
Л. Пуп
РАБОТА

НА ПЕРСОНАЛЬНОМ
КОМПЬЮТЕРЕ

Работа на персональном компьютере

Using Your IBM Personal
Computer

by Lon Poole

Howard W. Sams & Co., Inc.
1983

П.Пул
___________ РАБОТА
НА ПЕРСОНАЛЬНОМ
КОМПЬЮТЕРЕ
Перевод с английского
канд. техн, наук О. Ю. Горчинской
под редакцией
канд. техня наук Е. К. Масловского

Москва «Мир» 1986

ББК 32.97
П88

УДК 681.3

Пул Л.
П88 Работа на персональном компьютере: Пер. с англ. — М.:

Мир, 1986.— 383 с., ил.В книге американского специалиста рассмотрены методы работы на персональных компьютерах, снабженных необходимым числом периферийных устройств. Приведены конкретные примеры программирования на языке Бэйсик. Описаны способы ввода цифровой и графической информации с помощью дисплея, а также вывода инфор­мации на печатающие и громкоговорящие устройства. Много внимания уделено запуску, редактированию и завершению программ.Для научных работников, инженеров, техников и студентов различных специаль­ностей.
2405000000-423

П 041 (01)-86 >76'86, ч- 1 ББК 32.97

Редакция литературы по информатике и робототехнике

© 1983 by Lon Poole
© перевод на русский язык, «Мир», 1986

ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА

Персональные электронные вычислительные машины (ПВМ)
призваны сыграть в жизни общества примерно ту же революционную
роль, которую выполнил в свое время телефон, с той лишь разни­
цей, что в данном случае речь идет не о всеобщей телефонизации, а
о всеобщей компьютеризации. Персонализация вычислений с после­
дующим объединением огромного количества персональных ЭВМ
в единую вычислительную сеть — вот тот прогрессивный путь раз­
вития информационной технологии, который в шутку можно было бы
обозначить девизом «Каждому — персональную машину!» Именно
так можно будет справиться с пресловутой проблемой «информаци­
онного взрыва».

Считается, что ЭВМ может быть отнесена к разряду персональ­
ных, если она продается в сети розничной торговли (разумеется, как
и пакеты программ), доступна по стоимости для семейного бюджета,
оснащена хотя бы одним транслятором с широко используемого язы­
ка высокого уровня, содержит средства текстового и графического
вывода информации, проста в обращении и рассчитана на массового
неподготовленного пользователя. Иными словами, ПВМ во многом
должна напоминать предмет домашнего обихода, подобный обычно­
му холодильнику или телевизору. И в этом нет ничего невозможного:
например, в США в 1985 году было продано около четырёх миллио­
нов ПВМ, а годовой прирост объема сбыта в настоящее время со­
ставляет 50% и, видимо, будет расти.

Хотя в нашей стране число владельцев персональных ЭВМ пока
невелико, подготовка к этапу, когда их будут миллионы, должна
идти уже сейчас: в школах, высших и средних учебных заведениях,
на производстве, на курсах повышения квалификации. И в этом
плане предлагаемая в русском переводе книга американского автора
Л. Пула «Работа на персональном компьютере», безусловно, сыграет
свою положительную роль, так как в океане зарубежной литерату­
ры по персональным ЭВМ она привлекает доходчивостью изложе­
ния материала, конкретностью целей, практической направленно­
стью и детальным рассмотрением наиболее важных вопросов ис­
пользования ПВМ.

В оригинале название книги звучит буквально так: Использова­
ние вашего персонального компьютера фирмы «Ай-Би-Эм» (Using
Your IBM Personal Computer), и придирчивый читатель сразу заме­
тит неточность его перевода. Однако различия между ПВМ разных

6 Предисловие редактора перевода

фирм в аспекте их эксплуатации при наличии тенденции к «адапта­
ции» становятся несущественными. Кроме того, книга, ориентиро­
ванная на широкий круг неподготовленных читателей, должна быть
понятна именно таким читателям уже с обложки.

Работая над переводом, мы старались сохранить присущую
автору простоту изложения материала. Все, что требуется для
чтения книги,— это понимание необходимости всеобщей «компью­
терной грамотности», желание освоить «чудо-технику» и наличие
возможности посидеть за дисплеем ЭВМ. Из области специальной
терминологии достаточно лишь знать, что такое «дисплей», «диско­
вый накопитель», «пользователь» и «язык программирования».

В одной из глав автор предупреждает читателей о том, что при
использовании помещенных в книге иллюстративных программ по­
лучаемые на экране «картинки» могут не совпадать с теми, что при­
ведены в книге, поскольку в программах встречаются строки с боль­
шим числом символов, чем это допускает ширина экрана используе­
мого дисплея или домашнего телевизора в этом качестве. В русском
переводе английские тексты, как известно, становятся длиннее, и
поэтому авторское предупреждение остается в силе. Конечно, там,
где это было возможно, мы старались «сжимать» перевод путем ис­
пользования сокращений, но не в ущерб понятности комментариев,
содержащихся в программах, и наглядности рисунков, играющих
в книге очень важную роль. Впрочем, в ней вообще нет ничего лиш­
него, а многочисленные приложения могут рассматриваться как
своего рода пособие по языку Бэйсик.

Было бы неправильно хоть как-то ограничивать круг возможных
читателей этой книги — она для всех: у кого есть ПВМ, тот, несом­
ненно, выигрывает в первую очередь, а «безмашинный» читатель
после прочтения книги наверняка захочет приобрести ПВМ, как
только это «разрешат» ему личный бюджет и предприятия-изготови­
тели. В заключение позволим себе обратиться с призывом: «Папы и
мамы! Увлекаясь электронными играми с вашей ПВМ, не гоните
от машины детей! Они должны стать вашими учениками и превзойти
своих учителей!»

Е. Масловский

ПРЕДИСЛОВИЕ

Эта книга предназначена для желающих пользоваться персо­
нальными электронными вычислительными машинами (ПВМ) фирмы
IBM и программами, которые можно купить в готовом к применению
виде или найти в журналах и книгах. Она несомненно представляет
интерес и для тех, кто хочет научиться писать программы для ПВМ
на языке Бэйсик независимо от того, вызвано ли такое желание прос­
тым любопытством или суровой необходимостью.

Книга охватывает широкий круг вопросов — от основ програм­
мирования до организации хранения данных в дисковой памяти и
работы с графическими дисплеями. Она также дает представление
о том, как пользоваться основными компонентами вычислительной
системы: системными блоками, клавиатурой, экраном дисплея, пе­
чатающим устройством и накопителями на магнитных дисках; как
обращаться с пакетом программ, купленным в записи на дискете
или переписанным из книги либо журнала; как писать программы
на языке Бэйсик.

Лучший способ научиться всему этому — самостоятельно вы­
полнить рассматриваемые операции. Книга окажется еще более
полезной, если вводить разбираемые примеры в собственную ПВМ.
Поскольку события, происходящие во время выполнения тех или
иных операций, описываются достаточно подробно, можно легко
проверить получаемые результаты.

Книга состоит из двух частей, нескольких приложений и пред­
метного указателя. Тем, кто хочет ограничиться приобретением на­
выков пользоваться коммерческими пакетами программ, достаточно
ознакомиться с материалом ч. I. Кстати, это поможет успешно ос­
воить материал ч. II, в которой основы программирования на языке
Бэйсик изложены в расчете на лиц, никогда прежде не писавших
программ для ЭВМ. С этой целью ч. II снабжена множеством таб­
лиц, иллюстраций и примерами программ. Совместно с приложе­
ниями и указателем этот материал обеспечивает опытному програм­
мисту повседневную помощь в работе с языком Бэйсик ПВМ.

В главе 1 кратко перечисляются функции всех наиболее харак­
терных компонентов ПВМ: клавиатуры, дисплея, системного блока,
дисководов, печатающих устройств и программных средств. По­
добно первой главе кулинарной книги, здесь приводятся сведения,
предназначенные для тех, кто совершенно незнаком ни с компонен­
тами ПВМ, ни с общей терминологией.

8 Предисловие

В главе 2 описываются процедуры включения вычислительной
системы и работы с клавиатурой, сравниваются и противпоставля-
ются различные типы дисплеев, даются общие рекомендации по ис­
пользованию печатающего устройства.

Глава 3 посвящена накопителям на магнитных дисках (НМД):
вопросам выбора и применения дискетов, работе дисковой операци­
онной системы, а также организации дисковых файлов и использо­
ванию наиболее важных команд, обеспечивающих работу с дисками.

В главе 4 даются описания процедур использования дисковых
пакетов программ, которые могут отличаться форматами команд,
а также подробные указания по перезаписи программ с листингов
в память ПВМ.

Глава 5 по существу является продолжением гл. 3: в ней содер­
жатся некоторые дополнительные команды для работы с дисками
и описывается ряд функциональных возможностей, которые могут
оказаться полезными для опытного пользователя или программиста,
работающего с языком Бэйсик. Рассматриваются эффективные спо­
собы редактирования команд, организации и автоматического вы­
полнения потоков команд.

Глава 6 открывает вторую часть книги и знакомит читателя с
основами языка Бэйсик. В ней показывается, как должны начинать­
ся и заканчиваться Бэйсик-программы, рассматриваются способы
написания простых программ для режима непосредственного взаимо­
действия и программируемого режима; описываются наиболее эф­
фективные методы ввода и редактирования текстов программ, хра­
нения и поиска Бэйсик-программ, размещенных на магнитных дис­
ках.

В главе 7 описываются различные типы данных, с которыми
может работать программа, написанная на языке Бэйсик, включая
цепочки символов и три вида числовых значений. Объясняются
аналогия и различие констант, переменных и массивов и представ­
ляется ряд команд, обеспечивающих манипулирование этими объ­
ектами и их совместное использование.

Глава 8 является продолжением гл. 7 и имеет дело с проблемами
манипулирования данными. В ней представлены четыре разновид­
ности выражений и способы их вычисления, объясняется, что такое
функции и как они могут разрабатываться самим пользовате­
лем.

В главе 9 содержатся команды на языке Бэйсик, влияющие на
порядок выполнения других команд программы: это команды вет­
вления, организации циклов, обращения к подпрограммам и исполь­
зования перекрывающихся сегментов (оверлеев).

Глава 10 дает представление о том, как выводить строки символов
и числовые значения на экран дисплея или на печатающее устройст­
во, контролируя область их отображения и форму представления.
Здесь же даются рекомендации по использованию конкретных функ­

Предисловие 9

циональных свойств и некоторых опций, присущих большинству
печатающих устройств.

В главе 11 анализируются проблемы минимизации числа оши­
бок при вводе информации с клавиатуры за счет введения процедур
общего контроля клавишного ввода и тщательной разработки опе­
раций ввода программ. Эти операции последовательно разворачи­
ваются в стандартную процедуру, которой читатель может широко
пользоваться в своей повседневной работе, связанной с программи­
рованием.

Глава 12 посвящена вопросам хранения и поиска данных на
диске. Описывается общая структура дисковых файлов и два пре­
дусмотренных в языке Бэйсик метода доступа к данным — после­
довательный и произвольный. Изложение ведется на примере разра­
ботки весьма простой, но полезной прикладной программы учета
личного имущества.

В главе 13 рассматриваются все специальные команды языка
Бэйсик, предназначенные для формирования графических изобра­
жений. Из этой главы читатель узнает, как вычерчивать на экране
дисплея линии, прямоугольники, круги, дуги, эллипсы и как их
можно использовать для построения линейных графиков, гисто­
грамм, круговых диаграмм и т. п. Проводится подробный разбор
развитой системы команд машинной графики, которые значительно
упрощают вычерчивание кривых сложной формы. Глава заверша­
ется разделом, посвященным машинной мультипликации, т. е.
синтезу подвижных изображений; для большей наглядности изло­
жения приводятся два практических примера.

Глава 14 касается вопросов синтеза звуковых образов; рассмат­
риваются вопросы воспроизведения музыкальных сочинений при
помощи динамика, имеющегося в комплекте ПВМ.

В главе 15 объясняется, как пользоваться предусмотренными в
языке Бэйсик командами прямого управления наименее известными
функциональными возможностями, такими, как установка цвета
символов на экране графического дисплея, выбор одного из двух
имеющихся в системе дисплеев и определение назначения функцио­
нальных клавиш.

В приложениях содержится полный набор команд языка Бэйсик,
совокупность команд для работы с дисками и сообщения об ошибках;
приводится перечень стандартных символов ПВМ в сопоставлении
с символами клавиатуры большинства печатающих устройств.

В рамках каждой главы материал расположен по принципу воз­
растания сложности. Однако это отнюдь не означает, что материал,
помещенный в конце гл. 4, проще, чем материал, содержащийся в
начале гл. 6, поскольку главы организованы прежде всего по темам.
Благодаря такой структуре книги можно свободно перейти к чте­
нию следующей главы, если предшествующая ей глава оказалась
слишком трудной для понимания. Но если подобное ощущение воз­

10 Предисловие

никнет при чтении последующих глав, то лучше вернуться к преды­
дущей и дополнительно поработать над изложенным в ней материа­
лом.

Книга учит писать программы для ПВМ на языке Бэйсик, позво­
ляющие наилучшим образом использовать наиболее известные воз­
можности машины, однако при этом не преследуется цель подробно
разъяснять смысл абсолютно всех команд языка Бэйсик. Во второй
части рассмотрено около 80% команд и опций, доступных для реа­
лизации на ПВМ. В число остальных 20% команд, которые подробно
не анализируются, входят команды и опции, относящиеся к редко
используемым возможностям ПВМ (например, хранение и поиск
программ и данных на кассетных магнитных лентах) и к более слож­
ным процедурам, которыми пользуется сравнительно небольшое
число программистов, работающих с языком Бэйсик (например,
программирование на машинном языке).

Эта книга не увидела бы свет, если бы не усилия моих многочис­
ленных коллег и друзей. В этой связи я хотел бы выразить свою
признательность Нэнси Фишер за помощь, оказанную мне при на­
писании гл. 14, и Эрферт Нильсон за подготовку рукописи. Я также
признателен Янису Паско, руководителю отдела сбыта и развития
фирмы Howard W. Sams & Со., которому я обязан тем, что книга
была опубликована, д-ру Озборну за то, что именно он сделал мне
предложение написать эту книгу, а также за его неоценимые советы
и неиссякаемый оптимизм. Особой благодарности заслуживает му­
жественная Карин, которая стойко выносила мои проявления моно­
мании, терпеливо выслушивала все мои предложения и давала пра­
вильную оценку событиям благодаря присущему ей здравому
смыслу.

Корпорация AMDEK в лице Дэна Раймса любезно предоставила
в мое распоряжение монитор AMDEK Color II, без которого я не
смог бы со всей полнотой ощутить возможности графических средств
персональной ЭВМ.

Часть материала гл. 1 и 13 была первоначально опубликована в
журнале PC («The Independent Guide to IBM Personal Computers»).
Идеи оживления изображений, изложенные в гл. 13, заимствованы
из книги «Film Animation as a Hobby». (Andrew and Mark Hobson,
Sterling Publishing Co., New York, 1975).

IBM — зарегистрированный торговый знак фирмы IBM.
Apple — зарегистрированный торговый знак фирмы Apple Com­

puter.
Radio Shack — зарегистрированный торговый знак фирмы Tandy.

Часть I

РАБОТА НА ПЕРСОНАЛЬНОЙ ЭВМ

Глава 1

СТРУКТУРА ПЕРСОНАЛЬНОЙ ЭВМ

Персональная ЭВМ (ПВМ) — эт© сложная вычислительная система, каждая
часть которой имеет свое функциональное назначение. Ядро ПВМ составляют
клавиатура, системный блок и видеодисплей (рис. 1.1), обеспечивающие выпол­
нение основных операций: ввод, обработку и выдачу информации. Для повышения
эффективности этих операций используется широкий набор дополнительных
средств, благодаря чему становится возможным хранение огромного количества
информации, печатание различных отчетов, взаимодействие с другими ЭВМ и реа­
лизация множества других функций. В данной главе рассматриваются наиболее
распространенные как обязательные, так и факультативные узлы ПВМ, вы­
пускаемые фирмой IBM и другими изготовителями.

Клавиатура и видеодисплей

Клавиатура представляет собой стандартное устройство, пред­
назначенное для ввода команд и данных. Используя 83 клавиши
клавиатуры в различных сочетаниях, можно ввести любой из 256
символов, распознаваемых ПВМ.

Основным средством взаимодействия пользователя с любой ЭВМ
является экран видеодисплея. На экране можно разместить до 25
строк текста, хотя использование нижней строки в определенном
смысле ограничено: максимальная длина строки 40 или 80 символов.
Для большинства экранов размеры знаков 40-символьной строки
вдвое больше по сравнению с 80-символьной строкой. (Очевидно,
что большие по размеру знаки воспринимаются легче.)

Видеодисплеи в ПВМ могут быть любого типа. В составе ПВМ
фирмы IBM предусмотрен одноцветный (монохроматический) видео­
монитор (рис. 1.1), воспроизводящий на экране текстовую информа­
цию и ограниченный набор графических изображений в зеленом
цвете на черном фоне. Аналогичные видеомониторы выпускают и
другие фирмы, причем в одних изображение воспроизводится в бе­
лом цвете на черном фоне, а в других — зеленом на черном. Моно­
хроматические мониторы, как правило, дают очень четкое изобра­
жение, поэтому их хорошо использовать для воспроизведения тексто­
вой информации, состоящей из 40- или 80-символьных строк.

12 Глава 1

Рис. 1.1. Комплект персональной ЭВМ с монохроматическим видеомонитором.

Персональная ЭВМ способна воспроизводить текст и любые
графические изображения в цвете, если в качестве видеодисплея
используется, например, обычный (бытовой) телевизор, снабженный
двумя дополнительными специальными устройствами (рис. 1.2),
одно из которых представляет собой частотный модулятор, преобра­
зующий видеосигнал ЭВМ в форму, воспринимаемую телевизором,
а другое — обычный переключатель для настройки телевизора на
прием сигнала либо от ЭВМ, либо с обычной антенны. Однако по
своей разрешающей способности бытовые телевизоры не соответст­
вуют возможностям ЭВМ, и даже в телевизорах самых лучших
марок четкость изображения оказывается недостаточной для вос­
произведения 80-символьных текстовых строк.

Несколько большей оптической разрешающей способностью
по сравнению с лучшими бытовыми телевизорами обладают так на­
зываемые комбинированные мониторы. Более дорогие цветные мони­
торы (RGB) могут воспроизводить каждый бит файла оперативной
информации, генерируемой ПВМ (рис. 1.3). Следует заметить, что ни
в одном из цветных мониторов не применяются ни высокочастотный
модулятор, ни антенный переключатель.

Нельзя пользоваться одновременно монохроматическим мо­
нитором, например фирмы IBM, и каким-либо цветным монитором.
Хотя вычислительная машина и может быть ориентирована на при­
менение мониторов двух типов, назначение каждого из них должно
быть определено заранее. Например, можно использовать монохро-

Структура персональной ЭВМ 13

Рис. 1.2. Комплект ПВМ с бытовым телевизором в качестве видеомонитора.
1 — антенный переключатель; 2 — высокочастотный модулятор.

Рис. 1.3. Комплект ПВМ с трехцветным видеомонитором.

14 Глава 1

магический видеомонитор фирмы IBM для визуального отображения
текста и бытовой цветной телевизор для отображения цветных гра­
фических данных, однако ПВМ не сможет обеспечить воспроизве­
дение изображений на обоих дисплеях одновременно. Сложная
процедура переключения ПВМ с монохроматического монитора
фирмы IBM на цветной монитор и обратно описывается в гл. 15.

Системный блок

Основой всей конструкции персональной ЭВМ является систем­
ный блок, управляющий потоком информации между всеми имею­
щимися в нем платами других устройств. Этот блок позволяет не
только направлять необработанные данные от одного устройства к
другому, но и обрабатывать поступающую информацию: выбирать,
комбинировать и исключать данные, выполнять расчеты для полу­
чения на этой основе совершенно иных видов информации.

Естественно предположить, что реализующий такие функции
системный узел должен представлять собой весьма сложное уст­
ройство. Чтобы убедиться в том, что это действительно так, доста­
точно заглянуть внутрь блока (рис. 1.4). Однако, чтобы пользоваться
ПВМ, необязательно разбираться во всех тонкостях ее внутренних
схем, необходимо лишь знать возможности системного блока ПВМ.
Пользование ПВМ подобно пользованию автомобилем. Владельцу
машины известно, что под капотом автомобиля находятся двигатель,
аккумулятор, вероятно, радиатор, возможно, кондиционер и еще
многие другие устройства. Можно допустить, что он не знаком с
принципом работы этих узлов (или это его просто не интересует),
но о существовании таких узлов он, несомненно, знает и, следова­
тельно, имеет представление о возможностях своей машины. Ана­
логичная ситуация наблюдается при работе на ПВМ, системный
блок которой имеет источник питания, микропроцессор, оператив­
ное запоминающее устройство, а может быть, и один или несколько
дисководов. Некоторые внутренние устройства системного блока
трудно обнаружить без его разборки. Так, например, системная
плата обычно располагается в самом низу системного блока, и по­
этому ее многочисленные интегральные схемы, в том числе микро­
схемы микропроцессора и запоминающего устройства, оказываются
скрытыми от глаз.

Источник питания и микропроцессор

Управление потоком электроэнергии от источника питания сис­
темного блока, который в свою очередь подает напряжение соот­
ветствующего номинала на внутренние электронные схемы, приводы

Структура персональной ЭВМ 15

дискет и клавиатуру, осуществляется с помощью основного выклю­
чателя системы. Для охлаждения электрических цепей системного
блока на внутренней поверхности крышки источника питания уста­
новлен вентилятор.

Рядом с источником питания на системной плате расположен
кристалл большой интегральной схемы (БИС), микропроцессор
Intel 8088,— «мозг» всего системного блока, поскольку именно мик­
ропроцессор координирует выполняемые операции и производит
арифметические вычисления, необходимые для работы системы в
целом. Микропроцессор 8088 обладает довольно высоким быстро­
действием. При необходимости его скорость может быть увеличена
путем добавления сопроцессора, плата которого вставляется в со-

Рис. 1.4. Внутреннее устройство системного блока.
1 — адаптерные платы; 2 — гнезда для расширительных модулей; 3 — микропроцессор; 4 переключатели выбора конфигурации; 5 — источники питания; 6 — постоянное запоминаю* щее устройство; 7 — динамик; 8 — динамическая память; 9 — дисководы; 10 — дискет.

16 Глава 1

седнее пустое гнездо. В роли сопроцессоров могут выступать про­
цессор числовых данных Intel 8087 и быстродействующий процессор
ввода-вывода (ПВВ) Intel 8089.

Память

В комплекте каждой ПВМ имеется запоминающее устройство
(ЗУ) определенной емкости, которая измеряется в единицах, назы­
ваемых байтами. Один байт памяти ЭВМ — одна машинная ячей­
ка — способен хранить только один символ, поэтому можно рас­
сматривать байты как информационные символы, хотя в памяти
ЭВМ помимо них хранится и другая информация, например число­
вые величины и программы. Благодаря определенным особенностям
архитектуры ЭВМ емкость ЗУ обычно кратна 1024 байт. Эта еди­
ница емкости памяти называется килобайтом (1К). Персональная
ЭВМ может иметь память емкостью от 60К (61 440 байт) до 1024К
(1 048 576 байт). Емкость памяти иногда измеряется в мегабайтах:
1М байт =1024К байт.

Любая ПВМ оснащена постоянной (неизменяемой) памятью,
называемой постоянным запоминающим устройством (ПЗУ); нуж­
ная информация записывается в ПЗУ емкостью 40К байт в нести­
раемой форме в процессе его изготовления и не изменяется даже
при отключении источника питания. В ПЗУ хранится информация,
важная для интерпретирования команд на языке Бэйсик и для вы­
полнения других общих функций.

Имеется еще несколько типов ЗУ памяти ПВМ: динамическое
ЗУ, память с оперативной записью и считыванием и ЗУ с произволь­
ной выборкой (ЗУПВ). В ЗУПВ информация может храниться и
извлекаться из него в любой момент работы ПВМ, но при отключе­
нии источника питания ее содержимое уничтожается. Главное до­
стоинство динамической памяти — изменчивость, благодаря которой
одно и то же запоминающее устройство можно многократно исполь­
зовать для различных целей. На системной плате имеется по край­
ней мере 16К байт динамической памяти, которая может быть уве­
личена до 32, 48 или 64К байт путем установки дополнительных мик­
росхем. Дальнейшее расширение динамической памяти может быть
осуществлено за счет применения адаптерных плат.

Переключатели выбора конфигурации системы

Рядом с платой микропроцессора 8088 расположены две группы
переключателей, установка которых в определенное положение за­
дает нужную конфигурацию системы: требуемую емкость памяти,
тип применяемого дисплея и т. п. Положение переключателей в за­
висимости от выбираемого варианта конфигурации вычислительной

Структура персональной ЭВМ. 17

системы определяется инструкциями по монтажу дополнительного
оборудования, которые входят в комплект документации каждой
ПВМ.

