кириллин, И. В. Романовский 17

Слово EXECUTE (выполнить)
EXECUTE ... addr -> ...

снимает co стека адрес исполняемой части некоторого слова и вы­
полняет это слово. Таким образом, текст

' <слово> EXECUTE
эквивалентен тексту

<слово>
Заметим, что при определении нового слова входящие в него

слова не выполняются, а происходит вот что: адреса их исполняе­
мых частей заносятся в кодофайл, формируя поле параметров опре­
деляемого слова.

КОМПИЛЯЦИЯ и ИСПОЛНЕНИЕ
В каждый момент система может находиться в одном из двух

состояний — исполнения и компиляции, В состоянии исполнения
каждое введенное слово разыскивается в словаре и исполняется;
в состоянии же компиляции оно не исполняется, а компилируется,
т. е. адрес его исполняемой части заносится на вершину кодофай-
ла с резервированием этого места. При выполнении слова : (двое­
точие) система переходит из режима исполнения в режим ком­
пиляции, а в кодофайл вписывается системная часть определяемо­
го слова и вызов интерпретатора. Далее слова, входящие в опреде­
ление нового слова, компилируются, формируя его поле кода.

Слово ; завершает компиляцию и переводит систему в режим
исполнения. Таким образом, само это слово не компилируется, а
исполняется, несмотря на режим компиляции. Вы уже знаете, что
оно обладает специальным признаком немедленного исполнения.
Тем же признаком обладают и все управляющие конструкции (ус­
ловного и циклического исполнения); конечно, среди выполняемых
ими действий есть и компиляция некоторых специальных слов.

Предусмотренное в системе слово IMMEDIATE (немедленное)
присваивает признак немедленного исполнения последнему опре­
деленному слову.

Для управления режимами исполнения и компиляции преду­
смотрены следующие слова:

[— перевод системы в режим исполнения; естественно, слово [
обладает признаком немедленного исполнения.

] — перевод системы в режим компиляции.
Слово [COMPILE] (компилировать) выполняет принудитель­

ную компиляцию следующего за ним слова независимо от наличия
у него признака немедленного исполнения. Само оно также имеет
признак немедленного исполнения.

В выполняемые словом действия может входить компиляция
других слов. Такая «компиляция компиляции» описывается конст­
рукцией

COMPILE <слово>
18

Заметим, что слово, включающее такие действия, имеет обычна
признак немедленного исполнения.

В системе имеется удобное слово FIND (искать), служащее
для поиска слов с проверкой признака немедленного исполнения:

FIND ... addri addr2 n
Здесь addrl — адрес строки со счетчиком, содержащей имя слова.
Число п принимает значение 0, если слово не найдено, 1, если слове
найдено и имеет признак немедленного исполнения, —1, если этого
признака нет. Значение addr2 в первом случае равно addrl, в ос­
тальных — задает адрес поля кода.

В отличие от ' слово FIND использует строку со счетчиком, это-
позволяет формировать образец поиска программным путем.

Поговорим теперь немного об управляющих конструкциях. Они
используют стандартные слова BRANCH (переход) и PBRANCH.
Скомпилированное слово BRANCH при своем исполнении изменяет
текущий адрес интерпретации на адрес, записанный сразу после
него, выполняя тем самым безусловный переход, так как после
этого будет выполняться программный текст, расположенный по
этому адресу; слово ?BRANCH выполняет условный переход: оно
снимает со стека число, и переход происходит лишь в том случае,
если это число — 0.

Для примера посмотрите, как можно реализовать слова IF и
THEN:

: IF COMPILE ?BRANCH HERE 0,2; IMMEDIATE
: THEN 2 ?PAIRS HERE SWAP ! ; IMMEDIATE

Слово ?PAIRS снимает co стека два числа и выдает сообщение об
ошибке, если они не равны; это слово используется для проверки
правильности записи управляющих конструкций; в данном примере
номер 2 зарезервирован для условных операторов.

Таким образом, исполнение слова IF компилирует адрес слова
?BRANCH, резервирует место для ссылки вперед (на обход вет­
ви — IF) и оставляет адрес зарезервированного места на стеке.
Слово THEN снимает этот адрес со стека и вписывает в него теку­
щий адрес в кодофайле.

Заметьте, что стек, в режиме компиляции программистом не ис­
пользуемый, активно используется в процессе компиляции слов си­
стемой, поэтому изменять его во время исполнения определений
(например, текстом [DROP]) не рекомендуется.

СТЕК ВОЗВРАТОВ

Для того чтобы .слегка отдохнуть от трудного материала преды­
дущих разделов, познакомимся с более простой конструкцией —-
стеком возвратов, знание которой очень пригодится при дальней­
шем изложении.

Кроме арифметического стека, в системе используется еще один

2* 19’

стек, называемый стеком возвратов. Система использует его для
организации циклов и вложенного исполнения слов.

Программист может временно хранить информацию в стеке
возвратов с помощью слов:

>R .. . а -> . . . I ... -> ... а
число а снимается из стека и кладется в стек возвратов (справа
ют черты);

R> ... -> ... а | ... а -> ...
число а снимается из стека возвратов и кладется в арифметический
отек;

R@ а | . . . а -> ... а
число а с вершины стека возвратов копируется в арифметический
стек.