Встроенный динамик, расширительные гнезда и адаптерные платы
По диагонали от источника питания находится небольшой гром­

коговоритель для подачи звукового сигнала в самых различных си­
туациях. Он может быть также использован в специальных програм­
мах для воспроизведения музыки и звуковых эффектов.

На тыльной стороне системной платы имеется пять гнезд, в ко­
торые вставляются адаптерные платы. При наличии более пяти
адаптерных плат различного назначения количество предусмотрен­
ных гнезд оказывается недостаточным, и для увеличения их числа
применяется специальный расширительный блок.

Адаптерные платы (рис. 1.5) делают ПВМ универсальной; не­
которые из них обеспечивают работу внешнего оборудования (на­
пример, дисплеев, дисководов, печатающих устройств, электронных
игр) и связь с другими ЭВМ. Часть адаптерных плат (платы допол­
нительной динамической памяти, электронных часов с батарейным
питанием и тестеров экспериментальных схем) является автономной
и представляет собой самостоятельные функциональные узлы. Су­
ществуют также отдельные адаптерные платы, объединяющие

Рис. 1.5. Некоторые адаптерные платы.
1 — адаптер цветных и черно-белых графических устройств; 2 — адаптер монохроматическо­го дисплея и параллельного печатающего устройства; 3 — адаптер асинхронной связи (стан­дарт RS232 для последовательной передачи); 4 — адаптер блока управления электронными играми; 5 — адаптер дискетных накопителей.

18 Глава 1

Таблица 1.1. Дополнительная аппаратура и соответствующие адаптеры

Возможные устройства и подключения Требуемая адаптерная плата
Дополнительная память Расширитель памяти
Непрерывный датчик време- Часы с батарейным питанием

ни/календарь
Цветной монитор Адаптер цветных и черно-белых графических

устройств
Дискеты Адаптер дискетного накопителя
Экспериментальная схемная Адаптер прототипа и расширителя

плата
Бытовой телевизор Адаптер цветных и черно-белых графических

устройств
Рычаги управления Адаптер блока управления электронными

играми
Световое перо Адаптер цветных и черно-белых графических

устройств
Модем Адаптер асинхронной связи
Монохроматический монитор Адаптер монохроматического дисплея и па­

раллельного печатающего устройства фир­
мы IBM

Сеть передачи данных Адаптер асинхронной связи
Пульты электронных игр Адаптер блока управления электронными

играми
Печатающее устройство Адаптер монохроматического дисплея и па­

раллельного печатающего устройства фир­
мы IBM, адаптер параллельного печатаю­
щего устройства или адаптер асинхронной
связи

Сеть связи Адаптер асинхронной связи
Видеотекст Адаптер асинхронной связи
Винчестерский диск Адаптер винчестерских дисков

несколько функций, что обеспечивает экономию гнезд системного
блока и создает возможность подключения большего количества до­
полнительных устройств без применения расширительного блока.

Тип адаптерных плат, необходимых для конкретной вычисли­
тельной системы, зависит от того, для каких целей применяется ПВМ
и какие ее внешние компоненты используются. Некоторые возмож­
ные варианты перечислены в табл. 1.1.

Диски и дисковые накопители
Магнитный диск — дополнительное запоминающее устройство,

своего рода реализация расширения памяти. На диске может по­
стоянно храниться любое содержимое внутренней памяти ПВМ и
многократно вызываться для повторного использования. Это озна­
чает, что ПВМ способна переключаться с одной задачи на другую
со скоростью, определяемой временем обращения к программе на

Структура персональной ЭВМ 19

магнитном диске, а длина и сложность программ уже не ограничива­
ются емкостью ЗУ, поскольку ненужную в данный момент для рабо­
ты программы информацию можно записывать на диск и использо­
вать освобождающуюся за счет этого динамическую память для опе­
ративной информации, вызываемой с диска. В целом дисковый на­
копитель состоит из трех частей: адаптерной платы, дисковода и
собственно диска (рис. 1.6). Адаптер координирует обмен информа­
цией между микропроцессором и динамической памятью, с одной
стороны, и НМД — с другой; он вставляется в одно из гнезд для
расширительных модулей, находящихся внутри системного блока.
Специальные устройства накопителя считывают и записывают ин­
формацию на диск, работая по принципу магнитной звуко- и видео­
записи. Собственно диск представляет собой жесткую пластинку,
которая вращается внутри дисковода и имеет в качестве запоминаю­
щей среды слой магнитного покрытия.

Дискеты
В небольших вычислительных системах, подобных ПВМ, наибо­

лее распространенным типом диска является гибкий диск, обычно
называемый дискетам. Дискеты выпускаются двух размеров (по
диаметру): 5т/4 дюйма (133 мм) и 8 дюймов (203 мм) и представляют
собой гибкий пластик в форме диска, покрытый магнитной пленкой
и помещенный в твердый пластмассовый конверт для защиты от

Рис. 1.6. Дискетные накопители и дискеты.

20 Глава 1

Рис. 1.7. Внутреннее устройство дискета.

физических повреждений (рис. 1.7). Емкость отдельного дискета
колеблется от 90К байт до 1М байт и более в зависимости от при­
меняемого дисковода.

Благодаря тому что дискет существует отдельно от дисковода,
можно использовать несколько дискетов, каждый из которых со­
держит различную информацию и управляется одним и тем же при­
водом. Дискет вставляется в щелевое отверстие дисковода, меха­
низм привода захватывает гибкий пластмассовый диск за централь­
ное отверстие и вращает его внутри конверта. Доступ к информации
осуществляется через прорези в защитном конверте.

Винчестерские диски

Основой другого распространенного типа дискового ЗУ служит
жесткий диск, на который информация записывается по специальной
технологии, позволяющей хранить на одной стороне диска в 100 раз
больший объем данных, чем при использовании обычной технологии.
Этот специальный способ записи называется винчестерской техноло­
гией, а ЗУ, в которых она используется, носят название винчестер­

Структура персональной ЭВМ 21

ских дисков п. Диски такого типа чрезвычайно чувствительны даже
к мельчайшим частичкам пыли или копоти, поэтому они составляют
единое целое с приводом и не могут сниматься с дисковода. Сам
диск заключен в герметизированный корпус и может заменяться
только персоналом, обслуживающим ЭВМ. Емкость памяти ПВМ,
в которых используются винчестерские диски, может превышать
5М байт.

Печатающие устройства

При наличии печатающего устройства ПВМ может печатать на
бумаге отрывные документальные сообщения, сводки, отчеты и т. п.
Существует целая гамма печатающих устройств для ПВМ (рис. 1.8),

Рис. 1.8. Печатающие устройства и буфер печати.

которые отличаются друг от друга по скорости, качеству печати,
набору воспроизводимых знаков, типу используемой бумаги и по
ряду других характеристик.

1} Изначально такие накопители рассчитывались на 2 диска по 30 Мбайт,
составляющих единый блок; результирующая емкость получаемого НМД обозна­
чалась цифрами 30/30, подобно калибру старинного охотничьего ружья «Вин­
честер». Отсюда и возникло название «винчестерский диск», или «винчестер».—
Прим, ред.

22 Глава 1

Параллельный и последовательный режимы связи

Из всех известных режимов связи между ЭВМ и печатающими
устройствами наиболее распространены два: параллельный и после­
довательный В ПВМ может реализовываться любой из двух ука­
занных способов информационного обмена, но параллельный режим
определен как стандартный.

В матричном печатающем устройстве IBM 80CPS реализован
параллельный режим передачи данных; оно подключается либо к
адаптерной плате монохроматического дисплея фирмы IBM и парал­
лельного печатающего устройства, либо к адаптеру параллельного
печатающего устройства фирмы IBM. Взамен последнего можно
выбрать любой другой тип параллельной печати. Печатающие уст­
ройства последовательного действия соединяются с ПВМ через адап­
тер асинхронной связи фирмы IBM или подключаются к адаптерной
плате какого-нибудь другого режима последовательной связи.

Буферы печатающих устройств

В процессе вывода информации на печать ПВМ большую часть
времени простаивает, поскольку ее потенциальное быстродействие
по выводу данных значительно превосходит скорость работы даже
самого быстрого печатающего устройства. Для устранения этого
несоответствия можно включить между ПВМ и печатающим уст­
ройством промежуточное аппаратное средство, которое будет играть
роль своеобразного накопительного резервуара. Такое устройство
(рис. 1.8), называемое буфером печати или блоком подкачки печати,
оснащается (подобно системному блоку) динамической памятью,
предназначенной для хранения информации, адресованной печатаю­
щему устройству. Буфер печати принимает информацию с высокой
скоростью, запоминает ее и постепенно, по мере готовности печатаю­
щего устройства, выдает на печать. Такой буфер можно представить
себе в виде ведра с отверстием в днище. Машина заполняет буфер
информацией точно так же, как вода заполняет ведро, а из буфера
информация «просачивается» на печатающее устройство, подобно
воде, вытекающей из ведра через отверстие в дне.

Для того чтобы напечатать 16К знаков, печатающему устройству
требуется от 2 до 5 мин, в то время как ПВМ способна заполнить
буфер емкостью 16К менее чем за I мин. При заполнении буфера
ПВМ должна снижать свое быстродействие до уровня скорости пе­
чати, чтобы добавить новую порцию информации по мере поступле­
ния ее из буфера на печатающее устройство. В конечном итоге ПВМ

Строгие различия между ними носят скорее технический характер и со­
вершенно несущественны в аспекте рассматриваемых в книге вопросов.

Структура персональной ЭВМ 23

завершит заполнение буфера и перейдет к выполнению других опе­
раций, а печатание будет продолжаться автономно до тех пор, пока
буфер полностью не очистится.

Система программного обеспечения

ПВМ без программы подобна оркестру без партитуры — она
бездействует. Любой ЭВМ необходимы команды, которые вызвали
бы ее к жизни, точно так же, как оркестру необходимо музыкальное
произведение, записанное на бумаге в нотных знаках. Программа —
это упорядоченная совокупность команд, сообщающих ЭВМ, как
выполнять ту или иную операцию, и этот факт делает программы
столь же важной частью ПВМ, как и любое физическое устройство.
Набор программ, имеющихся в наличии у данной ЭВМ, называют
системой программного обеспечения.

В памяти ПВМ одновременно сосуществуют несколько типов
программ, которые служат единой цели: совместно управляют рабо­
той вычислительной системы. Один из типов программ определяет,
для какого вида деятельности применяется ЭВМ: для обработки
текстовой информации, выполнения бухгалтерских расчетов, финан­
сового анализа, для работы с видеотексом, организации досуга или
для каких-либо иных целей. Такие программы называются приклад­
ными.

В прикладных программах могут использоваться команды, слиш­
ком сложные для их непосредственного восприятия ПВМ без какой-
либо помощи со стороны вспомогательных средств. В этом случае
некоторая программа второго типа переводит текст прикладной
программы на язык команд, понятных ПВМ. Такой перевод может
быть выполнен заблаговременно с помощью компилятора, который
подготавливает преобразованный вариант прикладной программы
для ее более позднего использования. В отличие от компилятора
интерпретатор способен оперативно, «на ходу», заново переводить
прикладную программу на машинный язык при каждом ее исполь­
зовании. Один интерпретатор — для языка Бэйсик — постоянно
находится в одной из областей ПЗУ персональной ЭВМ; остальные
располагаются в динамической памяти совместно с прикладной
программой.

Прикладные программы обычно рассчитаны на одновременное
существование программ другого типа, обеспечивающих жизненно
необходимые связи с такими устройствами, как клавиатура, дис­
плей и печатающее устройство. Благодаря этому прикладная про­
грамма просто «говорит»'. «Получить символ с клавиатуры» или
«Вывести эти данные на экран», не зная, как это делается. Постоянно
хранимые в ПЗУ программы поддерживают связь с большей частью
компонентов системы, а специальная программа, находящаяся в
динамической памяти, обеспечивает обмен информацией с дисками.

24 Глава 1

Рис. 1.9. Задняя панель системного блока (возможно другое расположение гнезд).
1 — разъем источника питания монохроматического монитора; 2 — разъем источника пита­ния системного блока; 3 — антенный вход; 4 — разъем клавиатуры; 5 — гнездо для подклю­чения комбинированного монитора; 6 — разъем трехцветного монитора; 7 — разъем парал­лельного печатающего устройства; 8 — разъем монохроматического монитора; 9 — разъем последовательного печатающего устройства или аналогичных аппаратных средств; 10 — разъем блока управления электронными играми.

Рис. 1.10. Схема соединения компонентов вычислительной системы.

Структура персональной ЭВМ 25

Стандартная программа, управляющая таким обменом, называется
дисковой операционной системой ПВМ. (ДОС ПВМ), но возможны
и другие аналогичные программы.

Монтаж вычислительной системы
Прежде чем пользоваться ПВМ, ее надо правильно собрать и

наладить. Для этого все устройства машины снабжены соединитель­
ными кабелями, которые подсоединяются либо непосредственно к
задней панели системного блока, либо к другому устройству, под­
ключаемому в свою очередь к системному блоку (рис. 1.9). У боль­
шинства устройств имеется шнур питания, который включается в
штепсельную розетку.

Поскольку ПВМ может иметь различную конфигурацию, рас­
смотреть все конкретные варианты невозможно. Поэтому до начала
работы на ПВМ надо проверить по инструкции каждый ее узел и,
убедившись в правильности его коммутации, зарисовать необходи­
мую для использования в будущем скелетную схему соединений ком­
понентов (рис. 1.10).

Глава 2

МОНИТОР, КЛАВИАТУРА И ПЕЧАТАЮЩЕЕ УСТРОЙСТВО

Помимо видеодисплея, клавиатуры и системного блока, которые образуют
ядро любой вычислительной системы на основе ПВМ, в большинстве ПВМ имеется
еще и печатающее устройство. Данная глава знакомит читателя со способами ис­
пользования всех перечисленных компонентов вычислительной системы.

Включение и выключение питания

Простейшая ПВМ, содержащая системный блок, монохромати­
ческий монитор и клавиатуру, включается и выключается очень
легко, поскольку все три ее узла получают питание через один и тот
же большой тумблер, окрашенный в красный цвет и расположенный
на боковой панели системного блока. С помощью этого тумблера
осуществляются также включение и выключение питающего напря­
жения для дисководов, установленных внутри системного блока.

В случае более сложных вычислительных систем операции вклю­
чения и выключения оборудования осуществляются большим чис­
лом тумблеров, так как каждый дополнительный узел^ПВМ снаб­
жается собственным выключателем. При этом, однако, действует
одно общее правило: «Включай внешние узлы ПВМ в любом поряд­
ке, но делай это до того, как включишь системный блок». Относи­
тельно выключения вычислительной системы справедливо обратное
правило: «Сначала выключи системный блок, а затем выключай
внешние узлы в любом порядке». Само собой разумеется, что в тех
случаях, когда инструкция по эксплуатации конкретного компонен­
та ПВМ устанавливает иную последовательность действий, следует
придерживаться рекомендаций этой инструкции.

Работа с видеодисплеем

Жизненно важным элементом ПВМ является экран видеодис­
плея, хотя пользование им не составляет никакого труда. Если бы­
товой телевизор в этой роли еще требует некоторых специальных
операций, то для работы с видеомонитором не нужно практически
никаких навыков.

Следует, однако, иметь в виду ряд общих положений, игнориро­
вание которых может привести к необратимым повреждениям экра­
на. Прежде всего важно знать, что сохранение на экране изображе­
ния без изменений в течение 10 мин приведет к постепенному про­
жогу электронно-лучевой трубки. Остающийся в результате «отпе­

Монитор, клавиатура и печатающее устройство 27

чаток» изображения может впоследствии навсегда вывести из строя
экран дисплея. При интенсивном использовании текстового процес-
сора, программы табличных вычислений или каких-либо других
средств, выводящих на экран строки текстовой информации (в от­
личие от графических данных), в конечном итоге на экране остаются
горизонтальные теневые полосы, заметные даже при выключенном
состоянии дисплея. Необходимо поэтому соблюдать особую осто­
рожность при использовании в качестве дисплея домашнего телеви­
зора, так как появление на нем упомянутых выше дефектов может
отрицательно повлиять на качество приема обычных телепередач.

ПВМ, укомплектованная и монохроматическим, и цветным
мониторами, допускает одновременное использование лишь одного
из них. Необходимое переключение может осуществляться программ­
ным способом (гл. 15).

Рис. 2.1. Установка ползункового
антенного выключателя в поло­
жение, соответствующее использо­
ванию домашнего телевизора в ка­
честве дисплея ПВМ.

Применение в качестве дисплея домашнего телевизора
Для использования бытового телевизора совместно с ПВМ как

видеомонитора необходимо прежде всего убедиться, что он в этом
случае правильно подсоединен к системному блоку через высоко­
частотный модулятор (см. рис. 1.2).
При этом телевизор должен быть
настроен на нужный канал, кото­
рый определяется инструкцией по
использованию модулятора (обыч­
но в ней указывается 33-й канал).
Далее антенный выключатель ус­
танавливается в положение, при
которОлМ видеосигнал ПВМ подает­
ся на вход телевизионного прием­
ника (рис. 2.1), и производится
обычное включение телевизора.
Однако регулятор громкости при
этом должен оставаться полностью
выведенным, поскольку ПВМ не
использует динамик приемника, а
работает лишь с каналом изобра­
жения.

Если ваш домашний телевизор —
цветной, то вначале требуется
настроить его на просмотр широковещательных передач с той лишь
разницей, что ручки регулирования уровня красного и зеленого
цвета должны быть установлены в положение, соответствующее
максимальному уровню зеленого. Если с помощью этих органов
настройки не удается добиться хорошего качества воспроизведения
цветов изображений, выдаваемых ПВМ, следует продолжить подре­

28 Глава 2

гулировку вплоть до получения приемлемой цветопередачи. При
этом, однако, не надо ждать от телевизора высокой четкости изо­
бражения: даже телевизионные приемники лучших марок дают
«картинку», которая выглядит размытой в сравнении с тем же изо­
бражением на видеомониторе ПВМ.

Необходимо иметь в виду, что домашние телевизоры не воспро­
изводят принимаемое изображение целиком. В них неизбежно
происходит увеличение принимаемого кадра, в результате чего
часть его, расположенная по краям трубки, теряется. Но зато это
препятствует появлению на экране неприглядной черной окантовки
изображения. Такая защитная мера называется разверткой за
пределами экранам в одних телевизорах она выражена более явно,
чем в других, но даже в случае совсем незначительного ее исполь­
зования наличие развертки за пределами экрана может служить
серьезным препятствием для работы ПВМ со всей его площадью
при выводе изображений. Любые такие попытки будут неизбежно
приводить к потере части изображения, подобно тому как это про­
исходит при показе слайдов или кинофильма на экране слишком
малых размеров. Но хотя ПВМ и не способна сжимать выводимые
данные в целях устранения эффекта развертки за пределами экра­
на, она может сдвигать изображение на экране влево или вправо.
Один из способов реализации подобного сдвига объясняется в
гл. 4.

Что же касается видеомонитора, то он более прост в обращении,
чем домашний телевизор, так как не требует ни выбора специального
канала, ни установки в нужное положение антенного выключателя.
Обычно бывает достаточно настроить органы управления экраном
один раз и больше не изменять их положения.

Информация, видимая на экране дисплея

ПВМ начинает выводить данные на экран через несколько се­
кунд после включения машины и дисплея. Первое, что появляется
на экране, это мерцающая подчеркивающая черточка в его левом
верхнем углу. (В телевизорах с избыточной разверткой за пределами
экрана мерцающая черточка при отсутствии информации может
оказаться по этой причине невидимой.) Через короткое время после
этого высвечивается сообщение, показанное на рис. 2.2.

Курсор. Мерцающая подчеркивающая черточка, появляющаяся
на экране сразу после включения вычислительной системы, назы­
вается курсором^ она указывает позицию расположения на экране
очередного символа. Курсор может принимать и иную форму, в том
числе форму прямоугольника или квадрата, и даже может быть не­
видимым для глаза. В последнем случае местоположение курсора
остается известным машине, хотя и не обнаруживается визуально.

Монитор, клавиатура и печатающее устройство 29

Изменение формы курсора и его видимости осуществляется програм­
мным способом и рассматривается в гл. 11.

Самоконтроль ПВМ. В первые несколько секунд после включения
системного блока ПВМ осуществляет контроль собственных узлов.

При обнаружении неполадок она выдает на экран то или иное кодо­
вое сообщение; смысл всех таких сообщений детально разъясняется
в разд. 4 «Руководства по эксплуатации ПВМ. фирмы IBM».

Работа на клавиатуре

Клавиатура ПВМ в значительной степени сходна со стандартной
клавиатурой обычной пишущей машинки. Клавиши всех букв алфа­
вита, цифр от 0 до 9 и большинства знаков пунктуации расположены
точно в тех местах, которые привычны для человека, печатающего
на машинке. Однако имеется и целый ряд особенностей в связи с
тем, что клавиатура ПВМ насчитывает 83 клавиши, объединенные
в 4 группы (рис. 2.3).

Клавиши, относящиеся к одной группе, располагаются вместе
и имеют одинаковый цвет. Центральное положение занимает самая
многочисленная группа светлых клавиш стандартной клавиатуры
пишущей машинки. По обе стороны от нее размещаются вертикально
стандартные управляющие клавиши темного цвета; многие из них
также имеются в пишущих машинках. В крайней правой группе
скомпонованы светлые клавиши, которые служат двум целям: во-
первых, они могут выполнять роль цифровой клавиатуры кальку­
лятора и, во-вторых, с их помощью можно управлять положением
курсора на экране. Крайнюю левую группу образуют темные кла­
виши, называемые функциональными или программируемыми^ их
назначение может меняться программным способом.

30 Глава 2

Работа с буквенными и цифровыми клавишами не должна вызы­
вать никаких затруднений, если для пользователя привычна клавиа­
тура пишущей машинки. Правда, некоторые знаки пунктуации мо­
гут оказаться на клавиатуре ПВМ в иных местах, однако к новому

Рис. 2.3. Группы клавиш на клавиатуре ПВМ./ _ функциональные (программируемые) клавиши; 2—стандартные управляющие клавиши;
3 — клавиши пишущей машинки; 4 — малая цифровая клавиатура для набора цифр или уп­равления курсором.
их расположению можно быстро привыкнуть. Три другие группы
клавиш нуждаются в более детальном рассмотрении и описываются
ниже.

Стандартные управляющие клавиши

Это клавиши темного цвета, расположенные слева и справа от
группы клавиш пишущей машинки. Они реализуют стандартные
функции управления; часть из них может блокироваться или пере­
определяться в прикладных программах; некоторые служат для
проверки результатов выполнения рабочих команд. Рассмотрим
функциональное назначение каждой из управляющих клавиш.
г- к Esc — сокращенное написание слова «Escape» («Пере-

ход»). Клавиша с таким обозначением вызывает игнориро-
U—-J вание машиной любых символов, записанных в текущей
строке экрана, которая в некоторых случаях при этом стирается.
В ряде других ситуаций при нажатии клавиши Esc в конце теку­
щей строки появляется символ косой черты \, и курсор пере­
брасывается в начальную позицию следующей строки.

Монитор, клавиатура и печатающее устройство 31

На нижнем регистре эта клавиша, обозначаемая сим­
волом действует подобно клавише табуляции в пишу­
щей машинке, перемещая курсор на 8 позиций вперед, в

направлении очередной метки табуляции. На верхнем регистре она
не оказывает никакого воздействия.

Наименование этой клавиши Ctrl представляет собой
сокращенное написание слова «Control» («Управление»).
Клавиша с таким обозначением действует в значительной
мере подобно клавише смены регистра в пишущей ма­

шинке — в том смысле что она, будучи нажатой совместно с
какой-либо другой клавишей, изменяет ее действие. Некоторые
наиболее часто встречающиеся комбинации этой клавиши с други­
ми будут рассмотрены позже в этой же главе.

Для обеспечения большего удобства имеются две кла­
виши любая из которых может использоваться ана­
логично клавише смены регистра в пишущей машинке при
необходимости перехода на заглавные (прописные) буквы

или набора символов, обозначенных в верхней части цифровых и
пунктуационных клавиш. Если клавиатура настроена на работу с
заглавными буквами и заперта в этом режиме (см. ниже пояснение
к клавише Caps Lock), клавиши действуют как ключи нижнего
регистра, обеспечивающие в нажатом состоянии набор строчных
букв; при этом, однако, они не выводят клавиатуру из режима
прописных букв.

Alt — сокращение от «Alternate» («Изменение»). Подоб­
но клавишам Л и Ctrl, клавиша Alt, будучи нажатой сов­
местно с некоторой другой, модифицирует действие послед­
ней.

Действие этой клавиши, условно обозначаемой сим­
волом аналогично действию клавиши возврата на одну
позицию каретки пишущей машинки. Разница состоит лишь
в том, что в данном случае происходит не только возврат

курсора на одну позицию, но и стирание находящегося в ней сим­
вола.