Пример. Описание слова 3DUP:
: 3DUP (abc->abcabc)

>R 2DUP R@ —ROT R> ;
Ограничения: содержимое стека возвратов следует восстанавли­

вать в прежнем виде при завершении исполнения слова и тела цик­
ла со счетчиком. При использовании стека возвратов внутри
цикла слова I и J могут выдавать неправильные значения: на стеке
возвратов хранятся текущие и граничные значения параметров
цикла. Слово I просто снимает нужное значение со стека возвра­
тов в соответствии с выбранным в реализации форматом. Именно
поэтому опасно совместное использование слов I и J с манипуля­
цией со стеком возвратов.

ИСПОЛНЕНИЕ СЛОВ

Теперь подробно опишем процедуру исполнения слов. Подчерк­
нем, что предлагаемое описание относится к прямому шитому ко­
ду; для косвенного кода эта процедура несколько иная.

Как уже говорилось, в системе имеется специальная програм­
ма — адресный интерпретатор, которая занимается исполнением
слов, не записанных в машинных командах. Интерпретатор пред­
ставляет собой программу с тремя режимами.

Исполнение слова начинается с вызова режима CALL (вызов),
который устанавливает указатель интерпретации IP на начало ко­
да данного слова. Прежнее значение IP, в котором хранилась точ­
ка вызова исполняемого слова, запоминается в стеке возвратов, что
обеспечивает вложенное исполнение слов. Режим CALL завершает­
ся первым вызовом режима NEXT (следующий).

Режим NEXT передает управление по адресу, записанному в
месте памяти, на которое указывает IP, одновременно передвигая
IP на следующий элемент кода (т. е. прибавляя к нему 2).

Такие вложенные вызовы продолжаются до тех пор, пока управ­
50

ление не передано на машинную подпрограмму, которая и будет
исполнена. В конце каждой такой программы записан вызов ре­
жима NEXT адресного интерпретатора. В конце каждого интер­
претируемого кода записан вызов третьего режима интерпретато­
ра — режима RETURN (возврат), его компилирует туда слово ; .
Режим RETURN завершает исполнение слова. Он загружает IP
значением, снимаемым со стека возвратов и вызывает режим
NEXT.

Еще несколько замечаний к описанной процедуре:
1. При компиляции чисел перед числом компилируется спе­

циальное слово, кладущее на стек число из следующих за ним двух
байтов и одновременно переставляющее указатель интерпретации
после этих двух байтов. Аналогичным образом обрабатываются
строки.

2. Слово EXIT позволяет закончить обработку данного слова в
любом его месте; попятно, что это слово осуществляет вызов режи­
ма RETURN.

ОПРЕДЕЛЯЮЩИЕ СЛОВА

Вы уже знакомы с определяющими словами, служащими для
образования новых слов. Это были слова CONSTANT и
VARIABLE. Сейчас вы увидите способ описания таких слов; в даль­
нейшем будет удобно называть их также словами-генераторами.

Слова-генераторы описываются с помощью слов CREATE (со­
здать) и DOES> (исполнить) в конструкции:

: <имя-генератора> CREATE < создающая часть>
DOES> сисполняющая часть> ;

и употребляются в конструкции
<имя-генерагора >> <уимя

для определения слова <имя> (сравните с использованием ге­
нераторов CONSTANT и VARIABLE).

При выполнении конструкции слово CREATE создает в кодо-
файле словарную статью &ля слова <имя>>, а тем самым зано­
сит слово <имя> в словарь системы, после чего исполняется
текст <создающая часть>, который может зарезервировать в ко-
дофайле дополнительное место и заполнить его по своему усмот­
рению, создав этим поле параметров слова. В дальнейшем при ис­
полнении слова <41мя> на стек кладется адрес поля параметров
п выполняется текст ^исполняющая часть>. Например,

: CONSTANT CREATE , (слово , резервирует 2 байта)
(и кладет в них число из стека)

DOES> (на стеке адрес этих двух байтов)
@ ; (значение помещается в стек)

21

Таким образом, <исполняющая часть> слова-генератора яв­
ляется интерпретатором для поля параметров определяемого сло­
ва, в поле кода которого вызов интерпретатора как раз и содержит
ссылку на нее.

В качестве упражнения разберите устройство генератора одно­
мерных массивов. Слово ARRAY (массив) берет из стека целое
число S и резервирует в кодофайле место для S чисел, связывая
с ними следующее за ARRAY слово как имя этого массива. В даль­
нейшем выполнение имени массива берет из стека индекс, прове­
ряет его принадлежность к диапазону от 1 до S и, если индекс при­
надлежит этому диапазону, помещает в стек адрес соответствую­
щего элемента массива:

i ARRAY
CREATE DUP ,

2X ALLOT
DOES>

OVER i <

(в стеке лежит число элементов)
(это число помещается в поле па­

раметров)
(захват места для массива)
(при вызове в стеке лежит индекс)
(и помещается адрес захваченной

памяти)

IF . " ИНДЕКС МЕНЬШЕ 1 " 2DROP
ELSE 2DUP @ > IF . "ИНДЕКС БОЛЬШЕ ЧЕМ НАДО"

2DROP
ELSE 1 + SWAP 2Х + THEN THEN ;

АРИФМЕТИКА ДВОЙНОЙ ТОЧНОСТИ

Наряду с обычным представлением целых чисел, в KOTopo'vi на
каждое число отводится по два байта, Форт допускает представ­
ление чисел с двойной точностью — число размещается в четырех
байтах и, следовательно, может принимать значения от —231 до
231—1.