Действие клавиши 4^ более всего сходно с действием кла­
виши возврата каретки с переводом строки, которую мож­
но найти на клавиатуре многих электрических пишущих
машинок. В документации некоторых ЭВМ клавиша назы­
вается клавишей возврата либо клавишей ввода, так как ее на­
значение состоит в том, чтобы завершить набор текущей стро­
ки и перейти к следующей.

e
PrtSc — сокращенное написание слов «Print Screen»
(«Распечатка кадра»). При индивидуальном нажатии клави­
ши PrtSc на экране появляется «звездочка»; если же одно­
временно оказывается нажатой клавиша то информация, види­

мая на экране, воспроизводится печатающим устройством. Для это-

32 Глава 2

го, разумеется, необходимо иметь такое устройство в комплекте
ПВМ и обеспечить его готовность к работе. (Операции вывода ин­
формации на печать будут рассмотрены в конце данной главы.)

Клавиша Caps Lock запирает клавиатуру в режиме заг-
лавных букв, благодаря чему для набора их не требуется од-
повременного нажатия клавиши Л. В действительности

) при нажатии клавиши в этом режиме одновремен­
ное использование любой буквенной клавиши приводит

к появлению на экране букв нижнего регистра. Действие
клавиши Caps Lock отличается от эффекта клавиши блокировки
регистра в пишущей машинке тем, что Caps Lock охватывает лишь
26 букв английского алфавита. Например, для набора вопроситель­
ного знака необходимо всегда нажимать совместно клавиши Л и /.
Режим заглавных букв устанавливается путем нажатия клавиши
Caps Lock; при повторном ее нажатии происходит возврат к строч­
ным буквам. Ни по каким внешним признакам невозможно опреде­
лить, включен или отключен режим заглавных букв. (В гл. 15 будет
описана короткая программа, позволяющая получить ответ на этот
вопрос.)

Сама по себе клавиша Scroll Lock («Блокировка
Hcjhi прокрутки») не приводит ни к каким действиям, одна-

ко в большинстве случаев при одновременном нажатии
еще и клавиши Ctrl машина останавливается независимо

от выполняемых в это время операций и ожидает ввода команды с
клавиатуры.

Двухрежимная малая цифровая клавиатура
Группа светлых клавиш в правой части клавиатуры по своей |

компоновке очень напоминает клавишную панель стандартного |
конторского калькулятора. Это облегчает ввод чисел в машину, %
особенно для тех пользователей, которые умеют работать на к ла- з
виатуре калькулятора слепым методом. Расположенные по соседству J
клавиши PrtSc, + и — несут на себе символы умножения, деления |
и вычитания, что еще больше усиливает сходство рассматриваемой |
группы светлых клавиш с клавишной панелью калькулятора. |

.— Клавиша Num Lock («Цифровая блокировка») опреде- |
ляет выбранный режим работы малой клавиатуры: цифровой |
или нецифровой. Переключение режима осуществляется с |
каждым нажатием этой клавиши. Выявить действующий |

режим по каким-либо внешним признакам невозможно: един­
ственный выход состоит в том, чтобы нажать одну из клавиш и а
посмотреть, что при этом произойдет. (В гл. 15 будет приведена I
небольшая программа, позволяющая получать информацию о теку- 1
щем режиме работы малой цифровой клавиатуры.) |

В цифровом режиме каждая из светлых клавиш рассматриваемой j

Монитор, клавиатура и печатающее, устройство Зз

группы генерирует одну из цифр от 0 до 9 или десятичную точку
соответственно нанесенному на ней обозначению.

В нецифровом режиме цифровая клавиатура обычно использует­
ся для управления положением курсора на экране дисплея, но не
всегда. Например, в дисковой операционной системе ПВМ (ДОС
ПВМ) нецифровой режим интерпретируется по-своему (подробнее
об этом см. гл. 5).

в
 Клавиша Ноте («Исходное положение») служит для

перемещения курсора в левый верхний угол экрана, в
исходную позицию.

/__ Клавиша End («Конец») обеспечивает перемещение
и курсора в конец текущей строки.

С помощью клавиши Ins («Вставка») машина переводится
._ в режим вставки и выводится из него. В этом режиме курсор

[Tlksjn принимает форму не черточки, а квадрата, и каждый наби-
Роемый символ появляется точно на месте курсора, как
бы сдвигающего всю остальную часть строки вправо. При

этом вставляемый символ не замещает указываемый курсором знак,
как в случае, когда первый имеет форму черточки.

л—к Посредством клавиши Del («Вычеркивание») произво-
ПЫД дится удаление с экрана того символа, на который ука-
I———। зывает курсор. Все символы, расположенные справа от
исключаемого, сдвигаются при этом на одну позицию влево в це­
лях заполнения освободившегося места.

Клавиша f обеспечивает перемещение курсора на одну
строку вверх. Если же курсор уже стоит в самой верхней

ft Ч строке экрана, нажатие этой клавиши не дает никакого эф­
фекта.

Клавиша | обеспечивает перемещение курсора на одну
строку вниз. Если же курсор уже стоит в самой нижней (24-й)

Р Ч строке экрана, то нажатие этой клавиши ничего не изме­
няет.

Клавиша ч- обеспечивает перемещение курсора на одну
пО позицию влево. Если же курсор уже стоит в левом краю экра-
Р j на, то с нажатием этой клавиши он передвигается в край­

нюю правую позицию предыдущей строки. В том случае,
когда курсор занимает исходное положение, нажатие клавиши ч-
не вызывает никаких изменений.

е
 Клавиша обеспечивает перемещение курсора на одну по­
зицию вправо. Если же курсор уже стоит в правом краю эк­
рана, то с нажатием этой клавиши он передвигается в край­

нюю левую позицию следующей строки. В том случае, когда кур­
сор занимает положение в крайней правой позиции самой нижней
строки, при нажатии клавиши -> происходит вставка пустой стро­
ки в нижней части экрана. Для высвобождения места под эту пус­
тую строку с экрана удаляется самая верхняя строка.

2 № 22 75

34 Глава 2

Функциональные клавиши
Два столбца клавиш темного цвета в левом краю клавиатуры

могут программироваться на формирование различных цепочек
символов. В некоторых прикладных программах эти клавиши могут
использоваться особым образом, о чем говорится в прилагаемых к
программам инструкциях по их эксплуатации. В гл. 11 будет пока­
зано, как можно осуществить программирование функциональных
клавиш по своему усмотрению.

Комбинации клавиш

Как отмечалось выше, целый ряд клавиш на клавиатуре ПВМ
не имеет собственного самостоятельного функционального назначе­
ния; такие клавиши лишь изменяют результат действия других.
Примерами могут служить клавиши £>, Ctrl и Alt. При использо­
вании одной из этих клавиш ее необходимо удерживать в нажатом
состоянии и одновременно нажимать другую. Всюду далее подобные
совместные нажатия клавиш обозначаются с помощью разделяющей
вертикальной черты. Так, например, запись CtrlIScroll Lock озна­
чает совместное нажатие клавиш Ctrl и Scroll Lock. Существует
довольно много допустимых комбинаций клавиш, реализуемых при
программировании; особенно часто используется в различных
комбинациях клавиша Alt.

При наборе комбинации Ctrl|Alt|Del с машиной происходит при­
мерно то же, что и при включении и выключении питания. Однако
в случае возвращения ПВМ в исходное состояние с помощью именно
этой комбинации клавиш не происходит полного самоконтроля ее
узлов.

Посредством комбинации Ctrl | Num Lock можно зафиксировать
изображение на экране дисплея. При этом экран переводится в
режим приостановки активности: ничего нового на нем не может
появиться до тех пор, пока он не будет разблокирован нажатием
любой клавиши, кроме Ctrl, £>, Alt, Caps Lock, Num Lock или
Scroll Lock. Нажатие клавиш в комбинации Ctrl)Num Lock возмож­
но в любой момент работы на ПВМ.

Комбинация CtrlIScroll Lock вызывает прерывание работы ма­
шины и перевод ее в режим ожидания ввода команды с клавиатуры.
Этот процесс называется приостановкой (break), вследствие чего на
передней грани клавиши Scroll Lock и выгравировано обозначение
Break.

Автоматическое повторение набора символов
Читатель, вероятно, уже имел возможность убедиться на прак­

тике, что при удержании некоторой клавиши в нажатом состоянии
происходит автоматическое повторение набора соответствующего

Монитор, клавиатура и печатающее устройство 35

ей символа. Такое повторное действие характерно для всех клавиш,
исключая Ctrl/£>, Alt, Ins и Num Lock при их индивидуальном ис­
пользовании. Однако при нажатии клавиш Ctrl, или Alt совмест­
но с другими эффект повторения набора сохраняется.

Ввод команд с клавиатуры
В тех случаях, когда отсутствуют какие-либо иные признаки

активного поведения системы, кроме мерцания курсора, ПВМ ско­
рее всего находится в режиме ожидания ввода команды. Эта опе­
рация осуществляется путем нажатия определенной последователь­
ности клавиш. Машина, управляемая программой, анализирует про­
изведенный набор и пытается определить требуемую последователь­
ность действий. При правильном наборе всей цепочки символов
управляющая программа обеспечит выполнение машиной введенной
вами команды. Таким образом, программа (а не сама машина) опре­
деляет правильность набора команды.

В каждой программе используется вполне определенная сово­
купность команд, и если такая программа осуществляет управление
ПВМ, то это будет единственный набор команд, «понимаемых» ма­
шиной. Функции управления может выполнять, например, некото­
рая прикладная программа — скажем, программа обработки тексто­
вой информации. В какие-то моменты управление машиной может
осуществляться дисковой операционной системой или интерпрета­
тором Бэйсика. Все это означает, что при вводе команды с клавиа­
туры нужно четко знать, какая программа играет роль управляю­
щей; по мере приобретения навыков работы на ПВМ это удается
легко определять по контексту, видимому на экране дисплея. Как
только получен ответ на вопрос о том, какой программе передано
управление, у пользователя есть возможность обратиться к инст­
рукции по ее использованию или к руководству по эксплуатации
для выяснения перечня команд, воспринимаемых данной програм­
мой. (В гл. 3 и 5 описывается система команд ДОС ПВМ, а в гл.
с 6-й по 15-ю команды языка Бэйсик.)

Команда не обязательно является принадлежащей исключитель­
но какой-то одной программе. Однако следует все же проявлять
определенную осторожность, поскольку сходные по написанию
команды могут сильно отличаться по результатам их выполнения в
зависимости от конкретной решаемой задачи. Иначе говоря, неко­
торая последовательность нажатий клавиш может означать нечто
определенное для одной программы, то же самое для какой-то дру­
гой программы, иметь совершенно иной смысл для третьей и быть
совершенно бессмысленной для четвертой.

В связи с тем что команды имеют неодинаковую длину, редко
практикуется ограничение числа набираемых на клавиатуре симво­
лов. Управляющая программа не реагирует на команду до тех пор,

2*

36 Глава 2

пока ей не будет сообщено об окончании набора команды. Почти
универсальным признаком конца набора является нажатие клавиши
с обозначением

Если вы набрали команду и долго ожидаете, пока что-ни­
будь произойдет, то знайте, что вы, вероятно, забыли нажать кла­
вишу Существуют команды, которые вообще не нуждаются в
признаке конца набора, но есть и такие, которые требуют иного
признака конца, отличного от рассмотренного выше. И в том и в
другом случае конкретные условия оговариваются в инструкции
по использованию конкретной программы.

Исправление ошибок клавишного набора
Если при работе с клавиатурой вы допустите ошибку, то машина

либо выполнит неверные действия, либо вообще не проявит никакой
реакции. Очень трудно найти человека, который никогда бы не
ошибался, поэтому в ПВМ предусматриваются средства исправле­
ния ошибок. Ошибки, обнаруженные до нажатия клавиши 4-1, уст­
раняются с помощью клавиши возврата на одну позицию, которая
нажимается до тех пор, пока не будут стерты все неверно набранные
символы. После этого набор повторяется более тщательно. В неко­
торых случаях бывает удобнее стереть сразу всю строку и начать
ее повторное заполнение, что обеспечивается нажатием клавиши
Esc. Существует и множество других способов исправления ошибок,
но они меняются от программы к программе. Подробную информа­
цию о них можно получить в результате детального ознакомления
с инструкциями по использованию соответствующих программ.
В гл. 5 будет показано, как должны исправляться ошибки при рабо­
те в операционной среде ДОС ПВМ, а в гл. 6 будут рассмотрены
процедуры редактирования команд Бэйсика.

Иногда может возникнуть ситуация, при которой скорость вво­
да данных будет превосходить пропускную способность ПВМ. В по­
добных случаях машина подает предупредительный звуковой сигнал
через встроенный динамик. В ответ на этот сигнал необходимо пре­
кратить работу на клавиатуре на несколько секунд, а затем осто­
рожно попытаться ввести очередной символ. Отсутствие звукового
сигнала будет означать возможность продолжения работы с клавиа­
турой. Если же машина все еще будет перегружена и не сможет
принимать данные с клавиатуры, она повторно подаст звуковой
сигнал.

Работа с печатающим устройством

Процедуры работы с печатающими устройствами не отличаются
большим разнообразием, несмотря на широкий спектр функцио­
нальных возможностей устройств различных типов. Имеющееся

Монитор, клавиатура и печатающее устройство 37

разнообразие касается скорее производительности печати, а не
самих процедур. Одни печатающие устройства работают быстро,
другие — медленно; разными оказываются четкость печати и раз­
меры символов, а также ряд других характеристик, однако управ­
ление этими функциональными возможностями обычно является
прерогативой программ. В данной главе рассматриваются лишь ра­
бочие процедуры, применимые ко всем печатающим устройствам.
Конкретные подробности, касающиеся печатающего устройства,
которое имеется в комплекте вашей ПВМ, следует уточнять, обра­
тившись к инструкции по эксплуатации этого устройства.

Совместимость ПВМ с печатающими устройствами
Как отмечалось в гл. 1, и ПВМ, и печатающее устройство долж­

ны работать в одинаковом режиме передачи данных — параллель­
ном или последовательном. На задней панели системного блока
имеются отдельные гнезда для того и другого режима, однако в
связи с тем, что машина не способна самостоятельно определять,
к какому из двух гнезд подключено печатающее устройство, она
по принципу умолчания устанавливает параллельный режим пере­
дачи. При каждом включении ПВМ необходимо изменять это усло­
вие, если предполагается использовать печатающее устройство по­
следовательного действия. В ДОС ПВМ имеется специальная коман­
да MODE (РЕЖИМ), с помощью которой вычислительная система
настраивается на работу с последовательным устройством печати
вместо параллельного (гл. 3). Некоторые ПВМ фирмы IBM, отправ­
ленные заказчикам до июня 1982 г., могут быть снабжены операци­
онной системой ДОС ПВМ старой версии 1.0, не предусматривающей
команды MODE для печатающих устройств. Такие ПВМ должны
быть просто переоснащены новой версией ДОС ПВМ.

При последовательном режиме связи ПВМ способна пересылать
информацию на устройство печати с любой из 15 скоростей. Эти
скорости измеряются в бодах и иногда выражаются в битах в се­
кунду (бит/с)1). Аналогичные скорости печатающих устройств обыч­
но тоже устанавливаются по выбору. Для обеспечения эффективной
работы устройства печати его скорость в бодах должна соответст­
вовать скорости, с которой ПВМ выдает информацию на печать. Что
касается ПВМ, то ее скорость передачи данных регулируется про­
граммным способом; в печатающих устройствах она обычно зада­
ется внутренними схемами коммутации. Стандартная для ПВМ ско­
рость передачи составляет 2400 бод, однако эту скорость можно из­
менить с помощью команды MODE, описанной в гл. 3, либо она мо­
жет изменяться используемой прикладной программой. В случае
неясности этого вопроса необходимо обратиться за уточнениями к

Ц Каждый символ отображается восемью битами.

38 Глава 2

инструкции по использованию конкретной программы или к ее
поставщику.

Гораздо более сложные проблемы обеспечения совместимости
возникают при использовании таких программно-управляемых
функциональных возможностей, как печать нижних индексов, вы­
равнивание строк по правой границе, подчеркивание и выбор типа
шрифта. Программы осуществляют управление подобными опера­
циями путем посылки на печатающее устройство определенных
последовательностей непечатаемых символов. К сожалению, в раз­
личных моделях печатающих устройств для реализации одинаковых
возможностей могут использоваться совершенно разные управляю­
щие последовательности символов. Здесь спасает то, что в большин­
стве программ, ориентированных на использование расширенных
возможностей печати, задаются управляющие последовательности
для нескольких типов печатающих устройств, так что пользователь
может выбирать конкретный вариант по своему усмотрению. Но
для этого необходимо учесть рекомендации по выбору устройства
печати, содержащиеся в инструкции по использованию конкретной
программы.

Органы управления печатающим устройством

Типичное печатающее устройство бывает всегда снабжено вы­
ключателем питания, несколькими кнопками ручного управления
и целым рядом лампочек индикации состояния на верхней или
лицевой стороне управляющей панели (рис. 2.4). Иногда силовой

Рис. 2.4. Органы ручного управления на двух печатающих устройствах разных
типов.

Монитор, клавиатура и печатающее устройство 39

выключатель располагается на боковой или задней стороне печа­
тающего устройства; все прочие управляющие переключатели и
рычаги могут размещаться внутри его. В табл. 2.1 перечислены наи-

Таблица 2.1. Стандартные органы управления и индикаторы состояния
печатающих устройств

Наименование ’) Функциональное назначение и сигнализируемое состояние
Переключатели и кнопки

Power
Online (Select)
Form Feed (FF)
Line Feed (LF, Paper adv.)
Clear (Reset)

Override

Запуск и останов печатающего устройства
Приостановка/продолжение печати
Прогон бумаги до следующей страницы
Протяжка бумаги на одну строку
Установка устройства в исходное положение

после устранения ошибки
Уведомление об истощении запаса бумаги; пре­

кращение печати текущей страницы

Лампочки индикации состояния (при подсветке)
Power
Ready

Select (Online)
Paper Out (Paper)
Alarm (Error)

Питание включено
Устройство готово к работе; блокировочные

и защитные ключи проверены
Разрешено продолжение печати
Нет бумаги
Конец красящей ленты или внутренняя неис­

правность

*) В некоторых устройствах используются иные наименования.
более часто встречающиеся в печатающих устройствах органы уп­
равления и лампочки индикации состояния.

В большинстве печатающих устройств происходит автоматичес­
кое распознавание числа строк, остающихся до конца страницы, и
выбрасывание напечатанного листа при нажатии соответствующей
кнопки. В случае использования рулонной бумаги или пачки от­
рывных листов наличие такой возможности обеспечивает прогон
бумаги на начало очередной страницы, однако для правильного ав­
томатического формирования страниц необходима тщательная на­
стройка первой страницы перед запуском устройства печати, с тем
чтобы обеспечить его механизму начальную точку отсчета строк.
В некоторых печатающих устройствах предусматривается специаль­
ная кнопка, при нажатии которой в качестве начала страницы зада­
ется текущая строка.

В целом ряде печатающих устройств имеется переключатель для
установки автоматического или локального режима перевода стро­

40 Глава 2

ки. Этот переключатель может располагаться на лицевой панели
или под крышкой устройства печати; его нормальное положение —
выключенное.

Подготовка печатающего устройства к работе
При подготовке устройства печати к работе необходимо первым

делом выбрать нужный тип бумаги: для непрерывной распечатки,
для многоэкземплярной печати, для оформления фирменных доку­
ментов, отправляемых почтой, и т. п. При постраничном печатании
документов возможно использование режима одноэкземплярной
печати, если это допускает имеющееся устройство. Выбрав тип
бумаги, устанавливают ее в печатающее устройство и выравнивают
по вертикали и горизонтали.

Закончив установку бумаги, следует проверить, не изношена ли
красящая лента, и отрегулировать ее должным образом или поста­
вить новую. Если в печатающем устройстве предусмотрены сменные
печатающие узлы (лепестковый шифроносителъ или цилиндрическая
головка), то надо убедиться в том, что выбран именно нужный эле­
мент и что он установлен с соблюдением всех правил. Чтобы вычис­
лительная машина могла адаптироваться к используемому типу
бумаги, надо переключить в требуемое положение все указатели
плотности печати или толщины бумаги печатных форм.

В заключение закрывают все крышки печатающего устройства:
при открытых крышках срабатывают блокировочные переключате­
ли, которые временно отключают устройство печати. Затем вклю­
чают питание и устанавливают в рабочее положение ключ «Select»
(«Выборочная печать») или «Online» («Оперативный режим»), если
таковой имеется. О готовности устройства к работе будут сигна­
лизировать лампочки «Ready» («Готово») и «Select» («Выборочная
печать»).

Глава 3

ДИСКИ И ДИСКОВАЯ ОПЕРАЦИОННАЯ СИСТЕМА ДОС ПВМ

Наиболее важным узлом ПВМ является дисковод, так как при наличии
последнего машина может выполнять более широкий круг задач, в том числе
большой размерности и сложности; самая распространенная разновидность на­
копителей для ПВМ — дискеты. В данной главе описываются методы выбора
дискетов и способы их использования, а также дисковая операционная система
и ее команды, полный перечень которых дается в приложении В.

Работа с дискетами
Чтобы обеспечить долговечность дискета, достаточно хрупкого

изделия, необходимо обращаться с ним крайне осторожно. Важное
значение имеет также правильный отбор пустых дискетов, так как
внешне они практически неразличимы.

Выбор нужных дискетов

Несмотря на стандартную конструкцию дискетов (рис. 3.1),
некоторые их свойства имеют ряд особенностей, обусловленных раз­
личием характеристик дисководов. Эти особенности могут быть как
очевидными (и тогда их легко обнаружить), так и неявными. В ле­
вом верхнем углу пустых дискетов обычно имеется постоянная на­
клейка с указанием характеристик или по крайней мере номера
модели, по которому эти характеристики могут быть определены.

Рис. 3.1. Детали дискетов диаметром 8 дюймов (слева) и 5т/4 дюйма (справа).

42 Глава 3

Неправильно подобранный дискет может выйти из строя сразу или
проработав какое-то время и таким образом свести на нет многие
часы или дни кропотливой работы.

В дискетных накопителях фирмы IBM, которыми комплектуются
ПВМ, выпускаемые этой фирмой, применяются программно-секци­
онированные дискеты диаметром 5У4 дюйма с удвоенной плотно­
стью записи. В подобных накопителях применяются как односто­
ронние, так и двусторонние дискеты, причем в последних обе сторо­
ны используются лишь в накопителях емкостью 320К.

Никогда не следует в ПВМ с дискетными накопителями фир­
мы IBM пользоваться дискетами с обычной плотностью записи:
рано или поздно возникнет ситуация, при которой неизбежна потеря
информации.

Уход за дискетами

Дискеты — прецизионные устройства и не терпят плохого обра­
щения: при постоянной неправильной эксплуатации они .выходят
из строя (не говоря уже о том, что такая эксплуатация может явить­
ся причиной повреждения самого дисковода). Утрачиваемая при
этом информация может быть иногда частично восстановлена; пол­
ного восстановления удается добиться крайне редко.

В дискетах не предусмотрена идеальная защита записанных на
них данных: защитные конверты рассчитаны только на предохра­
нение поверхности носителей от повреждений на коротком пути от
дискотеки до дисковода. Поэтому необходимо строго следовать ука­
заниям, напечатанным на тыльной стороне защитных конвертов.
Особую осторожность надо соблюдать при нанесении надписей на
наклейке, прикрепленной к дискету, так как даже давление каран­
даша или шариковой ручки может оказаться достаточным, чтобы
через защитный конверт повредить магнитный слой диска. Во из­
бежание порчи информации, записанной на дискетах, последние
следует хранить подальше от телевизоров, видеомониторов, зво­
нящих телефонов и других источников магнитных полей.

Маркировка

Как уже отмечалось, внешне дискеты практически неразличимы.
Поэтому для их идентификации удобнее использовать съемные на­
клейки, а не постоянные. Учитывая, что наличие любой неоднознач­
ной метки лишь немногим лучше, чем отсутствие всякой метки, не­
обходимо строго следить за индивидуальностью меток. Хорошо так­
же иметь полный перечень содержимого дискета.

Диски и дисковая операционная система ДОС ПВМ. 43

Вставление дискета в дисковод
Чтобы вставить дискет в дисковод, крышка последнего должна

быть открыта. В некоторых дисководах достаточно нажать планку
или кнопку, и крышка открывается под действием пружины, однако
в большинстве случаев крышку приходиться приподнимать вруч­
ную. Если в дисководе уже находится какой-то дискет, его надо

Рис. 3.2. Вставление дискета.

вытянуть на себя, захватив большим и указательным пальцами,
стараясь не повредить.

Дискет плавно вводят в дисковод меткой вверх, стараясь не
погнуть (рис. 3.2), и осторожно проталкивают внутрь. При ощуще­
нии сопротивления движению прекращают проталкивание дискета,
вынимают его и, устранив мешающий фактор, повторяют попытку.
Если дискет все-таки не вставляется на место, берут другой. В тех
случаях, когда ни один дискет не удается вставить в дисковод, это
означает, что неисправен сам дисковод и его следует отдать в ре­
монт.

Затем медленно закрывают крышку дисковода. Если она опус­
тится только на несколько миллиметров, это значит, что дискет
вставлен не до конца.

44 Глава 3

Дискеты с защитой от несанкционированной записи информации

Случайное стирание или повторную запись информации можно
исключить, сделав специальный вырез в определенном месте дис­
кета. На 5V4- и 8-дюймовых дискетах вырез находится в разных
местах и соответственно по-разному интерпретируется:

— вырез на правой стороне нижней кромки 8-дюймового дис­
кета защищает дискет от записи, когда он находится в дисководе
(рис. 3.1). Поэтому такой вырез называется прорезью блокировки
записи. Защиту можно снять, закрыв прорезь специальной наклей­
кой или кусочком непрозрачной ленты. Некоторые 8-дюймовые дис­
кеты не имеют выреза и, следовательно, не могут быть защищены;

— вырез на правой стороне верхней кромки 5т/4-дюймового
дискета позволяет производить запись на дискет при его установке
в дисковод (рис. 3.1). Этот вырез называется прорезью разрешения
записи. Чтобы защитить такой дискет, достаточно закрыть вырез
маленькой наклейкой или кусочком непрозрачной ленты.

Множественная идентификация дисководов
В составе вычислительной системы на основе ПВМ может быть

всего лишь один накопитель на дискетах, но скорее всего таких на­
копителей будет два или более. В системном блоке ПВМ предусмот­
рено место для установки интерфейсных плат одного-двух 5V4-
дюймовых дискетов либо одного накопителя такого типа и одного
винчестерского диска; для установки большего числа дисководов
требуются внешние подключения. В системе с несколькими диско­
водами каждый из них обозначается одной буквой А, В, С и т. д.
для отличия их друг от друга.

Чтобы облегчить управление огромной памятью накопителя на
винчестерских дисках, ее часто подразделяют на несколько томов
или разделов, каждый из которых имеет свою собственную метку
наподобие дисковода. При этом машина не делает различия между
разделом накопителя на винчестерских дисках и накопителем на
дискетах.

По причинам, указанным ниже, один дисковод (А) имеет специ­
альное назначение. В системах с двумя встроенными накопителями
левый накопитель обычно обозначается как дисковод А. В системах
с одним накопителем на винчестерских дисках роль дисковода А
может выполнять один из разделов памяти.

Дисковая операционная система
Обращение к какому-либо дисководу является непростым про­

цессом, выполнение которого требует сложного программирования.
Все необходимые операции с дисками координируются дисковой

Диски, и, дисковая операционная система ДОС ПВМ 45

операционной системой (ДОС), Представляющей собой специаль­
ную системную программу. По характеру запросов, которые обслу­
живает программа дисковой операционной системы, ее действия
напоминают работу клерка, ведающего архивом папок с деловыми
бумагами, который получает запросы типа «Достаньте мне личное
дело Смитерса» или «Поставьте обратно дело ABIG Holding Corporat­
ion», или «Продиктуйте мне очередную фамилию и адрес из нашего
реестра рассылки».

Для ПВМ создано множество различных дисковых операцион­
ных систем, причем все они делают одно и то же, но несколько раз­
личными способами. Поскольку большинство прикладных программ
хранится на дисках и запускается по командам ДОС ПВМ, пользо­
ватель должен иметь представление об этой операционной системе.
Ряд других ее команд обеспечивает поддержание в должном порядке
информации, записанной на дисках.

Версии ДОС ПВМ
До июня 1982 г. фирма IBM поставляла ДОС ПВМ версии 1.0

(«Один, точка, ноль»). Однако эта версия не была рассчитана на
применение двусторонних дискетов и не обеспечивала реальных
возможностей использования печатающего устройства последова­
тельного действия. В связи с этим в мае 1982 г. фирма IBM присту­
пила к созданию новой версии 1.1, рассчитанной на применение в
накопителях одно- и двусторонних дискетов и эффективное исполь­
зование последовательного печатающего устройства. Поскольку в
большинстве случаев затраты на замену версии 1.0 версией 1.1 не­
велики, ограничимся рассмотрением только ДОС ПВМ версии 1.1.

Запуск ДОС ПВМ

Для нормальной работы ДОС ПВМ все дисководы должны на­
ходиться во включенном состоянии. Что же касается всех внешних
накопителей, имеющих собственные силовые выключатели, то они
должны быть включены до того как будет включен системный
блок. Встроенные дисководы не имеют отдельных тумблеров подачи
питания: оно подводится к ним от системного блока. Если,инструк­
ции не содержат никаких иных указаний, то при включении или
выключении питания крышки дисководов лучше оставлять откры­
тыми.

Программа дисковой операционной системы обычно располага­
ется на диске, а не в постоянном запоминающем устройстве ПВМ,
и вычислительная система должна каким-то образом пересылать
программу ДОС ПВМ с диска в динамическую память машины.
Возникает ситуация, при которой ПВМ должна «сама себя поднять
за волосы». Эту функцию выполняет маленькая программа самоза-

46 Глава 3

грузки, всегда находящаяся в постоянном запоминающем устройст­
ве ПВМ: она обращается к дисководу А для пересылки дисковой
операционной системы в оперативную память ПВМ, т. е. реализует
процесс, называемый загрузкой или самозагрузкой ДОС.

Программа самозагрузки загружает ДОС ПВМ сразу при вклю­
чении системного блока или сбросе системы в исходное состояние

В Ввод времени суток
Рис. 3.3. Сообщения, выдаваемые сразу после успешной загрузки ДОС ПВМ.

путем нажатия комбинации клавиш Ctrl | Alt [Del. В обоих отмечен­
ных случаях на дисководе А должна храниться программа ДОС
ПВМ. На дискете с меткой DOS («Дисковая операционная система»),
который поставляется в комплекте с руководством фирмы IBM,
всегда записан один экземпляр ДОС; аналогичные копии ДОС могут
храниться и на других дискетах. Если роль дисковода отведена
разделу винчестерского диска, то экземпляр ДОС должен содер­
жаться и на этом носителе. Диск с программой ДОС ПВМ называ­
ется системным диском.

При сбросе системы в исходное состояние самозагрузка ДОС
ПВМ длится 10 с, а в случае включения системного блока 2 мин.
Экран дисплея при этом очищается, и на нем появляется сообщение
с просьбой ввести данные (рис. 3.3.А). В ответ на это сообщение
набирают месяц, день и год, разделяя их дефисом или косой чер­
той, например 8-31-83 или 12/1/83. После ввода этих данных на
экране высвечивается сообщение с просьбой ввести время (рис.

В Диск не вставлен или не закрыта крышка дисковода

Рис. 3.4. Сообщения, выдаваемые после безуспешной попытки загрузить ДОС
ПВМ.

3.3.В). Используя 24-часовую временную шкалу, вводят часы, ми­
нуты и секунды, разделяя их двоеточиями, например 15:30:10
или 3 : 30 : 10. Секунды могут отображаться целым или дробным
числом, но секунды, как, впрочем, и минуты, можно опустить.
В этом случае их значение принимается равным нулю. Например,
можно ввести 16:00:00 как 16:00 или просто как 16.

При появлении сообщения, отличного от запроса ввода данных,
причину его следует искать в дискете, вставленном в дисковод А.
Как только на экране высветится сообщение, начинающееся слова­
ми uNon-system disk” («Не системный диск») (рис. 3.4А), заменяют
дискет в дисководе А на системный и нажимают клавишу пробела
для повторной загрузки ДОС ПВМ. Появление в верхней строке
экрана текста The IBM Personal Computer Basic (Бэйсик ПВМ фир­
мы IBM; рис. 3.4.В) означает, что крышка дисковода А не закрыта,
либо дискет установлен не той стороной вверх, либо он вообще не
предназначен для работы с ДОС ПВМ.

Возможны и иные сообщения об ошибках, а может оказаться и
так, что дискет в дисководе А автоматически запустит какую-либо
прикладную программу. В любом случае надо попытаться устано­
вить другой дискет.

48 Глава 3

Рис. 3.5. Идентификационное сообщение, выдаваемое ДОС ПВМ.

После успешного ввода с клавиатуры времени суток ДОС ПВМ
выводит на дисплей идентификационное сообщение и информацию
об авторском’праве (рис. 3.5). Символы А>, стоящие перед курсором,
называются командой подсказки, поскольку они напоминают о том,
что далее надо ввести какую-либо команду ДОС ПВМ.

Файлы ДОС ПВМ

Даже самый маленький дискет может иметь большую емкость,
которая, однако, крайне редко используется целиком для какой-то
одной цели. Обычно на одном диске сосуществует несколько ма­
леньких независимых блоков информации, и чем больше его ем­
кость, тем выше вероятность размещения на нем большого числа
таких независимых блоков; винчестерский диск, например, способен
хранить их в количестве нескольких сотен. Для организации хра­
нения всех отдельных блоков информации в ДОС ПВМ используется
нечто вроде картотеки: каждый диск рассматривается как один
шкаф с делами, хранящимися в выдвижных ящиках, а каждый блок
информации — как выдвижной ящик с одной папкой. Отдельные
блоки информации на диске называются файлами.

Диски и дисковая операционная система ДОС ПВМ •49

Файлы, содержащиеся в памяти ЭВМ, классифицируются по
виду хранимой информации, которая может представлять собой про­
граммы или данные. Программные файлы содержат команды, сооб­
щающие машине, что и как сделать. Информационные файлы — это
упорядоченные совокупности фактографических и числовых дан­
ных. ,

i
Имена файлов

Каждый дисковой файл имеет уникальное имя. Файлу может
присваиваться любое еще не использованное имя при условии, что
оно соответствует некоторому набору правил (рис. 3.6). Имя долж-

Рис. 3.6. Правила образования имен файлов ДОС ПВМ.

но содержать не менее одного символа; оно может состоять даже из
восьми символов и снабжаться суффиксом. Необязательный суф­
фикс, называемый расширением имени файла, состоит из точки, за
которой следует не более трех символов.

Термин имя файла в точном его смысле относится только к кор­
ню, содержащему от одного до восьми символов, который предшест­
вует расширению имени; однако обычно именем файла считается
корень вместе с факультативным расширением, и именно такое опре­
деление будет использоваться в данной книге.

Для образования расширения имени файла разрешается при­
менять отнюдь не любые символы и знаки (рис. 3.6). ДОС ПВМ оди­
наково манипулирует строчными и прописными буквами, поэтому
имя файла можно набирать на клавиатуре в любом сочетании строч­
ных и заглавных букв.

50 Глава 3

Если указанное имя файла состоит более чем из восьми символов
и не содержит расширения, ДОС ПВМ автоматически ставит точку
после восьмого символа, трактует следующие три символа как рас­
ширение и игнорирует остальные. Ошибка происходит в том слу­
чае, когда имя файла содержит более восьми символов перед явно
указанным расширением; если расширение состоит более чем из
трех символов, ДОС ПВМ игнорирует лишние.

Общепринято, что расширение имени файла должно обозна­
чать его тип. Чтобы не нарушать установленных соглашений и не
вносить возмущений в работу других пользователей ДОС ПВМ,
применяют стандартные расширения имен, перечисленные в
табл. 3.1.
Таблица 3.1. Расширения имен и типы файлов

Расширение имени Соответствующий тип файла
.ASM
.ВАК

Исходная программа на языке ассемблера
Резервный файл или копия некоторого файла, сделанная в слу-

.BAS

.ВАТ

.BIN

.СОВ

.COD

чае повреждения оригинала
Программа на языке Бэйсик
Командный файл для пакетной обработки
Промежуточный файл для компилятора
Исходная программа на языке Кобол
Версия файла .OBJ на языке ассемблера (сгенерированная

.СОМ
компилятором)

Команда или программа, пригодные для непосредственного ис­

.DAT

.DOC

.EXE

полнения под управлением ДОС ПВМ
Файл данных
Файл документов (для текстовой обработки)
Перемещаемая программа, выполняемая под управлением ДОС

ПВМ
.FOR
.HEX

Исходная программа на языке Фортран
Символьное шестнадцатеричное представление (в коде ASCII)

двоичных данных
.LIB
.MAC
.MAP
.OBJ
.OVL
.OVR
.PAS
.PIC
.PRN
.SYM
.TER

Библиотека программ
Макрокоманда для программы на языке ассемблера
Листинг программы редактирования связей
Скомпилированная объектная программа на машинном языке
Оверлейный файл прикладной программы
Оверлейный файл программы компилятора
Исходная программа на языке Паскаль
Данные выводимого на экран изображения
Листинг ассемблера
Таблица символов для компилятора
Описание терминала (обслуживающая программа фирмы IBM

.TMP
.TXT
•S$$

для асинхронной передачи)
Временный файл
Текстовой файл
Временный или неправильно хранимый, но пригодный для

использования файл

Диски и дисковая, операционная система ДОС ПВМ 51

Родовые имена файлов

В большинстве случаев желательно, чтобы присвоенные файлам
имена были индивидуальными и единственными и точно указывали,
какой именно файл имеется в виду. Но иногда удобнее обратиться
сразу ко всей группе файлов, а не работать с ними по одному. Для
указания родовых имен файлов, которые называются также гло-
бальными именами или неоднозначными именами файлов, могут
использоваться специально предназначенные для этого знаки ? и *.

Вопросительный знак является единственным неоднозначно ин­
терпретируемым символом в имени файла. Вообще в операционной
системе ДОС ПВМ смысл любого символа определяется индивиду­
ально, но всякий одиночный символ считается соответствующим воп­
росительному знаку. Например, имена PHASE1.BAS, PHASE2.BAS,
PHASE3.BAS и PHASE4.BAS все соответствуют родовому име­
ни файла PHASE?. В AS, но ему не будут соответствовать имена
PHASE10.BAS и PHASE153.BAS.

Звездочка обозначает любое количество неоднозначно интерпре­
тируемых символов. Например, PGM*.В* будет обозначать любое
имя файла, которое начинается с PGM, при условии, что его рас­
ширение начинается с В. Однако звездочка имеет смысл только при
использовании ее в качестве последнего символа имени файла или
расширения. Родовое имя файла *CALC.BAS — это то же самое,
что *.BAS, которое соответствует каждому файлу, имеющему рас­
ширение имени BAS. Подобным же образом комбинации символов
*.*К и *.* соответствуют любому имени файла.

Обозначения дисководов

Все файлы на одном диске должны иметь разные имена, но на
разных дисках могут использоваться файлы с одним и тем же име­
нем. Следовательно, в ПВМ с несколькими дисководами можно
иметь два или более диска с одинаковыми именами файлов. Чтобы
устранить неопределенность, перед именем файла ставят двухсим­
вольный префикс, обозначающий дисковод. Первый символ — это
метка дисковода (А, В, С и т. д.), а второй символ — двоеточие.
Таким образом, имя файла B.-ADDRESS.DAT указывает на то,
что этот файл находится на дисководе В.

В системе с одним дисководом существует только один дисковод
А, и поэтому нет необходимости употреблять перед именами файлов
префиксы: ДОС ПВМ будет автоматически обращаться к единствен­
ному доступному дисководу. Если же все-таки желательно указать
дисковод, используют только обозначение А:.

Указание на какой-либо дисковод можно опустить и в системе
с несколькими накопителями, так как ДОС ПВМ регистрирует дис­
ковод, используемый по умолчанию. Этот дисковод называется заре­

52 Глава 3

гистрированным или подразумеваемым. Первоначально ДОС ПВМ
регистрирует для использования по умолчанию дисковод А, что и
указывается в наводящем сообщении А>.

Каталог имен файлов

Определенная часть каждого диска отводится для запоминания
его «оглавления»: здесь содержится поименный перечень всех фай­
лов, записанных на диске, и указывается их расположение. Огра­
ничение по количеству файлов составляет для одностороннего дис­
кета 64, а для двустороннего дискета 112. Винчестерские диски име­
ют переменные ограничения на предельное число файлов.

Команды ДОС ПВМ

ДОС ПВМ располагает многочисленными командами, с помощью
которых можно поддерживать диски в соответствующем состоянии.
Существуют команды, действие которых распространяется на диск
в целом, на отдельные файлы, на каталог диска, на системное время
и дату и т. д.

Формирование команд

Для указания ДОС ПВМ команд набирают определенные слова
и символы на клавиатуре: набираемое сообщение указывает ДОС
ПВМ, что делать и зачем. По мере набора команды ДОС ПВМ на
клавиатуре текст отображается на экране дисплея. Чтобы ввести
высвеченную на экране команду в машину, надо нажать клавишу 4^;
после этого ДОС ПВМ ее выполнит. В командных словах можно ис­
пользовать любой набор строчных и прописных букв.

Резидентные и транзитные команды

Программа ДОС ПВМ содержит пошаговые инструкции, необ­
ходимые для выполнения многочисленных команд, называемых
резидентными или внутренними командами. В случае ввода ко­
манды, которую ДОС ПВМ не может найти в своем наборе рези­
дентных команд, операционная система разыскивает на диске файл
с таким же именем, как имя введенной команды, и с расширением
ВАТ, СОМ или EXE. Если нужный файл найден, операционная
система пересылает инструкции из этого файла в динамическую
память и выполняет их. Такие команды называются транзитными
или внешними командами, так как инструкции для их выполнения
не находятся постоянно в самой программе ДОС ПВМ. На систем­
ном дискете, поставляемом фирмой IBM в комплекте машины, пре­

Диски и дисковая операционная система ДОС ПВМ 53

дусмотрено несколько таких команд. Стандартные -резидентные и
транзитные команды перечислены в табл. 3.2.

Таблица 3.2. Стандартные команды ДОС ПВМ

Команда Тип Команда Типрезидентная транзитная резидентная транзитная
CHKDSK FORMAT
СОМР MODE
COPY PAUSE
DATE D REM
DIR RENAME
DISKCOMP SYS
DISKCOPY TIME n
ERASE • TYPE
EXE2BIN2) •

х) В ДОС ПВМ версии 1.0 команды DATE и TIME являются транзитными.2) Программисты, работающие с Бэйсиком, редко пользуются командой EXE2BIN, и поэтому в данной книге она не рассматривается.
Можно придумать и новую транзитную команду, создав файл,

содержащий инструкции для ее выполнения. Существует также
способ конструирования новых команд, при котором они комбини­
руются из уже имеющихся (гл. 5).

Как правило, ДОС ПВМ ищет транзитные команды на диске,
объявленном по умолчанию. Чтобы явно указать, на каком именно
дисководе ДОС ПВМ должна вести поиск, перед вводимой командой
ставят префикс, являющийся обозначением дисковода. Если ДОС
ПВМ не может найти инструкции для транзитной команды, она вы­
водит на дисплей сообщение “Bad command or file name” («Неправиль­
ная команда или неверное имя файла»). В ответ на это еще раз на­
бирают ту же самую команду, подтверждая, что файл, содержащий
для нее инструкции, находится на указываемом дисководе.

Следует проявлять особую осторожность в части смешива­
ния команд ДОС версий 1.0 и 1.1. При наличии более чем одной вер­
сии ДОС ПВМ возникает рискованная ситуация: команды с одина­
ковыми именами могут казаться в разных версиях идентичными, а
на самом деле внутренние инструкции для выполнения этих внешне
идентичных команд могут существенно различаться. Можно было
бы, например, загрузить версию 1.1 ДОС ПВМ с одного дискета,
а затем заменить его дискетом с записью файлов транзитных команд
версии 1.0. Но этого ни в коем случае делать нельзя, так как файлы
могут разрушиться в результате выполнения несоответствующих
им транзитных команд!! На каждом диске, содержащем файлы тран­

54 Глава 3

зитных команд, пишут имена файлов и номер версии, с которой они
работают, тщательно избегая рассогласования файлов команд с
загруженной версией операционной системы.

Исправление ошибок ввода с клавиатуры

Прежде чем нажать клавишу для выполнения команды, смот­
рят на экран дисплея и проверяют правильность того, что на нем
высвечено. При обнаружении ошибки используют клавишу <■;
это позволяет вернуться к началу того участка, в котором находится
ошибка. Затем повторно набирают на клавиатуре команду, начиная
от точки возврата. Если же команда испорчена настолько, что ис­
правления себя не оправдывают, используют клавишу Esc для
стирания всей строки. При нажатии клавиши Esc ДОС ПВМ вы­
водит на экран символ \, пропускает напечатанную строку и пере­
мещает курсор в начало следующей строки; наводящее сообщение
при этом на экран не выводится.

Работа с печатающим устройством

Печатающее устройство может быть использовано для получе­
ния документальной копии команд ДОС ПВМ, вводимых с клавиа­
туры. Сделать это можно двумя способами. Нажимают одновременно
клавиши Л и PrtSc; ДОС ПВМ печатает один экземпляр текста,
высвеченного на экране дисплея. Если одновременно нажать клави­
ши Ctrl и PrtSc, то ДОС ПВМ будет повторять каждую набираемую
строку на печатающем устройстве, создавая синхронный протокол
диалога. Для прекращения этого процесса нужно повторно нажать
те же клавиши.

Обычно нажатием клавиши PrtSc активизируется только печа­
тающее устройство параллельного действия, но можно сделать так,
чтобы вместо этого устройства включалось печатающее устройство
последовательного типа. Необходимая трансформация действия
клавиши PrtSc осуществляется с помощью команды MODE.

Переназначение дисковода, объявляемого по умолчанию

Первоначально ДОС ПВМ обращается к дисководу А всякий
раз, когда обозначение требуемого дисковода не указано явно. Что­
бы использовать по умолчанию какой-либо другой дисковод, необ­
ходимо напечатать обозначающую его букву, затем двоеточие и на­
жать клавишу На экране дисплея появится новое наводящее
сообщение ДОС ПВМ, говорящее о том, какой дисковод зарегист­
рирован теперь для обращения по умолчанию.

Диски и дисковая операционная система ДОС ПВМ. 55

Пример. Переназначение подразумеваемого по умолчанию дис­
ковода В.
А>Ь:
В>

Отмена команды

Для многих команд ДОС ПВМ требуется указывать явно обозна­
чения дисководов или имена файлов. Если случайно был указан
не тот дисковод или файл и ошибочную команду надо отменить, на­
жимают вместе клавиши Ctrl и Scroll Lock. Ответное сообщение
ДОС ПВМ (например, А>) появится снова.

Просмотр каталога

Чтобы вывести на дисплей перечень файлов, записанных на дис­
ке, обозначаемом по умолчанию, используют команду DIR:
A>dir

В данном случае каталог диска, находящегося на накопителе
А, выводится на экран после нажатия клавиши для выполнения
указанной команды.

Каталог может содержать, однако, так много имен файлов, что
его невозможно будет вывести на экран целиком. В подобной ситуа­
ции для постраничного вывода каталога на дисплей команда DIR
снабжается суффиксом “ /р”;
A>dir /р

Каталог можно сжать так, чтобы на всей площади экрана появи­
лись в несколько столбцов только имена файлов и их расширения;
для этого в команду DIR добавляют суффикс “ /W
A>dir /w

Анализ каталога

Каждая строка каталога состоит из пяти разделов: имени файла,
расширения имени, размера файла, даты и времени последнего из­
менения файла (рис. 3.7). Отметим, кстати, что в каталоге точка
между именем файла и расширением имени может быть опущена.
Размер файла выражается числом байт, которое этот файл занимает
на диске.

56 Глава 3

Каталог произвольного дисковода
Предположим, что требуется получить в виде списка данные

каталога какого-либо определенного дисковода. Для этого доста­
точно поставить в конце команды DIR обозначение дисковода:
A>dir b:

С помощью такой команды выдается каталог диска, стоящего на
дисководе В.

Заметим, что перед обозначением дисковода стоит пробел: если
бы этого пробела не было, в задачу ДОС ПВМ входил бы поиск на

I Время последнего изменения
Дата последнего изменения

Использованное пространство диска, в Вайтах
Расширение имени срайла

COMMAND COM 4959 5-07-82 12:00p
FORMAT COM 3816 5-07-82 12:00p
CHKDSK COM 1720 5-07-82 12:00p
SYS COM 605 5-07-82 12:00p
DISKCOPY COM 2008 5-07-82 12:00p

Имя срайла

Рис. 3.7. Разделы каталога.

дисководе, подразумеваемом по умолчанию, транзитной команды
DIRB:

Вместо использования команды с пробелом можно переназна­
чить дисковод, принимаемый по умолчанию, с тем, чтобы он стал
дисководом, содержащим диск с нужным каталогом:

А>Ь:
B>dir

Изменение принимаемого по умолчанию дисковода вызвано тем,
что DIR — резидентная команда, и ДОС ПВМ известно, как эта
команда должна исполняться независимо от имени подразумевае­
мого дисковода.

Избирательная выдача списков каталога

Команда DIR обеспечивает также и поиск нужного файла: для
этого достаточно присоединить к команде его имя:
A>dir b:budget.bas

Диски и дисковая операционная система ДОС ПВМ 57

Представленная в такой форме команда DIR инициирует поиск
в соответствующем каталоге указанного имени файла и выдает на
экран соответствующий список при условии, что это имя существу­
ет. Если этот дисковод объявлен по умолчанию, указание конкрет­
ного дисковода перед именем файла необязательно.