Чтобы отличать числа двойной точности от обычных чисел, на­
до в запись таких чисел (в любом месте) включать точку. Напри­
мер 12345678 — число двойной точности.

Для размещения такого числа в стеке и, аналогично, в памяти
отводятся две стандартные позиции, идущие подряд, левая полови­
на числа располагается на вершине стека, а правая — за ней.
Слов, работающих с числами удвоенной точности, в языке не очеиь
много; разумеется, к ним относятся и давно известные нам слова

2DROP 2DUP 2OVER 2SWAP
Слово 2@ аналогично слову оно кладет на стек число

двойной длины, находящееся по данному адресу:
2 @ ... addr -> ... d (двойное число)

Слово 2 ! аналогично слову ! :
2 ! .. . d addr -> ...

22

Из арифметических операций выбран самый минимальный на­
бор

D+ ... dl d2 + ... dl+d2
D— ... dl d2 -> ... dl—d2
DABS ... d —> ••• Id]
DNEGATE ... d —> ... —d
D< ... dl d2 -+ ... dl<d2
D = ... dl d2 -> ... dl = d2

Операции умножения и деления являются «смешанными», ум­
ножение двум числам обычной длины сопоставляет их произведе­
ние двойной длины, в делении делимое имеет двойную длину, а де­
литель, частное и остаток — обычную:

MX ... nl п2 d=nlXn2
M/MOD ... d n -> ... nl n2 (остаток частное)

Для перевода числа в двойное используется слово S>D:
: S>D (n -> d)

DUP 0< ;
Обратный перевод требует тщательной проверки его корректности,
но в простейшем случае эквивалентен DROP.

Наконец, имеются слова 2CONSTANT и 2VARIABLE, вполне
аналогичные своим прообразам для чисел обычной длины.

ФОРМАТНЫЙ ВЫВОД

До сих пор рассматривались только самые простые способы вы­
вода информации. Можно к ним добавить еще по материалам пре­
дыдущего раздела слово D . , выводящее на печать двойное слово,
снимаемое со стека. В основе этого и других слов, управляющих
выводом, лежит несколько вспомогательных слов, с помощью ко­
торых можно организовать любой вывод.

В Форте можно просто менять систему счисления, используе­
мую при вводе и выводе информации. Имеется переменная BASE
(основание), хранящая основание текущей системы счисления. Ее
исходное значение равно десяти (т. е. основанию обычной десятич­
ной системы), и, следовательно, первоначально числа вводятся и
выводятся в наиболее распространенной форме. При изменении
значения BASE система счисления автоматически изменяется. Осо­
бенно часто используются шестнадцатиричная и двоичная системы,
первая из них устанавливается словом НЕХ (шестнадцатиричная):

: НЕХ 16 BASE ! ;
Для возврата в десятичную систему используется слово DECIMAL
(десятичная), которое без труда напишет читатель самостоятельно.

Описываемые ниже слова работают с буфером вывода, в кото­
ром формируется внешнее представление числа в виде строки сим­

23

волов. Форматное преобразование начинается словом <# , кото­
рое устанавливает указатель на конец буфера, так как формиро­
вание буфера идет от конца. Слово HOLD (сохранить) переносит
литеру со стека в буфер и продвигает указатель буфера вперед на
одну позицию. Слово #> завершает преобразование и кладет
на стек адрес сформированной в буфере строки литер и ее длину.

Собственно для формирования символов должны использовать­
ся другие слова, которые выделяют поочередно разряды числа и
превращают их в соответствующие символы. Основным таким пре­
образователем является слово # . Оно делит двойное число с вер­
шины стека на основание текущей системы счисления, заменяет его
на стеке получившимся частным (тоже двойной длины), а остаток
переводит в литеру и записывает в буфер при помощи слова HOLD.

Полный перевод числа выполняет слово # S, которое оставляет
на стеке двойной нуль — результат последнего деления:

: #S (d -> 0 0)
BEGIN # 2DUP О О D= UNTIL ;

Для вывода знака минус предусмотрено слово SIGN (знак):
: SIGN (и)

0< IF С" — HOLD THEN ;
Итак, все готово для определения слова D. ;

: D. (d ->)
2DUP DABS

<# #S ROT SIGN #>
TYPE SPACE DROP ;

Слово . для печати обычных чисел определяется совсем просто:
: . (и ->)

S>D D. ;
В качестве примера форматного вывода создадим два полезных

слова. Первое печатает номер телефона в стандартном виде:
: .PHONE (d ->)

<4± # # С" —HOLD
С" — HOLD #S # > TYPE ;

Проверим правильность этого слова:
2579469 .PHONE
257-94-69
При помощи второго слова можно выводить результаты мара­