Имя файла может быть собственным или родовым. В последнем
случае по команде DIR выводятся на экран все имена файлов, соот­
ветствующие данному родовому имени.

Пример. В случае команды
A>dir *.сош

выдаются все имена файлов с расширением СОМ, находящихся на
дисководе А.

Подготовка пустых дисков
Новый диск, не содержащий никакой информации, начинает ра­

ботать только тогда, когда его поверхность размечена должным обра­
зом, устранены выявленные дефекты и отведено конкретное место
для каталога. Такой процесс инициализации диска называется фор-
матированием^ применительно к дискетным накопителям фирмы
IBM он реализуется командой FORMAT.

Пример. В случае команды

А>format b:
размечается дискет, находящийся на дисководе В.

При нажатии клавиши появляется сообщение
Insert new diskette for drive В:
and strike any key when ready_

(Вставьте новый дискет в дисковод В:
и по готовности нажмите любую клавишу)

Дискет, подлежащий разметке, помещают в дисковод В, предва­
рительно убедившись в том, что именно вложенный дискет подлежит
форматированию. Здесь нужна особая осторожность, поскольку в
процессе разметки дискета стирается вся записанная на нем инфор­
мация.

Никогда не подвергайте разметке единственный экземпляр
какого-либо особо ценного для вас дискета!

Установив дискет, нажимают клавишу пробела или клавишу
Этим действием инициируется разметка, и на экране появляется не­
сколько пустых строк, за которыми следует сообщение «Формати­
рование...». В тот же момент на дисководе загорается лампочка, и он
начинает работать, издавая ритмичный звук.

58 Глава 3

Форматирование одностороннего дискета занимает около 20 с;
по окончании процесса появляется сообщение, подобное следую­
щему:
Formatting . . . Format complete
160256 bytes total disk space
160256 bytes available on disk
Format another (Y/N)?__
(Форматирование... Форматирование завершено
Суммарная емкость диска 160256 байт
Свободно 160256 байт
Будет ли разметка очередного диска (Да/Нет)?)

После ответа на вопрос, поставленный в сообщении, нажимают
клавишу Y (Да) или N (Нет).

Ни в коем случае нельзя нажимать затем клавишу^-1. Если
это все же произойдет (или после Y будет нажата любая другая кла­
виша), ДОС ПВМ не станет ждать, пока будет вставлен новый дис­
кет в указанный дисковод; она продолжит работу и переразметит
заново дискет, который только что был форматирован. Никакого
вреда это не принесет, но время будет потрачено впустую.

Команда FORMAT отмечает все поврежденные дорожки, кото­
рые она обнаруживает, предотвращая их выделение в будущем под
какой-либо файл.

Односторонние и двусторонние дискеты
Команда FORMAT предусматривает автоматическое определе­

ние емкости дискета в указанном дисководе. В односторонних дис­
кетах размечается только одна сторона в предположении, что эти
дискеты будут использоваться в накопителях емкостью 160К или
320К байт. Если форматирование осуществляется с использованием
дискового накопителя емкостью 160К, то размечается только одна
сторона дискета, даже если сам дискет двусторонний.

В накопителе емкостью 320К форматируются обычно обе сто­
роны двустороннего дискета. Добавление «/1» в конце команды
FORMAT приводит к одностороннему форматированию независимо
от типа дискета:
A>format b:/l

Именно проведенная разметка дискета, а не его потенциальные
возможности определяет объем информации, который он может хра­
нить, и с каким дисководом его можно использовать. Любой дис­
кет, размеченный с одной стороны, хранит максимум 160К байт не­
зависимо от конкретного типа дисковода. Если же дискет двусто­

Диски и дисковая операционная система ДОС ПВМ 59

ронний, его переразметка для работы в накопителе емкостью 320К
обеспечивает полное использование имеющихся возможностей, од­
нако уже записанная на дискете информация будет, разумеется, стер­
та. Наоборот, дискет, размеченный с двух сторон, способен работать
только в накопителе емкостью 320К. Любая попытка использовать
его в дисководе емкостью 160К вызовет появление на экране сообще­
ния
“Disk error reading drive A:.”
(“Ошибка чтения при работе с дисководом А:.”)

Создание системных дисков
Напомним, что программа самозагрузки может загружать ДОС

ПВМ только с системных дисков. Для формирования системного
диска необходимо добавить суффикс «/S» к команде FORMAT:
А> format /s.

Этот необязательный суффикс указывает на необходимость хра­
нения ДОС ПВМ на форматированном дискете, что требует созда­
ния в общей сложности трех файлов, обозначаемых IBMBIO.COM,
IBMDOS.COM и COMMAND.COM. Два первых файла записыва­
ются таким образом, что их имена не попадают в каталог дискета,
поэтому они называются скрытыми файлами.

Форматирование произвольного дисковода
Команда FORMAT относится к числу транзитных, поэтому в ней

может требоваться префикс в виде обозначения дисковода.
Пример

В > a: format
Здесь по умолчанию подразумевается дисковод В, но, зная, что

на этом дисководе нет файла FORMAT.COM, пользователь для файла
транзитных команд предназначил дисковод А. Однако в приведен­
ном примере диск В все равно будет форматироваться. Объясняется
это тем, что указанное пользователем обозначение дисковода стоит
не после командного слова, и поэтому команда FORMAT работает
с дисководом, принимаемым по умолчанию, а таковым в данном слу­
чае является дисковод В.

Форматирование накопителей на винчестерских дисках
С некоторыми винчестерскими накопителями работает модифи­

цированная команда FORMAT, которая обнаруживает повреждения
и фиксирует любые дефектные участки, предотвращая их использо­
вание для хранения информации. Для большинства винчестерских
дисков имеется отдельная команда, с помощью которой вся поверх­

IBMBIO.COM
IBMDOS.COM
COMMAND.COM
FORMAT.COM

60 Глава 3

ность диска разделяется на отдельные «накопители», и создаются
пустые каталоги каждого из них. Однако ни одна из программ ини­
циализации винчестерских дисков не похожа на другую, и поэтому
необходимо тщательно ознакомиться с руководством по эксплуата­
ции конкретного винчестерского накопителя, имеющегося в ком­
плекте ПВМ.

Ошибки, препятствующие форматированию
Если при работе ДОС ПВМ возникают затруднения с размет­

кой дисков, на экране дисплея появляется сообщение, содержащее
указание на возможный характер ошибки; например, дискет может
быть повернут не той стороной, защищен от записи, поврежден или
может быть вообще не того типа.

Дублирование дискетов
Одной из наиболее важных команд ДОС ПВМ является команда

DISKCOPY, поскольку с ее помощью получаются дубликаты диске­
тов, которые могут быть использованы при отказе основного диске­
та. Эти дубли называются резервными копиями. Команда DISKCOPY
работает только с накопителями на дискетах; для винчестер­
ских накопителей имеется отдельная команда, с помощью которой
можно выборочно получать копии файлов, изменявшихся уже после
того, как было произведено последнее дублирование. Связанные с
этим процессом конкретные операции столь разнообразны, что все
их невозможно рассмотреть в пределах этой книги; в любом случае
следует выполнять указания Руководства по эксплуатации конкрет­
ного дискового накопителя имеющейся у пользователя ПВМ.

Дублирование на двух дисководах
При наличии в комплекте ПВМ двух дисководов (каждый ем­

костью 160К или 320К) можно скопировать содержимое одного из
них, называемого исходным, на другой, называемый целевым.

Пример. Содержимое накопителя А копируется на накопителе В.
А>diskcopy а: Ь:

Первым указывается исходный дисковод, вторым — целевой.
В данном случае роль первого выполняет дисковод А, а второго —
дисковод В, но можно использовать и любые другие разрешенные
имена дисководов. При нажатии клавиши на экране дисплея по­
является следующее сообщение:
Insert source diskette in drive A
Insert target diskette in drive В
Strike any key when ready

Диски и дисковая операционная система ДОС ПВМ’61

(Вставьте исходный дискет в дисковод А
Вставьте целевой дискет в дисковод В
По готовности нажмите любую клавишу)
+++ Дискеты необходимо устанавливать именно так, как указано
в сообщении. Ни в коем случае нельзя менять местами исходный и
целевой дискеты! В качестве дополнительной меры предосторожности
следует заклеить на исходном дискете вырез, разрешающий запись
(рис. 3.1). Если вы все-таки случайно перепутали дискеты, копирова­
ния не произойдет.

Проверив исходный дисковод и дискет, ДОС ПВМ определяет,
какую копию нужно сделать: одностороннюю или двустороннюю,
и выводит соответствующее сообщение на экран. Для успешного
копирования двустороннего дискета на двух дисководах оба накопи­
теля — и исходный, и целевой — должны иметь емкость 320К. Если,
однако, в исходном дисководе используется односторонний дискет,
то возможны любые комбинации накопителей разной емкости —
160К и 320К.

ДОС ПВМ копирует на целевой дискет всю информацию исход­
ного, включая неиспользуемые его участки. В процессе копирова­
ния все, что было на целевом дискете, стирается. Копирование од­
ностороннего дискета длится около 35 с. По окончании копирова­
ния на экране дисплея появляется сообщение “Copy complete”
(«Копирование завершено»).

Затем на экране высвечивается вопрос, надо ли копировать сле­
дующий дискет. Для ответа следует нажать одну из клавиш Y или N.

+Ф+ Нельзя нажимать клавишу Если все же это произойдет
(или после Y будет нажата любая другая клавиша), ДОС ПВМ не
станет ждать, пока вы вставите новый дискет в целевой дисковод.
Вместо этого она продолжит работу и скопирует заново только что
полученную информацию. Это не нанесет никакого ущерба, но вре­
мя будет потрачено впустую.

«Дублирование» на одном дисководе

С помощью команды DISKCOPY можно получать резервные ко­
пии дискетов, используя всего один дисковод.

Пример
А > diskcopy

В данном случае производится копирование с любого дисковода ня
дисковод А. “

Затем нажимается клавиша <>, и на экране высвечивается сооб
щение

62 Глава 3

Insert source diskette in drive A:
Strike any key when ready

(Вставьте исходный дискет в дисковод А:
По готовности нажмите любую клавишу)

Для безопасности перед вставлением исходного дискета в диско­
вод необходимо защитить его от случайной записи с помощью спе­
циальной наклейки. После нажатия любой клавиши ДОС ПВМ счи­
тывает с исходного дискета столько информации, сколько позволяет
место в динамической памяти, и появляется сообщение
Insert target diskette in drive A:
Strike any key when ready

(Вставьте целевой дискет в дисковод А:
По готовности нажмите любую клавишу)

В ответ на это сообщение исходный дискет должен быть заменен
целевым (на целевом дискете не должно быть наклейки, защищаю­
щей от записи). После нажатия любой клавиши ДОС ПВМ скопиру­
ет на целевой дискет информацию, только что считанную с исход­
ного дискета. Цикл перестановки дискетов повторяется столько раз,
сколько требуется для полного копирования исходного дискета.

Дублирование дисков п
По желанию при копировании можно опустить одно из обозначе­

ний дисководов. В этом случае явно указанный дисковод будет ис­
ходным, а подразумеваемый — целевым.

Пример

А>diskcopy b:

Ошибки при дублировании дисков
Если при работе ДОС ПВМ возникает какое-либо затруднение,

связанное с копированием дискетов, на экран дисплея выдается сооб­
щение, характеризующее возможную ошибку. Например, исходный
дискет может быть повернут не той стороной, поврежден или может
быть вообще не того типа. Может оказаться, что целевой дискет уста­
новлен неправильно или защищен от записи наклейкой, или не раз­
мечен, или поврежден либо не соответствует данному типу накопи­
теля или вообще несовместим с исходным дисководом.

1} Один из возможных способов дублирования дисков описывается в разделе
гл. 5, посвященном копированию файлов.

Диски и дисковая операционная система ДОС ПВМ 63

При дублировании возможны также и не столь губительные ошиб­
ки, а само отсутствие сообщения об ошибке еще не гарантирует
пригодности целевого дискета к работе. Получить такую гарантию
можно только после формального сравнения исходного и целевого
дисков или проверки состояния целевого дискета по окончании дуб­
лирования.

Сравнение дисков

При сравнении содержимого двух дискетов с помощью команды
DISKCOMP используются один или два дисковода. Возможна лю­
бая комбинация одно- и двусторонних дискетов с учетом двух огра­
ничений, о которых упоминалось выше.

Пример. Сравнение дискета в дисководе А с дискетом накопи­
теля В.
А> diskcomp а: Ь:

Команда DISKCOMP выглядит так же, как команда DISKCOPY.
В ней указываются два дисковода, подлежащих сравнению; это
могут быть разные дисководы или один и тот же. В последнем
случае ДОС ПВМ сообщает, когда необходимо переставить дискеты.
Если опустить в явном виде обозначение дисковода, будет исполь­
зован дисковод, принимаемый по умолчанию.

Когда команда DISKCOMP заканчивает сравнение, на экран вы­
водится вопрос: «Сравнивать ли другие дискеты? (Да/Нет)». Утвер­
дительный ответ дается при условии, что вы хотите произвести оче­
редное сравнение с использованием тех же самых назначений диско­
водов.

Сравнение односторонних и двусторонних дискетов
ДОС ПВМ проверяет дисководы и дискеты, определяет, какое тре­

буется сравнение — одной или двух сторон,— и выдает принятое
решение на экран. Трудность возникает лишь тогда, когда первый
дисковод двусторонний, а второй односторонний. В этом случае по­
является сообщение “Incompatible diskette or drive types” («Несовме­
стимые типы дискетов или дисководов»). Чтобы провести сравнение
одной стороны дискетов, надо добавить в команду DISKCOMP сим­
волы «/1»:
А> diskcomp а: Ь: /1

Сведения о состоянии диска

Для анализа состояния дискета и его каталога используется ко­
манда CHKDSK, что обеспечивает их внутреннюю целостность и сог­
ласованность:
A>chkdsk b:

64 Глава 3

В приведенном примере контролируется дисковод В. Если опу­
стить обозначение дисковода, проверяться будет дисковод, прини­
маемый по умолчанию.

Анализ начинается сразу после ввода команды; при этом нет пау­
зы для замены дискетов. По окончании проверки выдается сообще­
ние, подобное следующему:

160256 bytes total disk space
8704 bytes in 2 hidden files

144384 bytes in 26 user files
7168 bytes available on disk

65536 bytes total memory
53136 bytes free

(Суммарная емкость диска 160256 байт
2 скрытых файла 8704 байт
26 пользовательских файлов 144384 байт
Свободно на диске 7168 байт
Общий объем памяти 65536 байт
Свободно 53136 байт)

В сообщении указывается емкость диска (160К), количество скры­
тых файлов (если таковые есть) и объем памяти, который они зани­
мают; число пользовательских дисковых файлов и их объем, а также
свободный объем дисковой памяти. Если на диске есть дефектные
дорожки или секторы, дополнительно сообщается о занимаемом ими
пространстве. Наконец, в сообщении указывается общий объем ди­
намической памяти ЭВМ и та ее часть, которая остается после раз­
мещения программы ДОС ПВМ.

В процессе анализа при выполнении команды CHKDSK проверя­
емый дисковод временно считается подразумеваемым по умолчанию,
поэтому, если завершить анализ преждевременно (например, путем
нажатия комбинации клавиш Ctrl [Scroll Lock), необходимого пере­
назначения дисковода по умолчанию не произойдет.

Настройка границ рабочей области экрана
Большинство бытовых телевизоров, используемых в качестве дис­

плеев вычислительных машин, не способно обеспечивать посимволь­
ное отображение информации в каждой строке. Они увеличивают
принимаемое изображение таким образом, что крайние левые или
крайние правые элементы либо и те и другие вместе оказываются вне
поля видимости. Компенсировать эффект развертки за пределами
экрана можно с помощью команды MODE, которая позволяет сдви­
гать изображение вправо или влево.

Пример. Сдвиг изображения вправо.
A>mode 40,г,t

Диски и дисковая операционная система ДОС ПВМ 65

В ответ на данную команду ДОС ПВМ помещает в верхней части
экрана 40-символьный контрольный шаблон, сопровождаемый воп­
росом: “Виден ли левый крайний 0? (Да/Нет)”

О123456789012345678901234567890123456789
Do you see the leftmost 0? (Y/N)

Если нуль у левой границы экрана виден, нажимается клавиша
«Y», в противном случае — клавиша «N», после чего изображение
сдвигается на один символ вправо. Клавиша «N» должна оставаться
нажатой до тех пор, пока крайний слева 0 не появится в поле зре­
ния.

Команда MODE имеет несколько модификаций, и вместо сдвига
вправо, как в приведенном выше примере, с помощью этой команды
можно осуществить сдвиг влево:

A>mode 40,l,t

В данном случае опять появится на экране прежний контроль­
ный шаблон, но при ответном нажатии клавиши «N» изображение
сместится влево.

Единственное число 40, которое использовалось до сих пор в при­
мерах, устанавливает ширину экрана дисплея, равную 40 символам.
Можно задать и 80-символьную строку, используя число «80» вме­
сто «40», однако большинство телевизионных приемников не обла­
дает достаточной разрешающей способностью для четкого отображе­
ния 80 символов в одной строке.

Команда MODE, в которой указано только число, характеризую­
щее ширину экрана, будет лишь настраивать экран на указанную
длину строки. Само изображение при этом сдвигаться не будет. Мож­
но вообще не указывать в команде MODE число (40 или 80), тогда
ширина рабочего поля экрана будет всегда оставаться неизменной.
Если опустить и первое число, и последний символ Т, чтобы пода­
вить вывод на экран контрольного шаблона, то сразу после ввода
команды MODE изображение будет сдвинуто на один символ при
40-символьной длине строки и на два символа в случае 80-символь­
ной строки. Три рассмотренные модификации команды задания ре­
жима работы экрана имеют вид

A>mode 40
A>mode l,t
А> mode ,r

Команда MODE не оказывает никакого воздействия на монохро­
матический дисплей: она работает только с дисплеями, подключен­
ными к адаптеру цветного монитора и графических устройств.

3 № 2275

66 Глава 3

Выбор характеристик печатающего устройства

Существуют три модификации команды MODE, работающие не
с экраном дисплея, а с печатающим устройством. Пользуясь этими
разновидностями команды, можно изменять длину строки, задавать
число строк на странице и менять режим информационного обмена
ПВМ с печатающим устройством с параллельного на последователь­
ный.

Изменение интервала печати
Модификация команды MODE, обеспечивающая возможность из­

менения интервала между символами и строками, рассчитана на ра­
боту с матричным печатающим устройством 80CPS фирмы IBM, пе­
чатающим устройством МХ-80 фирмы Epson и с любыми другими пе­
чатающими устройствами, которые совместимы с указанными. Ис­
пользуемое печатающее устройство должно быть предварительно
включено и подготовлено к печати до подачи следующей команды:
A>mode Ipt 1:132,8

После нажатия клавиши 4-1 появляется сообщение, подтвержда­
ющее прием введенной команды. Если появится сообщение “Prin­
ter error” («Ошибка печати»), то скорее всего печатающее устройство
просто не готово к работе.

Первый компонент рассматриваемой модификации команды
MODE, имеющий мнемонику LPT1:, сообщает ДОС ПВМ, что ко­
манда относится к печатающему устройству. Второй компонент ука­
зывает число символов в строке, для которого допустимы только два
значения: 80 или 132. В каждом случае длина строки остается по­
стоянной, изменяется лишь размер символов. Третий компонент оп­
ределяет число строк в 1 дюйме (здесь также возможны только два
варианта: 6 или 8). Каждый раз, когда печатающее устройство вклю­
чается, оно самонастраивается на печатание 80 символов в строке
и 6 строк на один дюйм длины листа бумаги.

Применение печатающих устройств последовательного действия
ДОС ПВМ пересылает данные, выводимые на печать, в буфер

печатающего устройства параллельного действия. Однако, формируя
две команды MODE, можно адресовать эти данные к последователь­
ному печатающему устройству. Тогда первая из команд согласовы­
вает работу ПВМ с характеристиками печатающего устройства, а вто­
рая реализует переадресацию выводимой информации. Это измене­
ние действует до тех пор, пока оно не будет отменено в результате
действия другой команды MODE или перезагрузки операционной
системы.

Диски и дисковая операционная система ДОС ПВМ 67

Для организации последовательной связи в ДОС ПВМ исполь­
зуется распространенный стандарт RS232, обладающий гибкими воз­
можностями, вследствие чего отправитель и получатель сообщений
либо должны принять соглашение об условиях разрешения опреде­
ленных конфликтных ситуаций, либо они вообще не смогут поддер­
живать связь. Команда MODE обеспечивает соответствие условий
работы ДОС ПВМ требованиям со стороны внешнего устройства
последовательного действия.

Для этого пользователю прежде всего необходимо определить
условия, диктуемые последовательным печатающим устройством
ПВМ. В табл. 3.3 приведены четыре характеристики режима после-

Таблица 3.3. Характеристики стандарта последовательной передачи данных
RS232, учитываемые командой MODE

Характеристика Возможные значения Тип, ука­зываемый в команде Назначение
Скорость передачи (в бо­

дах)
НО

150
300
600

1200
2400
4800
9600

11

15
30 2>
60
122>
24 з)
48
96

Установление скорости
передачи данных

Способ контроля Без
По
По

контроля
нечетности
четности

П2)

О
е $)

Обнаружение ошибок

Длина слова (в битах) 7

8

7 3)

82>

Длина каждого информа­
ционного байта

Число стоповых битов 1

2

1 2>

2

Признак конца байта
данных

Для печатающих устройств последовательного действия предусмотрена общая ко­манда вида MODE СОМ1: скорость передачи в бодах, способ контроля, длина слова, сто­
повые биты, Р. Для других устройств последовательного действия опускаются конечные символы «Р».2) Обычный вариант для последовательных печатающих устройств.3) Эти значения задаются при первичной загрузке ДОС ПВМ.
довательной связи и возможные варианты, которыми располагает
ДОС ПВМ по каждой из них. В руководстве по эксплуатации кон­
кретного устройства печати следует найти такие его характеристики,
как скорость передачи в бодах, способ контроля передачи, длина
слова и число стоповых битов. При этом необходимо выяснить, нуж-

з*

68 Глава 3

но ли для выбора конкретных режимов и характеристик устанавли­
вать в соответствующее положение внутренние переключатели пе­
чатающего устройства.

Для перевода требуемых значений характеристик последова­
тельной связи с печатающим устройством в обозначения, восприни­
маемые командой MODE, удобно пользоваться табл. 3.3. Как сле­
дует из этой таблицы, команда

A>mode coml:30,n,8,l,p

настраивает ДОС ПВМ на пересылку символов со скоростью 300 бод,
без контроля по четности, при длине слова 8 бит и одном стоповом
бите.

После нажатия клавиши появляется сообщение, подтвержда­
ющее ввод.

Первый компонент этой модификации команды MODE, имею­
щий мнемонику СОМ1:, означает, что команда относится к режиму
последовательной связи. Последний компонент, буква р, указывает
ДОС ПВМ на то, что последовательная связь должна быть установ­
лена именно с печатающим устройством, а не с каким-либо другим.

Команда MODE, реализующая переадресацию выводимой ин­
формации последовательному печатающему устройству, выглядит
так:

A>mode lptl:=coml

В результате ввода такой команды появляется сообщение
“LPT1: redirected to COM 1:”

Для обратного переключения с режима последовательной пере­
дачи на параллельный используется команда

A>mode Ipth

Копирование файлов

Для копирования отдельных файлов служит команда COPY в са­
мых различных вариантах. Можно копировать файл, используя один
или два дисковода любого типа — с дискетами на 160 К или 320К,
либо задавая в качестве накопителей разделы винчестерского дис­
ка. Имена исходного файла и дубля могут быть разными или, если
используются два дисковода, одинаковыми. Возможно также ис­
пользование команды COPY для пересылки выбранных файлов тран­
зитных команд с дискета, содержащего операционную систему, на
другой дискет. Дублируя только нужные файлы, пользователь эко­
номит место на диске для других файлов.

Диски и дисковая операционная система ДОС ПВМ 69

Вариант одинаковых имен и разных дисководов
В простейшей форме записи команды COPY в ней указывается

только имя исходного файла и это же имя присваивается копии фай­
ла. Исходный и целевой дисководы в этом случае должны быть раз­
ными.

Пример. Копирование файла с дисковода А на дисковод В.
А>сору a:mode.com b:

Имя исходного файла всегда стоит в команде COPY первым; в дан­
ном примере это имя A:MODE.COM. Символ А: обозначает исход­
ный дисковод; обозначение В относится к целевому дисководу.

Операция копирования начинается сразу после нажатия кла­
виши 4й. При этом не появляется никакого сообщения и нет паузы,
позволяющей заменить дискеты, так что все приготовления должны
быть закончены до начала операции копирования. Команда COPY
является в ДОС ПВМ резидентной, поэтому файл команд для нее
не нужен. По окончании операции копирования на экран выдается
сообщение, указывающее количество скопированных файлов.

Если имена исходного и целевого файлов совпадают, можно опу­
стить обозначение либо исходного дисковода, либо целевого, но не
обоих сразу. В качестве дисковода, обозначение которого не указа­
но явно, в данном случае используется дисковод, принимаемый по
умолчанию, однако при этом явно определяемый дисковод должен
быть другим.

Пример. Два случая применения команды COPY, в каждом из ко­
торых производится копирование с дисковода А на дисковод В.
А>сору mode.com Ь:

1 File(s) copied
(Скопировано файлов — 1)
А>Ь:
В >сору armode.com

1 File(s) copied
(Скопировано файлов — 1)

В первом случае копирование осуществляется с дисковода, при­
нимаемого по умолчанию, на дисковод, указанный в команде. За­
тем подразумеваемым становится дисковод В, после чего, во втором
случае, копирование происходит с явно указанного дисковода на
новый, принимаемый по умолчанию.

Если файл с тем или иным именем уже существует на целевом
дисководе, он будет стерт и заменен файлом с исходного дисковода.
При ошибочном копировании какого-нибудь файла на самого себя
(когда одинаковы и имя файла, и обозначение дисковода) команда
COPY сообщит о том, что скопировано 0 файлов, и никаких опасных
последствий не будет.

a:mode.com
A:MODE.COM
mode.com
armode.com

70 Глава 3

Вариант разных имен и одного дисковода

Для того чтобы сдублировать отдельные файлы на одном дисково­
де, имена исходного и целевого файлов должны быть разными.

Пример
А>сору letterl.doc letter l.bak

Здесь резервная копия файла LETTER1.DOC получается на том же
дисководе; при этом используется дисковод, принимаемый по умол­
чанию, однако может быть явно указан и любой другой.

Вариант разных имен и разных дисководов
Для создания дублирующего файла с другим именем и на дис­

ководе, отличном от исходного, необходимо указать имена обоих
- файлов и обозначение хотя бы одного дисковода.

Пример
! А>сору contract.doc b:contract.bak

; В данном примере с файла CONTRACT.DOC, находящегося на под-
I разумеваемом дисководе А, снимается копия CONTRACT.ВАК,
j помещаемая на дисковод В. Обозначение исходного дисковода мо­

жет указываться явно.
I

Применение команды СОРУ при работе с родовыми именами файлов
Команда COPY допускает использование неопределенных сим­

волов ? и * в именах файлов. Это позволяет ускорить работу за тер­
миналом при условии, что имена исходного и целевого файлов сов­
падают, за исключением расширений.

Пример
\ А>сору amortize.bas *.bak

1 Используя родовые имена, можно скопировать все файлы исход­
ного дисковода на целевой.

Пример. Копирование всех файлов дисковода А, принимаемого
по умолчанию, на дисковод В может быть выполнено по команде
А>сору *.* Ь:

Копирование всех файлов с одного дисковода на другой о по­
мощью команды COPY в основном аналогично получению копий с
помощью команды DISKCOPY, хотя имеется и ряд существенных
отличий. Прежде всего команда DISKCOPY не оставляет на целе­
вом дисководе ни одного ранее записанного файла, а команда COPY
добавляет новые файлы к уже записанным. Если же пространство,
имеющееся на целевом диске, слишком мало для записи всех исход-

Диски и дисковая операционная система ДОС ПВМ 71

них файлов, команда COPY скопирует лишь столько файлов,
сколько можно.

Если диск перед началом работы команды COPY пуст, каталог
диска эффективно реорганизуется в ходе ее выполнения. Благодаря
такой реорганизации уменьшается время доступа к диску, особенно
в тех случаях, когда на диске многократно создавались и уничто­
жались файлы. Поскольку каталог диска реорганизуется, весьма
вероятно, что команда DISKCOMP объявит целевой дискет, на кото­
рый информация записана с помощью команды COPY*.*, отличным
от оригинала. Что же касается команды DISKCOPY, то она переор­
ганизует каталог и потому создает точный дубликат исходного диска.

Копирование с контролем

Если желательно, чтобы ДОС ПВМ осуществила считывание це­
левого файла, его сравнение с исходным и проверку их идентично­
сти, то в конце команды COPY следует поставить суффикс “/V”:
А> copy arformat.com b:/v

Ошибки при копировании файлов происходят редко и обуслов­
лены обычно неисправностью целевого дискета. С суффиксом “/V”
команда COPY работает медленнее, поскольку после записи целе­
вого файла выполняется его проверка.

Стирание файлов

По команде ERASE имена одного или более файлов изымаются
из каталога, а место, которое эти файлы занимали на диске, освобож­
дается для других файлов. Команда работает с дисководами любого
типа и выглядит следующим образом:
А> erase b:invntry.bak

Так же, как и в других командах, явное указание обозначения
дисковода не обязательно, поскольку возможно использование прин­
ципа умолчания.

Команда ERASE может работать и с родовыми именами файлов,
однако в этом случае необходимо проявлять осторожность, так как
родовые имена используются главным образом тогда, когда группу
файлов нужно уничтожить одной командой; поэтому даже незначи­
тельная ошибка в родовом имени файла может привести к стира­
нию совсем не той группы файлов.

Пример. Команда

А> erase b: *.*

arformat.com

72 Глава 3

обеспечивает стирание всех файлов на дисководе В, но предваритель­
но к пользователю адресуется вопрос: “Аге you sure (Y/N)?” («Вы
уверены? (Да/Нет»)) в целях предотвращения случайного стирания
всех файлов.

Переименование файлов

С помощью команды RENAME изменяется имя одного или более
файлов на дисководе любого типа. До переименования новое имя
файла не должно присутствовать в каталоге диска.

Пример
А> rename brmaillist.bas mail.bas

Первым указывается старое имя файла, а вторым — новое. Пре­
фикс перед первым именем, явно указывающий обозначение диско­
вода, не обязателен. Если его нет, значит, происходит изменение
имени файла, находящегося на дисководе, принимаемом по умол­
чанию. Любое явное обозначение дисковода перед вторым именем
файла командой RENAME игнорируется.

Рассматриваемая команда допускает использование родовых имен
файлов.

Если старый файл имеет родовое имя, то все соответствующие ему
файлы переименовываются согласно новому имени, которое тоже
должно быть родовым.

Пример, Команда
А > rename 5*.* 4*.*

обеспечивает переименование всех файлов, имена которых начина­
ются цифрой 5, таким образом, что цифра 5 заменяется в них на 4.

Новое родовое имя файла, используемое в сочетании с конкрет­
ным старым именем, может существенно сократить объем информа­
ции, набираемой на клавиатуре.

Пример
В >rename addressl.dat *.bak

В данном случае эффективно реализуется изменение расширения
имени файла ADDRESS1 с DAT на ВАК.

Глава 4

ЗАПУСК ПРОГРАММЫ

По мнению многих пользователей ПВМ, им никогда не придется самим пи­
сать программы для вычислительной машины, поскольку можно использовать
уже существующие. По-видимому, в ряде случаев такое мнение вполне оправдан­
но, особенно если учесть разнообразие имеющихся в настоящее время готовых
прикладных программ и их высокое качество.

В данной главе описываются только самые общие команды, необходимые
для запуска программ, входящих в состав серийных средств программного обес­
печения. Эти команды, однако, ни в коей мере не заменяют специфических команд,
связанных с каждой отдельной программой. Процедуры работы с различными
прикладными программами настолько отличаются друг от друга, что подробно
описать их все в одной этой главе практически невозможно.

Как правило, сразу после запуска прикладной программы на экран дисплея
выводятся все специфические команды, которые достаточны для организации
работы с данной программой. Подробная информация об этих командах содержится
в руководстве для программистов; при необходимости можно проконсультиро­
ваться с теми, кто уже освоил работу с интересующей программой.

В основном прикладное программное обеспечение для ПВМ представлено
в виде программ, записанных на дискетах либо напечатанных в книгах или жур­
налах. Для того чтобы программа, находящаяся на любом из этих носителей,
могла начать выполняться, ее необходимо предварительно поместить в динамиче­
скую память ПВМ. В случае когда программа записана на дискете, для этого до­
статочно всего лишь несколько раз нажать нужные клавиши, так как с помощью
специальной аппаратуры информация может передаваться в память ПВМ непо­
средственно с дискетов. Если же программа представлена в виде текста, напеча­
танного в книге или журнале, то потребуется выполнить достаточно трудоемкую
и утомительную работу — вводить программу в вычислительную машину вруч­
ную, так как в настоящее время пока еще нет средств непосредственного ввода
печатного текста в ЭВМ.

Программное обеспечение на дискетах

Существуют различные способы запуска программы, записан­
ной на дискете. Решение вопроса о том, какой именно способ следует
выбрать для конкретной программы, зависит от многих факторов, и
мы будем недалеки от истины, если скажем, что единственный способ
выбрать подходящий метод состоит в том, чтобы поочередно приме­
нять все методы, пока не найдется работающий в данной ситуации.

Дублирование программного обеспечения
Чтобы избежать неприятностей (иногда достаточно серьезных),

которые могут возникнуть в случае повреждения или неисправно­
стей дискета, препятствующих успешному запуску программы, не­
обходимо делать копии каждого вновь приобретенного дискета с про­

74 Глава 4

граммным обеспечением. Команды, предназначенные для копирова­
ния как всего дискета целиком, так и отдельных программ, были
описаны в гл. 3.

Заметим, что некоторые пакеты прикладных программ записаны
на дискетах таким образом, что дублирование их невозможно. В по­
добной ситуации следует предварительно выяснить, каким образом
в случае необходимости можно получить копию такого дискета.

Роль дисковой операционной системы

Для перезаписи прикладной программы с дискета в динамиче­
скую память ПВМ необходима дисковая операционная система.
Существует несколько таких систем, предназначенных для работы
на ПВМ; в их число входят СР/М-86, UCSD Pascal (р-система),
OASIS и наиболее широко используемая ДОС ПВМ. Приобретае­
мый дискет с программным обеспечением можно, как правило, ис­
пользовать только при наличии определенной операционной систе­
мы (одной из указанных). Наиболее популярные пакеты приклад­
ных программ имеют несколько версий, совместимых с различными
операционными системами. При покупке программ необходимо удо­
стовериться, что они предназначены именно для той дисковой опе­
рационной системы, которая имеется в вашем распоряжении. Мы
ограничимся описанием процедуры запуска прикладных программ
стандартного программного обеспечения в случае операционной
системы ДОС ПВМ; аналогичные процедуры осуществляются и для
других операционных систем.

Иногда приобретенный дискет с прикладным программным обес­
печением не содержит копии дисковой операционной системы, что
связано с лицензионными ограничениями, накладываемыми вла­
дельцами операционных систем. Но дисковая операционная систе­
ма может копировать саму себя на любой выбранный дискет. Не­
обходимые для этого команды применительно к ДОС ПВМ описы­
ваются в гл. 5. В целях предосторожности при дублировании опе­
рационной системы лучше использовать копию приобретенного
дискета, а не оригинал.

Программное обеспечение со средствами автоматического
запуска

Некоторые пакеты программного обеспечения могут запускать­
ся автоматически. Все, что требуется сделать для запуска таких
программ,— это поставить соответствующий дискет на дисковод А,
закрыть дверцу дисковода и включить вычислительную машину.
Если системный блок включен, то программы можно запустить на­
жатием клавиш Ctrl [AltlDel. В обоих случаях процедура запус­

Запуск, программы . 75

ка аналогична процедуре загрузки ДОС ПВМ, описанной в гл. 3,
с той лишь разницей, что просто системный дискет заменен на дискет
с автоматически запускаемыми прикладными программами.

Вскоре после указанных действий должен послышаться шум,
вызванный работой дисковода А, и на экране дисплея начнут по­
являться различные символы: высветится по крайней мере одна
команда ДОС ПВМ, а возможно, и больше. Эти команды поступают
из специального файла с именем AUTOEXEC.BAT, содержащего
все команды, необходимые для автоматического запуска приклад­
ной программы 1}. В результате управление ПВМ будет передано
прикладной программе и на экране появится ее первое сообщение.
Описание специальных команд, предназначенных для работы с каж­
дой отдельной программой, можно найти в руководстве по исполь­
зованию прикладного программного обеспечения.

Ошибки, возникающие при автоматическом запуске программ

Вывод новых сообщений на экран дисплея может прекратиться
еще до того, как управление ПВМ перейдет к прикладной програм­
ме. Это может быть связано с тем, что прикладная программа просто
не является самозапускающейся. Если картина на экране дисплея
такая же, как при загрузке ДОС ПВМ (см. рис 3.5), то необходимо
начать запуск программы вручную.

Сообщение “Non-system disk or disk error” («Не системный диск
или ошибка по вине диска») может означать, что на дискете с при­
кладными программами нет копии ДОС ПВМ. В этом случае можно
либо скопировать ДОС ПВМ на этот дискет, либо запустить ее вруч­
ную. Указанное выше сообщение, так же как и сообщение “Disk
error reading drive А” («Ошибка считывания с диска А»), может быть
обусловлено неисправностями дискета. Однако, прежде чем делать
подобный вывод, следует еще раз проверить, какой дискет установ­
лен на дисководе А и правильно ли он установлен, а затем вновь
нажать клавиши CtrllAltlDel, т. е. повторить автоматический
запуск. При появлении того же самого сообщения об ошибке, надо
попробовать поставить другую копию дискета с прикладными про­
граммами. Если и после смены дискета ошибка остается неисправ­
ленной, то тогда действительно можно сделать предположение о сбое
оборудования. На этот случай в технической документации фирмы
IBM “Guide to Operations” («Руководство по операциям») содержится
диагностический дискет и описываются команды, с помощью кото­
рых можно использовать этот дискет для проверки конкретной сис­
темы.

Более подробно о файле AUTOEXEC.BAT см. гл. 5.

76 Глава 4

Запуск программ вручную

Прежде чем начать запуск прикладной программы, необходимо
произвести загрузку дисковой операционной системы так, как это
описывается в гл. 3. В результате загрузки на экране дисплея долж­
но появиться идентификационное сообщение ДОС ПВМ, в конце ко­
торого после наводящей команды должен высветиться курсор (см.
рис. 3.5). Вслед за этим необходимо определить, какое имя имеет
данная прикладная программа на дискете. Имя может не совпадать
с полным названием программы, а являться некоторой абревиату-
рой или акронимом. Чтобы определить имя программы, можно по­
смотреть документацию, прилагаемую к данному дискетному пакету
программ, и найти рубрику «имя программы» или «имя файла». Най­
денное имя должно состоять не более чем из восьми символов и может
оканчиваться точкой, за которой следуют три символа, например
COM, EXE или BAS. Такое окончание указывает на тип файла, в ко­
тором хранится программа, а тип в свою очередь определяет, с по­
мощью каких команд должен осуществляться запуск программы.
Если имя программы и тип файла не удается определить каким-либо
независимым способом, можно использовать команду ДОС ПВМ
DIR (гл. 3) и с ее помощью просмотреть справочник имен файлов
дискета с прикладным программным обеспечением.

Запуск прикладной программы типа СОМ или EXE
Для запуска программы, хранящейся в файле, имя которого

оканчивается на СОМ или EXE, достаточно набрать на клавиатуре
имя этого программного файла, а затем нажать клавишу При
этом нет необходимости набирать само окончание имени, поскольку
указанные окончания (СОМ или EXE) приняты в ДОС ПВМ по
умолчанию.

Пример. Запуск программы, записанной в файле WS.COM.
A>ws

Если имя файла введено правильно, то через несколько секунд
после этого на экране дисплея должно появиться первое сообщение
запускаемой программы. В случае появления сообщения об ошибке
необходимо еще раз проверить, правильно ли было набрано имя.
Если ошибки при наборе не допускались, а на экране появилось сооб­
щение об ошибке “Bad command or file name” («Неправильная
команда или неверное имя файла»), то это может означать, что либо
запускаемой программы нет на данном носителе, либо она имеет дру­
гое имя, либо содержащий ее файл не является файлом типа СОМ
или EXE.

Дискет с прикладными программами не обязательно устанавли­
вать на дисковод А: чтобы при запуске в явном виде указать исполь­

WS.COM

77Запуск, программы

зуемый дисковод, достаточно поставить перед именем программного
файла идентификатор этого дисковода.

Пример
B>a:ws

В данном примере, несмотря на то что принятым по умолчанию
является дисковод В, система ДОС ПВМ будет искать файл с име­
нем WS.COM на дисководе А, поскольку последний был указан в яв­
ном виде.

Запуск прикладных программ типа BAS
Файлы типа BAS содержат программы, написанные на языке

Бэйсик. Для выполнения этих программ необходим интерпретатор,
транслирующий Бэйсик-команды в команды машинного языка ПВМ.
Интерпретатор занимает часть динамической памяти ПВМ, где также
находятся ДОС ПВМ и транслируемая программа.

В условиях ДОС ПВМ можно использовать две версии Бэйси-
ка: дисковый и расширенный. Интерпретатор расширенного Бэйси-
ка рассчитан на обработку более широкого набора команд, чем
интерпретатор дисковой версии, но он занимает и больший объем
динамической памяти, оставляя меньше места для прикладной про­
граммы. Если заранее неизвестно, какая версия интерпретатора тре­
буется для запускаемой программы, то сначала следует попробовать
интерпретатор расширенного Бэйсика. Этот интерпретатор не при­
годен лишь в том случае, когда программа, написанная на диско­
вом Бэйсике, слишком велика, чтобы поместиться в памяти вместе
с интерпретатором расширенной версии. Но подобная ситуация вы­
явится сразу же, до запуска прикладной программы. Попытка ис­
пользовать интерпретатор дискового Бэйсика может привести к не­
желательным последствиям, если окажется, что в действительности
для программы требовался интерпретатор расширенного Бэйсика.
Такая программа будет работать в течение некоторого времени, пока
наконец не встретится команда, входящая только в расширенный
Бэйсик. После этого выполнение программы прекратится и разоб­
раться в ее текущем состоянии будет практически невозможно.

Интерпретатор представляет собой некоторую программу, кото­
рая также должна быть перенесена с диска в память ПВМ. Интер­
претатор дискового Бэйсика находится в программном файле с име­
нем BASIC.COM, а расширенного — в файле с именем BASICA.COM.

Для запуска прикладной программы типа BAS сначала следует
набрать на клавиатуре имя файла, содержащего нужный интерпре­
татор, пропустить один пробел и набрать имя файла, содержащего
нужную прикладную программу, после чего нажать клавишу
При наборе имен файлов можно опустить все окончания: в ДОС ПВМ
по умолчанию принято, что имя файла, содержащего интерпретатор,

WS.COM
BASIC.COM
BASICA.COM

78 Глава 4

оканчивается на СОМ, а имя файла с прикладной программой —
на BAS.

Пример. Запуск программы, находящейся в файле
SAMPLES.BAS, вместе с интерпретатором дискового Бэйсика.
A>basic samples

После нажатия клавиши 4^ П°Д управлением ДОС ПВМ произ­
водится пересылка интерпретатора с диска в память ПВМ и очища­
ется экран дисплея. Затем с диска в память ПВМ передается при­
кладная программа, и управление переходит к интерпретатору, ко­
торый начинает обрабатывать команды прикладной программы.

В приведенном выше примере предполагалось, что и файл с ин­
терпретатором, и файл с прикладной программой находятся на дис­
ководе, принятом по умолчанию. Однако любой из этих файлов (или
оба сразу) можно поместить и на другой дисковод, а при запуске
указать этот дисковод в явном виде. Для этого достаточно просто
поставить перед именем соответствующего файла идентификатор
дисковода.

Пример
B>a:basica samples

В данном примере принятым по умолчанию является дисковод
В, но символы, предшествующие имени файла с интерпретатором,
говорят о том, что ДОС ПВМ должна искать интерпретатор расши­
ренного Бэйсика на носителе А. Поскольку перед именем програм­
много файла SAMPLES. В AS нет никакого идентификатора диско­
вода, этот файл должен находиться на дисководе, принятом по умол­
чанию.

В тех случаях, когда ДОС ПВМ не может найти Бэйсик-интер-
претатор на указанном для него носителе, на экран дисплея выво­
дится сообщение об ошибке “Bad command or file name” («Неправиль­
ная команда или неверное имя файла»). Если на соответствующем
носителе не будет обнаружена прикладная программа, то после вы­
вода 3 строк идентификационного сообщения интерпретатора на
экране появится сообщение “File not found” («Файл не найден»),
а под ним вновь повторится наводящее сообщение системы ДОС
ПВМ.

Программы на винчестерских накопителях

Практически любую прикладную программу, записанную на
дискете, можно скопировать на винчестерский накопитель и запус­
кать ее оттуда точно так же, как и в случае обычного дискетного на­
копителя. Часто винчестерский накопитель имеет такой объем, ко­
торый делает возможной запись нескольких пакетов прикладных
программ. Зная имя содержащего ее файла, можно копировать про­

Запуск программы 79

грамму с одного носителя на другой (гл. 3). Прикладная программа
может занимать несколько файлов, поэтому нужно внимательно сле­
дить за тем, чтобы с дискета прикладных программ на винчестерский
диск были скопированы все необходимые файлы.

Если накопитель А, входящий в состав используемой системы,
является винчестерским, то одна из хранимых на нем прикладных
программ может быть самозапускающейся. Выбрав из пакета при­
кладного программного обеспечения файл AUTOEXEC.BAT, ко­
торый предполагается использовать как автоматически запускае­
мый, следует скопировать его на носитель А. Поскольку все файлы,
записанные на одном и том же носителе, должны иметь уникальные
имена, на носителе А может храниться только один файл с именем
AUTOEXEC.BAT. Это в свою очередь означает, что если использу­
ется винчестерский диск, то самозапускающейся может быть толь­
ко одна программа.

Использование прикладных программ, представленных в виде
напечатанных текстов

Различные книги и журналы содержат тексты Бэйсик-программ,
предназначенных для работы на ПВМ. В настоящее время существует
лишь один способ ввода напечатанной на бумаге программы в память
ПВМ — ввести ее с клавиатуры. В будущем, возможно, для счи­
тывания напечатанного на бумаге текста и ввода его в ПВМ появят­
ся специальные оптические читающие устройства, но пока подоб­
ных устройств нет.

Чтобы иметь уверенность в работоспособности программы, вве­
денной с готового напечатанного текста, нельзя допускать ни ма­
лейшего отклонения от оригинала при наборе на клавиатуре. Эта
операция требует большой точности, хотя она не слишком утомитель­
на, если программа достаточно мала, например содержит не более
300 строк.

Если программа написана не специально для ПВМ, то даже пос­
ле очень тщательного копирования она может не работать. Это свя­
зано с тем, что существуют некоторые различия, как очевидные, так
и достаточно тонкие, между версиями Бэйсика для различных вы­
числительных машин. Никогда нельзя быть заранее уверенным в
том, что Бэйсик-программа, написанная для какой-либо другой вы­
числительной машины, будет работать на ПВМ; выяснить это мож­
но, лишь пробуя запускать эту программу на ПВМ.

Ввод с клавиатуры в память ПВМ Бэйсик-программы осущест­
вляется с помощью одного из Бэйсик-интерпретаторов. Для боль­
шинства программ, написанных не специально для ПВМ, достаточ­
но использовать интерпретатор дискового Бэйсика. Однако если
есть некоторые сомнения относительно того, каким интерпретатором

80 Глава 4

воспользоваться, то следует выбрать интерпретатор расширенной
версии, поскольку он допускает более широкий набор команд.

Перед началом ввода программы надо набрать на клавиатуре
BASIC или BASICA в зависимости от того, какой требуется интер­
претатор, а затем нажать клавишу После этого управление пе­
рейдет к интерпретатору и на зкране появится его идентификацион-

The IBM Personal Computer Basic
Version D1.10 Copyright IBM Corp 1981,
1982
38907 Bytes free
Ok

Г
 The IBM Personal .Computer Basic

Version A1.10 Copyright IBM Corp 1981,
1982
33402 Bytes free
Ok

В
Рис. 4.1. Идентификационные сообщения Бэйсик-интерпретаторов.А _ на экране сообщение, следующего содержания: «Бэйсик ПВМ фирмы IBM. Версия D1.10. Авторское право фирмы IBM 1981. Свободная память 38907 байт»; В — на экране сообщение, следующего содержания: «Бэйсик ПВМ фирмы IBM. Версия А1.10. Авторское право фирмы IBM 1981. Свободная память 33402 байт».
ное сообщение (рис. 4.1). Сообщение занимает 3 строки; на 4-й стро­
ке после него высветится “Ок”, а на 5-й — курсор.

Заметим, что наводящее сообщение системы ДОС ПВМ здесь уже
не появляется, поскольку к данному моменту управление передано
от ДОС ПВМ к интерпретатору. Интерпретатор по существу не вы­
водит никаких наводящих сообщений, хотя курсор часто появляется
на экране под сообщением “Ок”.

После выполнения указанных действий можно начать вводить
строки программы по напечатанному оригиналу. При этом разре­

Запуск программы 81

шается использовать любую комбинацию прописных и строчных
букв, даже если в напечатанном варианте программы все буквы
прописные. Интерпретатор при необходимости автоматически пре­
образует все буквы в прописные.