фонского забега, замеренного с точностью до сотых долей секунды,
например:

2ч37м42.93с
Введем два вспомогательных слова. Слово SIXI устанавливает

шестиричную систему счисления. Слово # MS выдает минуты или
секунды:
24

: SIXI

: # MS
6 BASE ! ;

d -> d/60)
SIXI # DECIMAL ;

Слово .TABLEAU собственно и выводит результаты забега:
: .TABLEAU (d ->•)

< # С" с HOLD # #
С" . HOLD #MS
С" м HOLD #MS
С" ч HOLD #S #> TYPE ;

ВНЕШНЯЯ ПАМЯТЬ

Памяти микрокомпьютера обычно недостаточно для запомина­
ния всех необходимых данных и программ. Для этого использует­
ся память на внешних носителях. В основном это память на маг­
нитном диске, но можно воспользоваться и кассетным магнитофо­
ном.

В Форте данные и программы запоминаются на диске блоками-
по 1024 байта (т. е. 1 Кбайт) каждый. Блоки иногда называют эк­
ранами. Имеется в виду, что блоки могут содержать текст, который-
распечатывается на экране в виде 16 строк по 64 символа в каждой.

Сначала рассмотрим, как можно распечатывать и загружать ис­
ходные тексты Форт-программ. Следующий оператор

25 LIST (распечатать)
распечатает на экране блок 25 в виде последовательности из 1&
строк по 64 символа в каждой. Переменная SCR (номер экрана)
хранит.номер последнего распечатанного по LIST блока. Исполь­
зуя этот факт, можно написать следующие слова: L — распечатать
блок еще раз; LL — распечатать предыдущий блок; LN — распе­
чатать следующий блок:

: L SCR @ LIST ;
: LL SCR @ 1— LIST ;
: LN SCR @ 1+ LIST ;

Слово INDEX (индекс) служит для распечатывания первых
строк последовательности экранов. Обычно в первой строке экрана
пишется комментарий. Например,

12 24 INDEX
распечатает первые строки экранов с 12 по 24 включительно.

Загрузка блока также проста, как его распечатка. Если блок
содержит текст Форт-программы, которую вы с помощью редакто­
ра набрали с терминала, то этот текст может быть введен прямо*
из блока. Если вы напишите

25 LOAD
25»

то текст из блока 25 будет обработан Форт-системой, как если бы
он был введен с клавиатуры. Заметим, что блок 25 в свою очередь
может содержать слово LOAD (загрузить), например,

45 LOAD
После загрузки блока 45 произойдет возврат и «дозагрузка» остат­
ка блока 25.

Программа обычно занимает не один блок. Для загрузки после­
довательности блоков используется слово THRU (сквозь). Напри­
мер,

12 24 THRU
загрузит блоки с 12 по 24 включительно.

Слово —> вызывает загрузку следующего блока. Слово ;S пре- •
кращает загрузку блока, с его помощью можно загрузить только
часть блока.

Переменная BLK (номер блока) содержит номер блока, кото­
рый загружается в текущий момент. Если BLK содержит ноль, это
означает, что ввод текста идет с клавиатуры. Таким образом, блок
с номером 0 не может содержать программу. Вторая переменная,
используемая при загрузке блока, — это >IN (указатель ввода).
Она содержит смещение в байтах относительно начала блока, от­
куда в настоящий момент идет ввод текста. Если BLK равно нулю,
то >IN указывает на смещение от начала буфера ввода.

Существуют средства для работы с содержимым блока. Глав­
ным из них является слово BLOCK (блок), которое переносит блок
с указанным номером на 1024-байтный блочный буфер в оператив­
ной памяти и оставляет адрес начала этого буфера на стеке. Для
работы с этим блоком теперь можно использовать любые слова,
работающие с оперативной памятью. Если набрать

25 BLOCK 1024 TYPE ,
то распечатается текст, хранящийся в блоке с номером 25. Слова
LIST и LOAD используют слово BLOCK для доступа к нужному
блоку. Теперь попробуйте набрать

10 25 BLOCK !

Таким способом засылается в первую ячейку блока с номером 25
значение 10. Но это не значит, что содержимое блока на диске из­
менилось. Для такого изменения необходимо переслать содержимое
блока 25 обратно на диск. Слово UPDATE (изменить) создано спе­
циально для этой цели. UPDATE помечает буфер, в котором хра­
нится блок как измененный. И теперь, когда этот буфер потребует­
ся для размещения какого-нибудь другого блока, он будет предва­
рительно записан на диск, заменяя прежнее значение блока.

Можно заставить систему записать измененный блок на диск,
не дожидаясь пока его вытеснит другой блок. Для этого исполь­
зуются слова FLUSH (очистить) и SAVE-BUFFERS (сохранить
26

буферы). SAVE-BUFFERS выгружает все помеченные по UPDATE
блоки на диск. FIJJSH после этого еще и очищает буферы, запол­
няя их пробелами.

Если же Вы случайно испортили буферы и не хотите, чтобы они
были записаны на диск, то используйте в этом случае слово EMPTY-
BUFFERS (очистить буферы). Оно сотрет все признаки UPDATE
и очистит буферы, отменив тем самым все последние исправления.
Восстановить буферы можно, снова загрузив их с диска при помо­
щи слова BLOCK.