Каждая строка программы начинается с некоторого числа, на­
зываемого номером строки. Отдельные строки программы могут ока­
заться слишком длинными и не умещаться на одной строке экрана
дисплея. В этом случае следует продолжать набирать строку про­
граммы, не обращая внимания на то, что строка экрана уже пол­
ностью заполнена: программная строка автоматически перенесется
на следующую экранную строку. При наборе таких длинных про­
граммных строк не надо нажимать клавишу 4^ каждый раз, когда
курсор достигает конца строки экрана. Эту клавишу следует нажи­
мать только после того, как будет набрана вся программная строка,
т. е. непосредственно перед началом ввода новой программной стро­
ки, начинающейся своим номером.

Пример. Программа упорядочения по алфавиту списка, содержа­
щего до 100 элементов (рис. 4.2).

При вводе текста этой программы с клавиатуры клавишу 4^
надо нажать ровно 33 раза, по одному разу в конце каждой програм­
мной строки.

Если при наборе некоторой программной строки перед нажатием
клавиши обнаружилось, что в этой строке была допущена ошибка,
то ее можно исправить с помощью клавиши 4“ или Esc. Клавиша 4“
позволяет, оставаясь на той же строке экрана, вернуться на одну
позицию влево, а с помощью клавиши Esc можно стереть программ­
ную строку.

Выявление ошибок, допущенных при вводе программы
с клавиатуры

Поскольку очень важно, чтобы набираемые на клавиатуре стро­
ки программы были точными копиями печатного оригинала, перед
запуском уже введенной программы следует еще раз проверить все
ее строки. Если после ввода программы, когда управление вычис­
лительным процессом все еще продолжает осуществлять интерпре­
татор (а не ДОС ПВМ), нажать клавишу F1, то на экране дисплея
появится слово “LIST”. После этого можно нажать клавишу -4й,
и тогда на экране начнут высвечиваться введенные ранее строки
программы. Одновременно на экране дисплея помещаются 22 стро­
ки. Если программа содержит большее число строк, то каждый раз
при заполнении всего экрана верхняя строка будет исчезать, все
остальные сдвигаться вверх, а освободившуюся нижнюю строку эк­
рана займет новая программная строка. В результате по экрану бы­
стро пробегут все строки программы и останутся лишь 22 последние.
В такой ситуации следует снова нажать клавишу F1, но теперь до

82 Глава 4

Рйс. 4.2. Программа упорядочения по алфавиту.

10 DIM ITEMSC100)
20 CLS ’
30 PRINT ,’’ALPHABETIZE”
40 PRINT
50 input ’’Введите количество элементов"; NBR
60 FOR J=1 TO NBR
70 print "Введите очередной элемент3
80 INPUT ITEM$(J)
90 NEXT J
100 N=NBR
110 N=INT(N/2)
120 IF N=0 THEN 240
130 J=1
140 K=NBR-N
150 L=J
160 M=L+N
170 IF ITEM$(L)<-ITEM$(M) THEN 210
180 SWAP ITEM$(L),ITEM$(M)
190 L=L-N
200 IF L>=1 THEN 160
210 J=J + 1
220 IF J>K THEN 110
230 GOTO 150
240 CLS
250 FOR J=1 TO NBR
260 PRINT ITEM$(J)
270 NEXT J
280 input ”Продолжать печать (y/N)”;as
290 IF LEFT$<A$z 1)="Y” OR LEFTSCA$,1)=”y” THEN 240
300 END

нажатия клавиши 4^ нужно подготовиться к тому, чтобы сразу пос­
ле первого заполнения всего экрана быстро нажать одновременно
клавиши Ctrl и Num Lock, тем самым «замораживая» текущее изоб­
ражение на экране.

Просматривая программные строки, необходимо убедиться в том,
что они в точности совпадают с напечатанным оригиналом. Следует
удостовериться, что заглавная буква «О» нигде не перепутана с ну­
лем, буква «1» — с единицей, a «Z» — с двойкой. При выявлении
типографских ошибок надо записать номер ошибочной строки. Пос­
ле проверки всех поместившихся на экране программных строк мож­
но продолжить просмотр. Для этого вначале следует подготовиться
к тому, чтобы в дальнейшем при необходимости снова быстро нажать
комбинацию клавиш Ctrl | Num Lock. После этого нажимается кла­
виша 4й или клавиша пробела и на экране сразу же начинают
появляться строки программы; в нужный момент следует быстро
нажать комбинацию клавиш Ctrl |Num Lock. Далее, начиная с

Запуск программы 83

последней просмотренной в предыдущем цикле строки, надо прове­
рить очередной сегмент программы, записывая номера строк, в ко­
торых обнаружатся ошибки. Указанные действия необходимо пов­
торять до тех пор, пока не будет проверена вся программа.

Многие считают, что при проверке правильности введенной с
клавиатуры программы удобнее пользоваться ее распечаткой на бу­
маге. Если в состав системы входит печатающее устройство, то для
получения экземпляра распечатки надо нажать клавишу F1, а за­
тем F6; нажимать клавишу в данном случае не нужно. После
этого на экране дисплея появится сообщение ‘LIST, “LPT1:”’ и нач­
нется печать текста программы. Печатающее устройство, естествен­
но, предварительно должно быть приведено в состояние готовности
к работе.

Вызов программных строк для исправления
Имея список номеров программных строк, в которых были обна­

ружены ошибки, можно приступить к их исправлению. Вычисли­
тельная машина в это время по-прежнему должна работать под уп­
равлением интепретатора. Отредактировать можно любую строку
программы, выведенную на экран дисплея. Перемещать курсор по
экрану дисплея, а также вводить и удалять отдельные символы мож­
но с помощью клавиш малой вспомогательной клавиатуры, если они
не используются для набора цифр.

Не имеет значения, каким образом программная строка окажет­
ся на экране: как только она там появилась, ее можно изменять.
Для того чтобы добраться до нужной строки, можно, например, на­
жав клавишу F1, начать прогон строк программы, а затем при
появлении искомой строки остановиться, нажимая CtrlIScroll Lock.
Возможен и другой способ вызвать строку для исправления на экран:
надо набрать на клавиатуре команду EDIT, дать пробел, набрать
номер требуемой программной строки, а затем нажать клавишу
После этого на следующей строке экрана появится программная
строка с указанным номером, а курсор будет находиться под пер­
вым ее символом.

Внесение изменений в программную строку

Чтобы исправить ошибку в выведенной на экран программной
строке, необходимо сначала передвинуть курсор к местоположению
ошибочного символа. Описание клавиш, с помощью которых мож­
но перемещать курсор по экрану, а также некоторых дополнительно
используемых при редактировании клавиш приведено в табл. 4.1.

Если курсор находится непосредственно под неправильным сим­
волом, то любой набранный в этот момент на клавиатуре символ
появится на экране на месте старого, ошибочного (рис. 4.3). Для

84 Глава 4

Таблица 4.1. Клавиши редактирования и управления курсором (для работы
с Бэйсик-программами)

Клавиша
t
—>

■<---
Ctrl]—*-
Ctrl|^_
Home
End

ctri|4-

Del
Ins

Ctrl|Home

Ctrl(End

Производимое действие
Перемещение курсора на одну строку вверх
Перемещение курсора на одну строку вниз
Перемещение курсора на одну позицию вправо
Перемещение курсора на одну позицию влево
Перемещение курсора на одно слово вправо Х)
Перемещение курсора на одно слово влевоХ)
Перемещение курсора в верхний левый угол экрана
Перемещение курсора в конец программной строки
Перемещение курсора к началу следующей зоны 2)
Удаление с экрана программной строки
Удаление последнего набранного символа
Удаление символа, соответствующего текущей позиции кур­

сора
То же, что и для CtrlK
Переход к режиму вставки символов в строку или в выход

из этого режима 3)
Очистка экрана и перемещение курсора в левый верхний

угол экрана
Удаление оставшейся части программной строки
Запоминание в памяти ПВМ всех изменений, внесенных

в текущую программную строку

*) Под «словом» здесь понимается символ или группа символов, начинающаяся с буквы или цифры. Пробелы, знаки препинания и специальные символы отделяют слова Друг от Друга.2) Строка на экране считается разбитой на зоны по 8 символов; первая зона начи­нается с первой позиции строки, вторая —с 9-й, третья —с 17-й и т. д.8) Все остальные приведенные здесь клавиши, кроме -^| и также осуществляют выход из режима вставки символов.
удаления символов можно воспользоваться клавишей Del или <4-
(рис. 4.4). Чтобы вставить в строку новые символы, следует нажать
клавишу Ins, набрать на клавиатуре вставляемые символы и вновь
нажать клавишу Ins (рис. 4.5).

Перечисленные выше операции изменяют лишь изображение стро­
ки на экране'. Если после исправления некоторых символов прямо
перейти с помощью клавиш f или (к новой строке, то внесенные из­
менения не введутся в память ПВМ и исправляемая программная
строка в действительности не изменится. Для того чтобы все исправ­
ления запоминались в ЗУ, необходимо, до того как курсор исчезнет
с редактируемой строки, нажать клавишу (в этот момент курсор,
находясь на исправленной строке, может занимать на ней любую
позицию).

Запуск программы 85

А Установить курсор непосредственно под
* заменяемым символом

В Набрать на клавиату ре правильные символы

Рис. 4.3. Замена символов в программной строке.

Неправильные номера программных строк
Номера, о которых начинаются все строки Бэйсик-программы,

очень важны, поскольку они определяют последовательность вы­
полнения команд программы. Неправильный ввод номеров строк
может привести к существенному изменению всей программы, а вос­
станавливать их в правильном виде довольно сложно. Поэтому надо
стараться вводить эти номера правильно с первого раза. Если ошиб­
ка все же произошла и программная строка была введена с непра­
вильным номером, то для корректировки необходимо сначала вы­
вести строку на экран и исправить ее номер описанным выше спо­
собом, после чего в памяти ПВМ будут находиться две копии одной
и той же программной строки: одна с правильным номером, а др у-

86 Глава 4

а Установить курсор под удаляемым символом

в Для удаления символа нажать клавишу Det,

с Нажать клавишу ч-*
Рис. 4.4. Удаление символов из программной строки.

гая с неправильным. Чтобы удалить строку с неправильным но­
мером, достаточно набрать на клавиатуре этот номер, а затем на­
жать клавишу 4-1.

Запись введенной с клавиатуры программы на диск

Программа может быть запущена сразу же после того, как она
без ошибок введена с клавиатуры, однако для дальнейшего исполь­
зования целесообразно все же скопировать ее на диск. Программу
можно записывать на диск и в процессе ее набора и корректировки
и делать это столько раз, сколько потребуется. Такое копирование

Запуск программы 87

А Установить курсор подтем символом, перед которым нужно
вставить новые символы; нажать клавишу Ins

в Надрать на клавиатуре вставляемые символы

с Нажать клавишу Ч-4
Рис. 4.5. Вставка символов в программную строку.

позволяет разбить работу по вводу и проверке программы на ряд
небольших этапов и сохранить результаты уже выполненной рабо­
ты в том случае, когда во время очередных действий программа, на­
ходящаяся в памяти ПВМ, будет случайно стерта.

Поскольку программа записывается на диск в виде файла, преж­
де всего необходимо выбрать имя для этого файла. При формирова­
нии имени следует руководствоваться правилами образования имен
файлов, описанными в гл. 3 (рис. 3.6). При этом можно не бес­
покоиться о том, какое взять окончание, поскольку система автома­
тически ставит в конце любого такого имени файла символы .BAS.

После определения имени файла надо установить правильно раз­

88 Глава 4

меченный дискет на имеющийся дисковод или выбрать винчестер­
ский диск, на котором есть свободное место. Затем следует нажать
клавишу F4, и на экране появится сообщение «SAVE». Далее необ­
ходимо набрать на клавиатуре идентификатор дисковода, выбранное
имя программного файла и нажать клавишу В течение несколь­
ких секунд будет происходить активация дисковода, и на это время
курсор исчезает с экрана. Затем он снова появится вместе с сообще­
нием “Ок”. Если произошел сбой и запись программы на диск не
завершилась, то на экран будет выдано соответствующее сообщение
об ошибке. В этом случае следует попробовать повторить запись про­
граммы, используя другой дискет, другой дисковод или новое имя
файла.

Загрузка программы с диска в память ПВМ
Записанную на диске программу можно переслать в память ПВМ

без выполнения. При этом загружаемая программа вытеснит из па­
мяти программу, находившуюся там до момента загрузки. Поэтому,
если текущую программу требуется сохранить, надо внимательно
следить за тем, чтобы перед загрузкой новой программы старая была
скопирована на диск или другой носитель.

Прежде всего следует проверить, установлен ли нужный дискет
на дисководе, воспользоваться им, а затем набрать на клавиатуре
идентификатор дисковода, имя программного файла и нажать кла­
вишу На несколько секунд, пока дисковод активизируется, кур­
сор исчезнет с экрана. Когда он появится вновь вместе с сообщени­
ем «Ок», это будет означать, что пересылка программы с диска за­
вершена. Если почему-либо программа не загрузилась, на экран бу­
дет выдано еще и сообщение об ошибке. В этом случае следует попы­
таться повторить загрузку, внимательно проверяя правильность
набора и используя другой дисковод или другую копию дискета.

Запуск введенной с клавиатуры программы
После ввода программы с клавиатуры или загрузки с диска ее

можно запустить на выполнение с помощью клавиши F2. После на­
жатия этой клавиши на экране появится слово «RUN», а за ним —
первое сообщение запускаемой прикладной программы. Можно по­
ступить иначе: записать программу на дискет, передать управление
системе ДОС ПВМ, а затем запускать программу как любую хра­
нящуюся на дискете прикладную программу. Для возврата управ­
ления системе ДОС ПВМ следует ввести с клавиатуры команду
SYSTEM.

Пример
Ок
system
А>

Г лава 5

ДОПОЛНИТЕЛЬНЫЕ СРЕДСТВА ДОС ПВМ

В данной главе рассматриваются различные модификации ранее описанных
команд, расширенные средства редактирования, а также возможные способы
комбинирования существующих системных команд для создания собственных
команд пользователя и методы организации автоматического выполнения любой
последовательности команд после запуска ДОС ПВМ

Соединение файлов

Несколько текстовых файлов могут быть объединены в один с по­
мощью команды СОРУ. Для этого задают в явном виде имена двух
или более исходных файлов, отделяя их друг от друга знаком плюс,
и имя результирующего файла.

Пример
А>сору chl.txt4-ch2.txt4-ch3.txt b.-book.txt

В результирующий файл сначала копируется содержимое пер­
вого исходного файла, непосредственно за ним — содержимое вто­
рого, затем — третьего и т. д. до тех пор, пока не будут скопированы
все исходные файлы. По завершении копирования на экране появ­
ляется сообщение “1 File(s) copied” («Создано файлов-копий 1»).

Идентификаторы дисководов как перед именами исходных фай­
лов, так и перед именем результирующего указывать не обязательно.
Если идентификатор дисковода в явном виде не задан, то выбирается
дисковод, принятый по умолчанию. Можно также опустить и имя
результирующего файла. Тогда в качестве результирующего файла
используется первый исходный файл и к нему присоединяются все
остальные исходные файлы.

Родовые имена файлов
Имена исходных и результирующего файлов, используемые в

команде СОРУ, могут быть родовыми.
Пример. Соединение всех файлов дисковода В с именами, имею­

щими расширение TXT, в один файл.
Результат этой операции записывается в файл BOOK.DOC, на­

ходящийся на носителе А:
А > copy b:*.txt book.doc

Х) В главе содержатся сведения, которые могут представлять интерес даже
для пользователей, которые предполагают при работе с ПВМ использовать только
готовые пакеты программного обеспечения.

90 Глава 5

После завершения копирования на экран дисплея выводится чис­
ло созданных результирующих файлов.

Используя родовые имена, можно с помощью всего лишь одной
команды COPY присоединить один файл сразу к нескольким дру­
гим.

Пример
А > copy *.doc+advert.txt b:*.txt

В этом примере к каждому файлу носителя А, имеющему расши­
рение имени ДОС, присоединяется файл ADVERT.TXT, и каждая
полученная в результате комбинация копируется на носитель В
в файл с расширением имени TXT.

Если на диске достаточно свободного места, то можно объеди­
нить в один все файлы одного и того же типа.

Пример
А > copy all.txt+*.txt

Здесь все файлы, имена которых оканчиваются на ТХТ, присое­
диняются к файлу ALL.TXT. Для выполнения подобной команды
необходимо, чтобы первый указанный в ней файл (в данном случае
файл с именем ALL.TXT) уже существовал.

Однако родовые имена файлов не всегда можно использовать при
объединении. Так, например, в случае команды COPY не допуска­
ется, чтобы заданное в явном виде имя результирующего файла
встречалось среди списка имен исходных файлов. Вместе с тем до­
вольно трудно предугадать, в какой момент такая ошибка будет вы­
явлена.

Пример
А>сору *.txt all.txt

По этой команде сначала предпринимается попытка произвести
те же действия, что и в предыдущем примере. Но если файл ALL.TXT
уже существовал, то в процессе выполнения команды произойдет
ошибка. Ошибка возникнет в тот момент, когда дойдет очередь до
копирования файла ALL.TXT (самого в себя), поскольку к этому
времени его содержимое могло измениться (с момента начала выпол­
нения команды). На экране появится сообщение “Content of desti­
nation lost before copy” («Содержимое копируемого файла потеряно»),
но действие команды на этом не завершится и продолжится копиро­
вание следующего файла. Полученный в результате файл ALL.TXT
будет содержать данные всех ТХТ-файлов, кроме своего собствен­
ного содержимого в исходном состоянии, т. е. до выполнения объе­
динения.

Ошибки могут возникать и тогда, когда родовые имена присвоены
и нескольким исходным файлам, и результирующему файлу .^Несмот­
ря на то что в руководстве фирмы IBM по дисковой операционной

Дополнительные средства ДОС ПВМ 91

системе “Disk Operating System", 2nd Ed, утверждается, что такая
комбинация допустима и не приводит к ошибкам, эксперименты сви­
детельствуют об обратном. Поэтому при наличии родовых имен у не­
скольких исходных файлов и у результирующего файла необходимо
следить за тем, чтобы перед выполнением объединения все участву­
ющие в этой операции файлы были скопированы. После выполнения
такого объединения следует проверить правильность полученного
файла результатов.

Вывод содержимого файла на экран дисплея

Содержимое любого файла можно вывести на экран с помощью
команды TYPE.

Пример
A>type b .’address, dat

Если файл находится на дисководе, принятом по умолчанию,
то идентификатор дисковода перед именем файла можно не указы­
вать. С помощью клавиши PrtSc, используемой совместно с клави­
шей Ctrl или можно выдать высвеченные на экране дисплея дан­
ные на печатающее устройство (гл. 4).

Указанный выше способ вывода данных применим только в слу­
чае файлов, содержащих текстовую информацию, как, например, при
символьной обработке, при работе с некоторыми файлами данных
или с фрагментами программных файлов. Это связано с тем, что
обычно программные команды хранятся на диске в сжатом виде:
каждая из них представлена специальным одно- или двухбайтовым
кодом. При выполнении команды ТУРЕ эти командные байты деко­
дируются так, как если бы они соответствовали обычным отдель­
ным символам, вследствие чего на экране появляются бессмыслен­
ные сочетания.

Сравнение файлов

Сравнение содержимого файлов осуществляется с помощью ко­
манды СОМР. Файлы при этом могут размещаться как на одном и том
же, так и на разных дисководах. Для выполнения сравнения снача­
ла следует набрать на клавиатуре командное слово СОМР и имена
обоих сравниваемых файлов.

Пример
A>comp brprogram.bas b.’program.bak

Если файл находится не на принятом по умолчанию дисководе,
то его имени обязательно должен предшествовать идентификатор
соответствующего дисковода. После набора указанной строки нуж­

92 Глава 5

но нажать клавишу в результате чего на экране дисплея по­
явится сообщение с требованием подготовить дискеты:
Insert diskette(s) with files to compare
and strike any key when ready

(Установите дискет(ы) co сравниваемыми файлами
и по готовности нажмите любую клавишу)

При выполнении команды сначала сравниваются размеры
файлов. Если они не совпадают, то операция сравнения на
этом завершается. В противном случае содержимое двух фай­
лов сравнивается байт за байтом (посимвольно). При успеш­
ном завершении сравнения выдается одно или более сообще­
ний. В случае выявления несоответствия выводятся данные о место­
положении несовпадающих байтов (относительно начала файла) и
сами несовпадающие значения. Заметим, что не столько важны эти
конкретные числа, сколько сам факт обнаружения ошибки. После
выявления более десяти несовпадений сравнение прекращается.

Пример. Протокол сравнения двух файлов.

Compare error at offset E
File 1 = 64
File 2 = 67
Compare error at offset 13
File I = 6B
File 2 = 65
Eof mark not found
Compare more files (Y/N)?__
(Ошибка сравнения при смещении Е
Файл 1 = 64
Файл 2 = 67
Ошибка сравнения при смещении 13
Файл 1 = 6В
Файл 2 = 65
Не обнаружен признак конца файла
Сравнивать следующие файлы (Да/Нет)?)

Сообщение “Eof mark not found” («Не обнаружен признак конца
файла») не обязательно указывает на ошибку. Оно является вполне
обычным сообщением при сравнении программных файлов, а также
нескольких файлов данных. Сообщение “Files compare ok” («Успеш­
ное сравнение файлов») означает, что по содержанию файлы иден­
тичны.

Если сравниваемые файлы имеют одинаковые имена, то они долж­
ны находиться на разных дисководах, и тогда имя второго файла
указывать не обязательно, достаточно задать лишь идентификатор
соответствующего этому файлу дисковода;

Дополнительные средства ДОС ПВМ 93

если же имена файлов различны, то они должны быть указаны в
явном виде для обоих файлов. В тех случаях, когда файл нахо­
дится не на дисководе, принятом по умолчанию, перед его именем
должен стоять идентификатор дисковода.

В команде СОМР допускается использование родовых имен фай­
лов, но в этом случае в сравнении будет участвовать только первый
файл из всех, имеющих заданное родовое имя. Другими словами,
одна команда СОМР может обеспечить сравнение содержимого
только двух файлов.

Установка даты и времени
Электронный часовой механизм, встроенный в ПВМ, фиксирует

время в часах, минутах, секундах и сотых долях секунды. Этот ме­
ханизм связан с механизмом смены даты. При невыключенной вы­
числительной машине часы работают непрерывно и в полночь про­
исходит смена числа, а при необходимости месяца и года. При пере­
загрузке ДОС ПВМ имеет место сброс счетчика времени и даты, и
в этом случае необходимо ввести их новые значения, которые затем
будут использоваться в дисковых справочниках.

При необходимости в любой момент можно проверить текущие
и установить новые значения даты и времени с помощью команд
DATE и TIME. Для этого достаточно просто набрать на клави­
атуре соответствующее командное слово (DATE или TIME) и на­
жать клавишу на экране дисплея появятся текущее значение
даты или времени и запрос их нового значения. Если нет необходи­
мости изменять текущее значение даты или времени, то в ответ на
этот запрос можно просто нажать клавишу <■*, не вводя никаких
данных.

Чтобы изменить дату, следует ввести новое название месяца, дня
недели и год, разделяя их дефисом или косой чертой. Для измене­
ния времени надо ввести новые значения часов, минут и секунд,
отделяя их друг от друга двоеточием. Секунды можно задавать как
в виде целых, так и в виде дробных чисел. При задании времени
разрешается опускать секунды или даже минуты и секунды, вводя
лишь новое значение часа. В этом случае опущенные величины уста­
навливаются равными нулю.

Пример. Использование команд DATE и TIME.
A>date
Current date is Sun 4-01-1984
Enter new date: 4/2/84
A>time
Current time is 10:43:38.70
Enter new time: 17:15

94 Глава 5

Во второй и пятой строках стоят текущие значения даты и вре­
мени соответственно, а в третьей и шестой — запросы новых зна­
чений даты и времени, а также ответы на эти запросы.

Копирование программ ДОС ПВМ

Не исключено, что для использования приобретенного пакета
прикладных программ потребуется система ДОС ПВМ, непреду­
смотренная в составе этого пакета. Тогда с помощью команды SYS
все программы ДОС ПВМ из памяти машины можно скопировать на
любой заданный дисковод.

Пример

A>sys b:

Идентификатор дисковода можно не указывать, если он соответ­
ствует дисководу, принятому по умолчанию. Команда SYS приме­
нима только для дискетов, размеченных с использованием опции
“/S”. Если же дискет не удовлетворяет этому условию, на экране дис­
плея появляется сообщение “No room for system on ^destination
disk” («На указаннОхМ диске нет места для операционной системы»)
и копирование ДОС ПВМ не производится.

Редактирование команд ДОС ПВМ

Несмотря на то что для ДОС ПВМ выполняется большинство
описанных в гл. 2 соглашений, касающихся клавиатуры, имеются
клавиши, которые в этой системе действуют не стандартным обра­
зом, а в соответствии с новыми определениями. Такими клавишами
являются группа клавиш с подсветкой, расположенных на клавиа­
туре справа, и клавиши малой двухрежимной клавиатуры в нециф­
ровом режиме. ДОС ПВМ связывает также специальные определе­
ния со всеми функциональными клавишами. Эти новые определения
облегчают вввод, изменение и повторный ввод команд ДОС ПВМ.