Описанных средств вполне достаточно, чтобы на их основе раз­
вивать файловые системы или организовывать базы данных. Дан­
ные в таких системах обычно хранятся в последовательно идущих
блоках, доступ к которым осуществляется по их номерам.

ПРИМЕРЫ РАБОТЫ ФОРТ-СИСТЕМЫ

Рассмотрим следующий пример. Введем три новых слова:
: 3DUP DUP 2OVER ROT ;

: S2 DUP X SWAP DUP X + i
: SPD 3DUP S2 —ROT S2 X —ROT S2 X ;

Первые два слова нам уже встречались. Третье слово преобразует
лежащие на стеке три числа, а, Ь, с в произведение попарных сумм
квадратов (аХа+ЬХЬ) X (ЬХ'Ь+сХс) X (сХс+аХа).

При компиляции этих слов получается приблизительно такой
текст (при его составлении использовалась шестнадцатиричная си­
стема счисления): ' 7

адрес фрагмент текста комментарий
статья для 3DUP

1С12 04 33 44 55 50 строка '3DUP'
1С17 03 1С 1 СОЗ = адрес предыдущей

статьи
1С19 CD F0 02 передача управления интерпре­

татору по адресу: 02F0 (ре­
жим CALL)
CD — код команда передачи
управления CALL

1С1С 1А 03 031А=адрес DUP
1С1Е 78 03 0378 = адрес 2OVER
1С20 5Е 03 035Е=адрес ROT
1С22 02 03 0302=адрес EXIT (режим

RETURN)
статья для S2

1С24 02 53 32 строка '52'
1С27 12 1С 1С12 = адрес предыдущей

статьи
27

Ю29 CD F0 02 передача управления интерпре­
татору

1С2С 1А 03 031А=адрес DUP
1С2Е 7F 03 037F=адрес X
1С30 24 03 0324=адрес SWAP
1С32 1А 03 031 А=адрес DUP
1С34 7F 03 037F=адрес X
1С36 50 03 0350=адрес +
1С38 02 03 0302=адрес EXIT

статья для SPD
1СЗА 03 53 50 44 строка 'SPD'
ЮЗЕ 24 1С 1С24 = адрес предыдущей

статьи
1С40 CD F0 02 передача управления интерпре­

татору
1С43 19 1С 1С19=адрес 3DUP
1С45 29 1С 1С29 = адрес S2
1С47 ЗЕ 03 033Е = адрес —ROT
1С49 29 1С Ю29=адрес S2
1С4В 7F 03 037F= адрес X
1C4D ЗЕ 03 033Е = адрес —ROT
1C4F 29 IC 1С29=адрес S2
1С51 7F 03 037F=адрес X
1С53 02 03 0302=адрес EXIT

Посмотрим, как выполняется слово SPD, если в стеке уже ле­
жат числа 5, 2 и 4. Нас будет интересовать содержимое основного
стека, стека возвратов и указателя интерпретации IP, имеющее пер­
воначально следующие значения:

основной стек стек возвратов IP
5 2 4 0С76

Начинается выполнение слова SPD. Форт-система передает уп­
равление программному тексту, расположенному по адресу 1С40.
Указатель интерпретации IP содержит адрес 0С76. Это внутренний
адрес самой системы, по которому следует вернуть управление пос­
ле выполнения слова SPD. Управление получает подпрограмма ад­
ресного интерпретатора, реализующая режим CALL и располагаю­
щаяся по адресу 02F0. Эта подпрограмма переустанавливает IP на
адрес 1С43, сохраняет прежнее значение IP в стеке возвратов и пе­
редает управление подпрограмме, реализующей режим NEXT:

5 2 4 0С76 1С43
Режим NEXT передает управление по адресу, на который ука­

зывает IP, т. е. по адресу 1С19. Одновременно IP увеличивается
на 2:

5 2 4 ОС 76 1С45
28

Управление опять получит режим CALL, который произведет
уже знакомые нам действия, и мы войдем в слово 3DUP:

5 2 4 0С76 1С45 1С1С
Режим NEXT передает управление по адресу 031А, где нахо­

дится машинная программа, реализующая операцию DUP:
5 2 4 4 0С76 1С45 1С1Е

Существует правило, по которому каждая машинная программа
после своего выполнения передает управление режиму NEXT. Тем
самым мы постоянно переходим к следующему по порядку слову:

5
5

2
2

4
4

4
5’

5 2
2 4

ОС 76
ОС 76

1С45
1С45

1С20
1С22

Выполнение слова 3DUP завершается исполнением слова EXIT,
которое, осуществляя режим RETURN, загружает IP значением,
Снятым со стека возвратов, и передает управление режиму NEXT:

5 2 4 5 2 4 0С76 1С45
Управление получит слово S2 и цикл повторится:

5 2 4 5 2 4 0С76 1С47 1С2С л
5 2 4 5 2 4 4 0С76 1С47 1С2Е
5 2 4 5 2 16 ОС 76 1С47 1С30
5 2 4 5 16 2 ОС 76 1С47 1С32
5 2 4 ■5 16 2 2 0С76 1С47 1С34
5 2 4 5 16 4 0С76 1С47 1С36
5 2 4 5 20 0С76 1С47 1С38
5 2 4 5 20 ОС 76 1С47

Выполнение S2 завершилось, выполняется —ROT:
5 2 20 4 5 ОС 76 1С49

Управление снова получает слово S2, но уже с другими пара-
метрами:

5 2 20 4 5 0С76 1С4В 1С2С
5 2 20 4 5 5 0С76 1С4В 1С2Е
5 2 20 4 25 0С76 1С4В 1С30
5 2 20 25 4 0С76 1С4В 1С32
5 2 20 25 4 4 0С76 1С4В 1С34
5 2 20 25 16 0С76 1С4В 1С36
5 2 20 41 0С76 1С4В 1С38 }
5 2 20 41 0С76 1С4В

Выполнение S2 завершилось, ВЫПОЛНЯЮТСЯ Xй — ROT:
5 2 820 0С76 1C4D
820 5 2 0С76 1C4F '

И снова управление получает слово S2:
820 5 2 0С76 1С51 1С2С

29

Выполнение S2 завершилось, выполняются X и EXIT:

820 5 2 2 0С76 1С51 1С2Е
820 5 4 0С76 1С51 1С30
820 4 5 ОС 76 1C5I 1С32
820 4 5 5 0С76 1С51 1С34
820 4 25 0С76 1С51 1С36
820 29 0С76 1С51 1С38
820 29 0С76 1С51

23780 ОС 76 1С53
23780 0С76

Слово SPD выполнено. Управление возвращается Форт-системе
по адресу 0С76.

ПРИМЕР РАБОТЫ СТРУКТУР УПРАВЛЕНИЯ
Рассмотрим следующий пример: j

: ABS DUP 0< IF NEGATE THEN ;
Это слово нам уже знакомо. Оно вычисляет абсолютную вели­

чину числа.
При компиляции слова ABS получится примерно следующий

текст:

На стеке лежит значение истина и, следовательно, ?BRANCH
передаст управление следующему слову:

—5 0С76 1С66
Выполняется NEGATE:

адрес фрагмент текста комментарий
1С55 03 41 42 53
1С59 ЗА 1С

строка 'ABS'
1СЗА=адрес предыдущей статьи

1С5В CD F0 02

1С5Е 1А 03
1С60 ВВ 03
1С62 12 04
1С64 68 1С
1С66 D1 03
1С68 02 03

передача управления интерпре­
татору
031 А=адрес DUP
03ВВ = адрес 0<
0412=адрес 7BRANCH
1С68=адрес перехода по FALSE
O3D1= адрес NEGATE
0302=адрес EXIT

Рассмотрим, как выполняется слово ABS, если на стеке нахо­
дится число —5:

основной стек стек возвратов IP
—5 0С76 \
—5 0С76 1С5Е
—5 —5 0С76 1С60
—5 —1 0С76 1С62

5 0С76 1С68
5 0С76

30

Если же на стеке будет лежать неотрицательное значение, то
порядок выполнения слов изменится:

основной стек стек возвратов IP
4 0С76

4 0С76 1С5Е
4 4 0С76 1С60
4 0 , 0С76 1С62

На стеке лежит значение ложь и, следовательно, ?BRANCH пе­
редаст управление по адресу, который записан вслед за этим сло­
вом. Таким образом, NEGATE не будет выполнено и управление
получит сразу слово EXIT:

4 0С76 1С68
4 0С76

Мы подробно разобрали, как слово ABS выполняется. Посмот­
рим теперь, как оно компилируется, т. е. будем следить за тем, что
делает Форт-система при обработке каждого из слов, входящих в
определение ABS. Для этого нам придется следить за стеком, ко-
дофайлом и указателем HERE:

слово стек HERE кодофайл
1С55

Слово : создает заголовок словарной статьи с именем ABS :
s ABS 1С5Е 03 41 42 53 ЗА IC

CD F0 02

Далее в кодофайл заносятся адреса слов DUP и0<:

DUP 1С60 03 41 42 53 ЗА 1С
CD F0 02 1А 03

0< 1С62 03 41 42 53 ЗА 1С
CD F0 02 1А 03 ВВ 03

Слово IF исполняется во время компиляции, так как имеет при­
знак немедленного исполнения:
IF 1С64 2 1С66 03 41 42 53 ЗА IC CD

F0 02 1А 03 ВВ 03 12
04 00 00

NEGATE 1С64 2 1С68 03 41 42 53 ЗА IC CD
F0 02 1А 03 ВВ 03 12
04 00 00 D1 03

Исполняется слово THEN. Значение HERE засылается по адре­
су, лежащему на стеке (раньше по этому адресу были нули):

THEN 1С68 03 41 42 53 ЗА IC CD
F0 02 1А 03 ВВ 03 12
04 68 IC D1 03

31

Исполняется слово ; . Компилируется EXIT и создание статьи
завершается:
; 1С6А 03 41 42 53 ЗА IC CD

F0 02 1А 03 ВВ 03 12
04 68 IC D1 03 02 03

ПРИМЕР РАБОТЫ ОПРЕДЕЛЯЮЩИХ СЛОВ

На примере слова CONSTANT рассмотрим технику создания
слов-генераторов. Это наиболее сложный пример. Он предполагает
некоторое знакомство с машинными командами.

Итак, определим слово CONSTANT, при помощи которого мож­
но задавать константы и с его помощью создадим две константы —
TRUE и FALSE:

: CONSTANT CREATE , DOES > @ ;
— 1 CONSTANT TRUE

0 CONSTANT FALSE

При компиляции слова ABS получится примерно следующий
текст:

адрес

ст
1С67

фрагмент текста комментарий

строка 'CONSTANT'
атья CONSTANT

53
54

08 43 4F
54 41

4Е
4Е

1С70 55

1С72 CD

1С75 FA
1С77 50
1С79 АО
1С7В CD

1С7Е 50
1С80 02

статья

1С

F0 02

12
10
14
F0 02

04
03
TRUE

1С55 = адрес предыдущей
статьи
передача управления интер­
претатору
12ЕА = адрес CREATE
1050=адрес ,
14А0=адрес (DOES>)
передача управления интер­
претатору
текст АО 14 CD F0 02 компи­
лируется словом DOES>
0450= адрес @
0302 = адрес EXIT

1С82 04
1С87 67

1С89 CD

1С8В FF
статья

54 52
1С

78 1С

FF
FALSE

55 45 строка 'TRUE'
1С67=адрес предыдущей
статьи
передача управления по адре­
су 1С7В
значение —1

32

1C8D 05 46 41 4С
53 45

1С93 82 1С

1С95 CD 7В 1С

1С97 00 00

строка 'FALSE

1С82 = адрес предыдущей
статьи
передача управления по адре­
су 1С7В
значение б

Посмотрим, как выполняется слово TRUE:
основной стек стек возвратов IP

0С76
Управление передается на адрес 1С89. По этому адресу стоит ма­

шинная команда передачи управления с возвратом CD 7В 1С. При
своем исполнении эта команда положит на основной стек адрес
возврата 1С8В и передаст управление на адрес 1С7В:
1С8В 0С76

Далее управление получит режим CALL адресного интерпре­
татора.
1С8В 0С76 1С7Е

Выполнится слово (5). По адресу 1С8В лежит —1:
—1 0С76 1С80

Произойдет возврат в Форт-сисгему по EXIT:
—1 0С76

/

Таким образом, мы на стеке получили значение —1.
Теперь посмотрим, как слова-генераторы создают новые слова,

т. е. проследим, как выполняется текст:
—1 CONSTANT TRUE
стек стек возвр. IP кодофайл
—1 0С76

Управление получает слово CONSTANT по адресу 1С72:
—1 0С76 1С75

Слово CREATE создает заголовок словарной статьи с именем
TRUE. Отметим, что слово : использует слово CREATE для созда­
ния заголовка:

—1 0С76 1С77 04 54 52 55 45 67
IC CD F0 02

Компилируется значение константы:
—1 0С76 1С79 04 54 52 55 45 67

IC CD F0 02 FF FF
Слово (DOES>) присваивает новое значение адресу интер­

претатора (это адрес 1С7В, непосредственно следующий за
3 А. Ю. Бураго, В. А. Кириллин, И. В. Романовский 33

(DOES>) — на него указывает IP) и само выполняет EXIT, тем
самым заканчивая исполнение слова CONSTANT:

—1 0С76 04 54 52 55 45 67
IC CD 7В IC FF FF

Управление возвращено Форт-системе.

РЕАЛИЗАЦИЯ ЯЗЫКА ФОРТ

Форт с момента своего появления в начале семидесятых годов
прошел большой путь от специализированного языка для управле­
ния радиотелескопом до универсального средства, на котором в
•настоящее время пишутся трансляторы и базы данных, видеоигры
и экспертные системы. Особенно большое распространение Форт
получил при решении задач реального времени; здесь оказались
важными такие его характеристики, как высокая скорость, диалого­
вый режим работы и возможность настраиваться на работу с лю­
бым оборудованием.

В нашей стране ведутся активные работы по использованию
языка Форт, охватывающие все перечисленные области его приме­
нения; созданы самостоятельные реализации языка на большинст­
ве отечественных ЭВМ и серийно выпускаемых микропроцессоров.
Создана аппаратная реализация языка Форт, представляющая со­
бой специализированный процессор, непосредственно исполняющий
фортовские слова как машинные команды. Такие Форт-машины
очень эффективны. Их скорость достигает миллиона и более команд
(таких как SWAP, +, CALL, EXIT и другие) в секунду.

Перечислим некоторые распространенные в нашей стране Форт-
системы.

Единый Форт для К580, К1801, К1810. Система разработана
С. Б. Кацевым, В. А. Кириллиным, А. А. Клубовичем и Н. Р. Нозд-
руновым (Ленинградский университет, НИИсчетмаш) и представ­
ляет собой единую реализацию языка Форт для микро-ЭВМ и мик­
ропроцессорных устройств на базе микропроцессоров серий К580,
KI801, К1810 и специализированного высокопроизводительного
Форт-процессора. Система установлена на следующие микро- и
мини-ЭВМ: ЕС-7970, СМ-1800, «Роботрон», KI, КТС ЛИУС, КУВТ
«Корвет», ПЭВМ «Сура», СМ-3, СМ-4, ДВК, «Электроника-60»,
ЕС 1840.

Форт-ЕС. Система разработана С. Н. Барановым (Ленинград­
ский институт информатики и автоматизации АН СССР —
ЛИИАН) для ЕС-ЭВМ. Работает под управлением операционных
систем ОС ЕС и СВМ ЕС.

Астро-форт. Система разработана И. Р. Агамирзяном и
Г. М. Шуваловым (Институт теоретической астрономии АН
СССР — ИТА АН СССР, ЛИИАН) для ЭВМ ЕС 1840. Ее отличи­
тельной особенностью является поддержка многоэкранного режи­
ма работы.
34

Форт-«Искра-226». Система разработана А. Ю. Болдыревым,
Н. Н. Веретеновой, Г. В. Лезиным, Е. Ф. Силиным (Институт со­
циально-экономических проблем АН СССР) и представляет собой
развитую операционную систему на базе языка Форт.

Форт-МбООО. Система разработана В. Н. Патрышевым (Ленин­
град) для ЭВМ М6000. Работает как под управлением операцион­
ных систем ДОС РВ и РТЕ-2, так и без операционной системы.

Форт-БЭСМ-6. Система разработана И. Р. Агамирзяном (ИТА
АН СССР, ЛИИАН) для ЭВМ БЭСМ-6. Работает под управлени­
ем операционной системы ДИСПАК

Форт-«Эльбрус». Система разработана А. Е. Соловьевым (Ле­
нинградский университет) для МВК «Эльбрус». Работает под уп­
равлением ОС «Эльбрус».

ПРИЛОЖЕНИЕ К. ТАБЛИЦА КОДОВ КОИ-8

В этой таблице приводятся символы, входящие в стандарт ко­
дировки КОИ-8. Строки таблицы соответствуют левым половинам
байтов изображенных символов, столбцы — правым. В шест­
надцатиричной системе счисления, например, символ ? имеет код
3F.

0123456789ABCDEF
2 ! " 4 П % & ' () X + , - . /
30123456789: ; < = > ?
4 @ А В С D Е FGH1 JKLM N О
5PQRSTUVWXYZ|\ | /\ -
6'abcdefghijklmn о
7pqrstuvwxyz{| }~
Сюабцдефгхийклмн о
Впярстужвьызшэщч ь
ЕЮАБЦДЕФГХИЙКЛМН О
F П Я РСТУЖВЬЫЗШЭЩЧ

ЛИТЕРАТУРА

Астановский А. Г., Ломунов В. Н. Процессор, ориентированный на
язык Форт. В сб.: Программирование микропроцессорной техники.—Таллинн:
1984, с. 50—67.

Баранов С. Н., Кириллин В. А., Ноздрунов Н. Р. Реализация
языка Форт на дисплейном комплексе ЕС-7970. В сб.: Программирование мик­
ропроцессорной техники. — Таллинн: 1984, с. 41—49.

Баранов С. Н., Ноздрунов Н. Р. Язык Форт И его реализация. —
Л.: 1988.

Вульф А. Операционные системы реального времени в русле развития вы­
числительной техники. — Электроника, 1985, № 17, с. 46—56.

3* 35

ОГЛАВЛЕНИЕ
Стр.

Слова и их выполнение...4
Арифметический стек ... 5
Арифметические операции .. &
Новые слова 7
Условное исполнение ... 9
Циклы...10
Константы и переменные...11
Кодофайл.. 12
Символы .. 13
Работа с участками памяти . . •..14
Строки..15
Циклы со счетчиком.. 16
Словарная статья... 17
Компиляция и исполнение...18
Стек возвратов..19
Исполнение слов..20
Определяющие слова..21
Арифметика двойной точности.. 22
Форматный вывод... 23
Внешняя память..25
Примеры работы Форт-системы..27
Пример работы структур управления . 30
Пример работы определяющих слов... 32
Реализация языка Форт...34
Приложение К. Таблица кодов КОИ-8... 35
Литература... 35

Андрей Юрьевич БУРАГО,
Вячеслав Алексеевич КИРИЛЛИН,

Иосиф Владимирович РОМАНОВСКИЙ

Форт — язык для микропроцессоров

Научный редактор
кандидат технических наук Б. А. Кацев

Ответственный за выпуск
ст. референт Правления Ленинградской
организации общества «Знание» РСФСР

Т. В. Старостина
Редактор Л. В. Павлова

Обложка работы В. И. Меньшикова
Техн, редактор С. А. Кучерова

Корректор О. Г. Семенова

Сдано в набор 15.08.88 г. Подписано в печать 27.07.89 г. М-21210.
Формат 60X90716. Бумага тип. № 3. Гарнитура литературная.

Печать высокая. Усл. п. л. 2,25. Уч.-изд. л. 2,25. Тираж 26ч000 экз.
Заказ № 3041. Цена 10 коп.

Ленинградская организация общества «Знание» РСФСР
191104, Ленинград, Литейный пр., 42.

Производственно-полиграфическое объединение № 1
Ленполиграфиздата. Пушкинское производство