Высвечиваемые и хранимые команды

После нажатия клавиши «4-1, указывающей на завершение ввода
команды ДОС ПВМ, производятся два действия:
• во-первых, ДОС ПВМ выполняет команду, высвеченную на экра­
не дисплея;
• во-вторых, под управлением ДОС ПВМ эта команда копируется
с экрана в специально отведенный для этого участок динамической
памяти. Эта копия вводимой команды называется хранимой коман­
дой или командным шаблоном.

Дополнительные средства ДОС ПВМ 95

Указатель хранимой команды
В ДОС ПВМ для хранимых команд предусмотрен специальный

символьный указатель, играющий роль второго, невидимого, кур­
сора. В процессе набора команды на клавиатуре истинный курсор
перемещается по экрану дисплея вперед вдоль строки. В это же са­
мое время указатель продвигается вперед по символам хранимой
команды. Указатель и курсор можно перемещать независимо друг
от друга с помощью некоторых переопределенных клавиш. Кроме
того, хранимую команду можно вызывать на экран дисплея для ре­
дактирования и повторного выполнения.

Малая цифровая клавиатура
В ДОС ПВМ цифровая двухрежимная малая клавиатура не ис­

пользуется для управления курсором. Поэтому, если нажать кла­
вишу Num Lock, переводя малую клавиатуру (табл. 5.1) в нецифро­
вой режим, а затем нажать любую из клавиш Home, End, f, |,->
или ч-, то не следует ожидать привычного перемещения курсора

Таблица 5.1. Результаты операций на малой цифровой клавиатуре
(в нецифровом режиме) в системе ДОС ПВМ

Клавиша Воздействие на высвеченную на экране команду Воздействие на хранимую команду
ч— Возврат на одну позицию

влево — удаление крайнего
левого символа

Перемещение указателя на
один символ влево

Ins D

Вывод на экран следующего
символа хранимой команды

Перемещение указателя на
один символ вправо

Никакого воздействия; все
последующие набираемые
на клавиатуре символы
появляются на экране не­
зависимо от того, находит­
ся ли система в режиме
вставок или выведена из
него

Перевод системы в режим
вставок: при последующем
наборе на клавиатуре сим­
волов указатель не пере­
мещается.

Вывод из режима вставок:
при последующем наборе
на клавиатуре символов
происходит перемещение
указателя

Del Никакого воздействия Перемещение указателя на
один символ вправо

Все остальные кла­
виши малой кла­
виатуры

То же Никакого воздействия

О Если система находится в режиме вставок, то нажатие клавиши Ins выводит ее из этого режима. Если система—не в режиме вставок, то нажатие Ins переводит ее в этот режим,

96 Глава 5

по экрану. Клавиши Ins и Del работают при этом в соответ­
ствии с некоторыми новыми определениями, а нажатие любой из
остальных клавиш малой клавиатуры вообще не вызывает никаких
действий.

Функциональные клавиши

В ДОС ПВМ определяются семь из десяти функциональных кла­
виш (табл. 5.2), расположенных с левого края клавиатуры; осталь­
ные три просто не действуют. Покажем, как можно использовать для

Таблица 5.2. Назначение функциональных клавиш в системе ДОС ПВМ

Клавиша Функция
Fl Вывод на экран следующего символа хранимой команды; сдвиг

F2
вперед указателя хранимой команды

Ввод следующего набранного на клавиатуре символа; вывод на
экран сегмента хранимой команды, оканчивающегося непосредст­
венно перед первым вхождением этого символа (начиная с теку­

F3
F4

щего положения указателя)
Вывод на экран оставшейся части хранимой команды
Ввод следующего набранного на клавиатуре символа; пропуск

сегмента хранимой команды, оканчивающегося непосредственно
перед первым вхождением этого символа (начиная с текущего

F5
положения указателя)

Занесение высвеченной на экране команды в память —создание

F6
F7
F8
F9
F10

хранимой команды; сама команда при этом не выполняется
То же самое действие, чго и при наборе Ctrl | Z
То же самое действие, что и при наборе Ctrl | @
Не действует
То же

» »

редактирования клавиши F1-4-F5. Клавиши F6 и F7 можно также
использовать при работе с программами EDLIN и DEBUG, как это
описано в руководстве фирмы IBM по дисковой операционной систе­
ме “Disk Operating System”.

Повторное использование хранимой команды
Хранимую команду можно вызвать на экран дисплея с помощью

клавиши F1; при этом с каждым нажатием F1 на экран выдается один
символ.

Пример. Допустим, что заданная часть справочника была вы­
ведена только что с помощью команды
A>dir b:*.com

Дополнительные средства ДОС ПВМ 97

Рис. 5.1. Вывод на экран хранимой команды и удаление выведенной команды
с экрана.

Одновременно ее копия — хранимая команда — была занесена
в память. Если теперь нажать клавишу F1, то на экране появится
буква d (рис. 5.1. А). При нажатии клавиши F1 десять раз подряд
на экране вновь появится вся команда (рис. 5.1. В). После этого
можно нажать клавишу и повторно появившаяся на экране ко­
манда выполнится. Для исключения команды можно нажать кла­
вишу Esc. В последнем случае команда стирается лишь с экрана ди­
сплея, но не из памяти ПВМ, где она представлена в виде хранимой
команды; в памяти изменяется только положение указателя: он
снова устанавливается на начало команды (рис. 5.1. С).

В ДОС ПВМ клавиша -+ действует точно так же, как Е1, поэтому
ее тоже можно использовать для повторного вывода на экран хра­
нимой команды. Каждый раз при нажатии любой из этих клавиш
(F1 или ->) на экран дисплея выводится один символ хранимой ко­
манды и одновременно указатель хранимой команды сдвигается на
одну позицию вперед.

4 № 2275

98 Глава 5

Изменение хранимой команды

Высвеченную на экране команду можно изменить, набирая на
клавиатуре различные символы. При этом новые символы занимают
место старых, но только в команде, высвеченной на экране; хранимая
команда остается без изменения. Как и при нажатии клавиши F1
или при наборе отдельного символа указатель хранимой коман­
ды также перемещается вперед.

Пример. Ввод той же команды DIR, что и в предыдущем приме­
ре, но уже для дисковода А.

Для ввода команды надо четыре раза нажать клавишу ->■ (или
F1), в результате чего на экране дисплея появятся четыре первых
символа хранимой команды (рис. 5.2. А). Указатель хранимой ко­
манды при этом устанавливается на позицию символа В, обозначаю­
щего идентификатор дисковода. Затем следует набрать на клавиа­
туре новый идентификатор дисковода. При выполнении этой опе­
рации указатель хранимой команды продвинется на один символ
вперед, указывая на двоеточие (рис. 5.2. В). Для вызова на экран
оставшейся части хранимой команды можно шесть раз нажать клави­
шу F1. Однако существует более простой способ: достаточно один
раз нажать клавишу F3 и на экран выведется сразу вся оставшаяся
часть хранимой команды (рис. 5.2. С). Если затем нажать клавишу

то текущая высвеченная на экране команда занесется в память
и станет хранимой командой, а ДОС ПВМ начнет выводить заданный
фрагмент справочника дисковода А (рис. 5.2. D).

Пропуск символов хранимой команды

При нажатии клавиши Del происходит перемещение указателя
хранимой команды вперед без вывода символов команды на экран
дисплея. При этом осуществляется своеобразное удаление символов
из хранимой команды; в действительности символы не удаляются,
а только пропускаются указателем.

Пример. Использование клавиши Del для удаления из команды
DIR предыдущего примера идентификатора дисковода таким обра­
зом, чтобы команда выполнялась применительно к дисководу, при­
нятому по умолчанию.

Для этого сначала надо с помощью клавиш F1 или вызвать на
экран первые четыре символа хранимой команды (рис. 5.3. А). За­
тем следует нажать клавишу Del, в результате чего указатель хра­
нимой команды сдвинется вперед, а на экране не произойдет ника­
ких изменений (рис. 5.3. В). После этого следует с помощью клави­
ши F3 вызвать на экран оставшуюся часть хранимой команды (рис.
5.3. С) и нажать клавишу <■*, если высвеченную на экране команду
требуется выполнить, или Esc, если эту команду требуется удалить.

Дополнительные средства ДОС ПВМ 99

В Результат набора на
клавиатуре нового символа

dir b:*.com
Д
Указатель

Odir а:*.соя_

с результат однократного
нажатия клавиши W

dir Ь:*.соя
-

Указатель

A>dir a:*.com
COMMAND COM 4959 5-07-82 12:00p
FORMAT COM 3816 5-07-82 12:00p
CHKDSK COM 1720 5-07-82 12:00p
SYS COM 605 5-07-82 12:00p
DISKCOPY COM 2008 5-07-82 12:00p

D Результат нажатия
'клавиши. Указатель

Рис. 5.2. Вывод на экран и изменение хранимой команды.

Вывод на экран фрагментов хранимой команды
Предположим, что после выполнения команды, осуществляющей

копирование всех файлов, имена которых имеют расширение СОМ,
с носителя А на носитель В: t
А>сору a:*.com b:*.com

4*

100 Глава 5

Рис. 5.3. Пропуск символов хранимой команды.

требуется скопировать с дисковода А на дисковод В все файлы, име­
на которых имеют расширение BAS. Для этого хранимая команда
выводится на экран и редактируется с помощью клавиш F1 и F3.
Однако при таком способе копирования приходится нажимать кла­
вишу F1 14 раз. Частично избежать подобную утомительную опе­
рацию позволяет использование клавиши F2, так как при этом на
экран вводится целый фрагмент хранимой команды.

Для использования клавиши F2 необходимо определить в хра­
нимой команде ближайший символ, подлежащий изменению. В толь­
ко что рассмотренной ситуации таким символом является буква
«с». Если последовательно нажать клавишу F2 и клавишу с изобра­
жением буквы С, то на экран будут выведены все символы хранимой
команды до ближайшей буквы с (рис. 5.4. А). Затем следует наб­
рать на клавиатуре новое расширение имен исходных файлов (рис.
5.4. В) и еще раз нажать клавиши F2 и С для вывода на экран не­
изменяемого фрагмента хранимой команды до ближайшей буквы
с (рис. 5.4. С). После этого остается лишь набрать новое расширение

Дополнительные средства ДОС ПВМ 101

сору а;*,сот b:*.com

А Результат последовательного Указатель
нажатия клавиш F2 и с

Результат набора на клавиатуры Указатель

нового расширения имен исходны:
файлов

с Результат последовательного
нажатия клавиш F2 и о

D Результат набора на клавиатуре нового
расширения имен результирутших файлов

Рис. 5.4. Вывод на экран фрагментов хранимой команды.

для имен результирующих файлов (рис. 5.4. D). Если теперь нажать
клавишу 4й, то выполнится команда COPY, копирующая с диско­
вода А на дисковод В все файлы, имена которых имеют расширение
BAS, а высвеченная на экране команда будет занесена в память и
станет хранимой командой.

Отдельный фрагмент хранимой команды, выводимый на экран
с помощью клавиши F2, начинается с символа, соответствующего
текущему положению указателя, и оканчивается непосредственно
перед первым вхождением в хранимую команду символа, набранного

102 Глава 5

сразу после нажатия клавиши F2. При этом поиск первого вхож­
дения заданного символа начинается не с символа, соответствующе­
го текущему положению указателя, а со следующего за ним. Если
заданный символ не входит в команду (точнее, в ее часть, начинаю­
щуюся с текущего положения указателя), то на экран ничего не вы­
водится.

Вставка и замена фрагментов хранимой команды
Любой фрагмент хранимой команды может быть удален и заме­

нен на любое число других символов с помощью клавиш F4 и Ins.
Пример. Сравнение нескольких пар файлов, имена которых име­

ют одно и то же расширение.
Команда сравнения первой пары файлов может выглядеть так:

A>comp a:roosevelt.doc b:*.bak

Символ * означает, что при выполнении команды СОМР первый
файл с заданным в явном виде именем, находящийся на дисководе
А, будет сравниваться с файлом дисковода В, имеющим такое же
имя, но только с расширением ВАК, а не DOC.

Если после выполнения команды сравнения первой пары фай­
лов требуется сравнить файлы TRUMAN.DOC и TRUMAN.ВАК,
то для этого достаточно заменить в хранимой команде “roosevelt”
на “truman”, и команда для сравнения новой пары файлов будет го­
това. Такую замену можно осуществить следующим образом. Сна­
чала с помощью клавиш F2 и R следует вызвать на экран первый
фрагмент команды (рис. 5.5. А), чтобы удалить целиком прежнее имя
файла. Для этого надо нажать F4 и набрать на клавиатуре десятич­
ную точку, чтобы в хранимой команде были пропущены все символы,
начиная с текущего положения указателя и до ближайшей десятич­
ной точки (рис. 5.5. В). Затем следует нажать клавишу Ins, переводя
тем самым клавиатуру в режим вставки символов. После этого на
клавиатуре должно быть набрано новое имя файла, которое займет
соответствующее место в высвечиваемой на экране команде. При
этом ни сама хранимая команда, ни ее указатель не изменятся (рис.
5.5.С). Наконец, с помощью клавиши F3 надо вызвать на экран
оставшуюся часть хранимой команды (рис. 5.5.D). Если теперь на­
жать клавишу 4-», то будет производиться сравнение содержимого
новой пары файлов.

Клавиша F4 является как бы «усиленной» клавишей Del: если
с помощью Del можно пропустить в хранимой команде одиночный
символ, то с помощью F4 — сразу целый фрагмент хранимой коман­
ды. Этот фрагмент начинается с символа, соответствующего текуще­
му положению указателя, и кончается непосредственно перед первым
вхождением символа, введенного с клавиатуры сразу после нажатия

Дополнительные средства ДОС ПВМ 103

А Результат последователь- 'jKa3a-me’nb
кого нажатия клавиш F2 и R

comp a:roosevelt.doc b:*.bak

В Результат последовательного
нажатия клавиши. F4 а

ь.
Указатель

клавиши ♦

comp a:roosevelt.doc b:*.bak
-

С Результат нажатия клади- Указатель
ши Ins с последующим набором
на клавиатуре нового имени срайла

D Результат нажатия
клавиши F3

Рис. 5.5. Замена фрагмента хранимой команды.

Указатель

клавиши F4. При поиске первого вхождения заданного символа про­
смотр начинается не с символа, соответствующего текущему поло­
жению указателя, а со следующего за ним. Если заданный символ не
встречается среди символов хранимой команды (начиная с текущего
положения указателя), то указатель не сдвигается.

104 Глава 5

Нажатие клавиши Ins переводит систему ДОС ПВМ в режим
вставок или выводит ее из этого режима. Между режимом вставок
и обычным режимом ДОС ПВМ нет никакой видимой разницы, но
форма курсора не может изменяться так, как это имеет место при
вводе с клавиатуры Бэйсик-программ. В режиме вставок курсор,
как и обычно, продолжает перемещаться вперед по экрану по мере
набора на клавиатуре вводимого текста, однако указатель храни­
мой команды при этом остается на одном и том же месте. Вывод
из режима вставок производится с помощью любой из клавиш
Ins, Esc, Fl, F2, F3, F5 и

Запоминание команды без ее выполнения
Текущая высвеченная на экране дисплея команда заносится

в память, т. е. становится хранимой в результате нажатия клавиши
F5, но при этом команда не выполняется. На экране в позиции,
соответствующей текущему положению курсора, появляется сим­
вол @, указывающий на то, что пересылка команды в память ПВМ
завершилась, и курсор перемещается вниз к началу следующей
строки экрана. Если на экране не высвечено никакой команды, то
при нажатии в этот момент клавиши F5 производится стирание
хранимой команды.

Имена устройств

Некоторые команды ДОС ПВМ позволяют осуществлять обмен
информацией не только между дисковыми файлами, но и между
другими частями вычислительной системы, к числу которых отно­
сятся аппаратные средства последовательного действия, печатаю­
щее устройство, клавиатура и экран дисплея. Кроме того, сущест­
вует так называемое фиктивное устройство, которым можно поль­
зоваться при организации тестирования программ. Каждое устрой­
ство имеет стандартное имя, используемое точно так же, как и имя
любого дискового файла (табл. 5.3).

Наиболее часто имена устройств используются вместе с командой
COPY. Например, можно скопировать содержимое дискового файла
на экран дисплея с помощью команды, подобной следующей:
А > сору chap3a.doc con:

Заметим, что эта команда производит те же действия, что и команда
TYPE.

С помощью команды COPY можно также копировать данные с
клавиатуры в дисковый файл. Для этого достаточно в команде COPY
в качестве исходного «файла» указать устройство CON: (рис. 5.6.А).
Еслй нажать клавишу для выполнения такой команды, то курсор
переместится вниз к началу следующей строки экрана. Все, что

Дополнительные средства ДОС ПВМ 105

Таблица 5.3. Имена устройств

Имя устройства *) Устройство ввода Устройство вывода
AUX:2> Последовательное устройство Последовательное устройство
COME­ То же То же
CON: Клавиатура Экран дисплея
LPT1: Нет Основное печатающее устрой­

ство
NUL: Фиктивное устройство для Фиктивное устройство для

PRN:2>
организации тестирования организации тестирования

Нет Печатающее устройство

J) Двоеточие в конце имени устройства является необязательным.2) Имена устройств AUX: и PRN: нельзя использовать в команде MODE.
после этого момента набирается на клавиатуре, будет появляться
на экране и пересылаться в заданный дисковый файл (рис. 5.6. В).
Следует, однако, иметь в виду, что при нажатии клавиш в комбина­
ции Ctrl |Alt|Del и Ctrl (Scroll Lock никакого копирования не про­
изводится, а, как и обычно, происходит прерывание нормального
процесса обработки.

Завершить указанную операцию копирования и перевести кла­
виатуру снова в режим ввода команд можно, набирая на клавиатуре
специальную последовательность символов. Эту последователь­
ность легче всего сгенерировать, нажав сначала клавишу F6, а затем
4~\ в результате чего на экране сразу появятся символы AZ
(рис. 5.6. С). Следует, однако, иметь в виду, что эти символы приво­
дят к завершению копирования только в том случае, когда они появ­
ляются в самом начале экранной строки, т. е. набираются сразу же
после нажатия клавиши 4^- Правильность выполнения операции
копирования можно проверить визуально с помощью команды
TYPE (рис. 5.6. D).

Если при копировании с устройства CON: нажать клавишу
Esc, то на экране появится символ \ и уничтожится все, что было
набрано вслед за последним нажатием клавиши 4й- С помощью
клавиши 4* можно, оставаясь на текущей строке экрана, вернуться
на одну позицию влево, но это действие выполняется только для
символов, появившихся на экране после последнего нажатия кла­
виши 4-».

На клавиатуре нельзя набрать более 127 символов, не нажав
при этом хотя бы один раз клавишу 4“^ Если все же попытаться
продолжить набор после 127-го символа, то при нажатии клавиши
будет выдаваться звуковой сигнал, а на экране не появится ника-

106 Глава 5

А В качестве имени
первого файла на.
клавиатуре набрано
имя устройства con

А>сору con: othello.txt
0, beware, my lord, of jealousy!
It is the green-ey’d monster which doth
mock
The meat it feeds on*

в На клавиатуре наб­
ран текст, предназ­
наченный для копи­
рования

с Для завершения ко­
пирования нажима­
ют клавишу F6,zz.
затем клавишу+•

А>сору con: othello.txt
0, beware, my lord, of jealousy!
It is the green-ey’d monster which doth
mock
The meat it feeds on*

1 Filets) copied
Аг—

D Результат проверки
точности копии с
помощью команды ТУРЕ

A>type othello.txt
О, beware, my lord, of jealousy!
It is the green-ey’d monster which doth
nock.
The neat it feeds on*

Рис. 5.6. Копирование информации в дисковый файл непосредственно с кла­
виатуры.

ких новых символов. Для того чтобы продолжить набор, необходи­
мо нажать клавишу и начать новую строку экрана.

Набираемые на клавиатуре символы не пересылаются в дисковый
файл по одному, а накапливаются в специально отведенной для
них области динамической памяти, называемой буфером, до тех пор,
пока эта область не будет заполнена. Затем вся группа символов
пересылается на диск, а в буфере начинают накапливаться очеред­
ные набираемые на клавиатуре символы. Если для завершения опе­
рации копирования нажать клавишу F6, то вся заполненная к

Дополнительные средства ДОС ПВМ 107

этому моменту часть буфера (начиная с крайней левой позиции)
будет переписана на диск в качестве последних заносимых в файл
символов.

Пакетная обработка

Как и большинство малых вычислительных машин, ПВМ мгно­
венно реагирует на каждую введенную в нее команду. Поскольку
при этом происходит непрерывное взаимодействие вычислительной
машины с человеком, такой способ работы называется режимом
взаимодействия или интерактивной обработкой. Он удобен для
задач текстовой обработки, составления небольших коммерческих
отчетов или при выполнении персональных вычислений. Однако в
ряде случаев удобнее вводить в вычислительную машину сразу
целый пакет команд для того, чтобы впоследствии они автоматически
выполнялись одна за другой. Такой режим обработки, называемый
пакетным, предусмотрен в системе ДОС ПВМ.

Создание пакетного файла

Для работы в пакетном режиме прежде всего необходимо соз­
дать дисковый файл, содержащий предназначенную для выполне­
ния последовательность команд. Такие файлы называются пакет-

Рис. 5.7. Создание пакетного файла.

ными\ имя пакетного файла фактически играет роль новой команды,
которую пользователь определяет заранее в виде конкретной после­
довательности существующих команд.

Создать пакетный файл можно с помощью команды COPY. Для
этого достаточно организовать копирование с клавиатуры (устройст­
во с именем CON:) в пакетный файл. Каждую команду следует
набирать так, чтобы она начиналась с новой экранной строки,
а для завершения заполнения файла надо сначала нажать клавишу
F6, а потом На рис. 5.7 дан пример создания пакетного файла,
полезного для многих приложений. Этот файл обеспечивает копи­

108 Глава 5

рование информации дисковода А на дисковод В с последующим
сравнением в целях проверки точности выполненной копии.

Использование команды COPY является самым прямым способом
создания пакетного файла. Однако кроме него существуют и другие,
например текстовый процессор. (Необходимо иметь в виду, что
создаваемый при этом файл должен быть «недокументального» типа,
т. е. без какого-либо текстового форматирования.) Можно также
использовать предназначенный для ПВМ строковый редактор
EDLIN, описанный в руководстве фирмы IBM по дисковой опера­
ционной системе “Disk Operating System'". Для создания пакетного
файла можно даже написать специальную программу на Бэйсике или
на каком-нибудь другом языке программирования.

Выполнение команд пакетного файла

Для того чтобы начать выполнение последовательности команд,
содержащейся в некотором пакетном файле, необходимо набрать
на клавиатуре имя этого файла точно так же, как набиралась бы
любая команда ДОС ПВМ. В конце имени файла можно дать рас­
ширение ВАТ, хотя это. и не обязательно.

Пример. Инициирование пакетного файла COPYAB.BAT
(рис. 5.7). Осуществить эту операцию можно, например, так:

А > copyab

Если после этого нажать клавишу то на экране появится
следующий текст:
А > diskcopy а: Ь:
Insert source diskette in drive A
Insert target diskette in drive В
Strike any key when ready

(Во второй строке выведенного текста записано требование на
установку исходного дискета на дисковод А, в третьей строке —
требование на установку результирующего дискета на дисковод В,
а в четвертой — содержится указание нажать по готовности любую
клавишу.)

Несмотря на пакетный режим работы ДОС ПВМ, операция копи­
рования фактически начнет выполняться только в том случае, когда
пользователь произведет требуемые действия и нажмет какую-нибудь
клавишу. После завершения копирования на экране появится сооб­
щение: “Copy another? (Y/N)” («Копировать еще что-либо? (Да/Нет)».)
Для продолжения обработки необходимо ввести с клавиатуры ответ
на это сообщение, хотя все команды и поступают из пакетного
файла. При отрицательном ответе команды пакета продолжают вы­

Дополнительные средства ДОС ПВМ 109

полняться без последующего ввода с клавиатуры какой-либо допол­
нительной информации:

А > diskcomp а: Ь:
Insert first diskette in drive A
Insert second diskette in drive В
Strike any key when ready

(Во второй строке выведено требование установить первый
дискет на дисковод А, в третьей строке — требование установить
второй дискет на дисковод В, а в четвертой — указание нажать
по готовности любую клавишу.)

Пользователь опять-таки должен нажать какую-нибудь клави­
шу, указывая на то, что дискеты подготовлены к выполнению опе­
рации. После завершения сравнения на экране появится сообщение
ДОС ПВМ: “Compare more diskettes? (Y/N)” («Сравнивать другие
дискеты? (Да/Нет)».) В случае отрицательного ответа пользова­
теля выполнение последовательности команд пакетного файла
COPYAB.BAT завершится и на экране появятся символы

А>
А> —

Переменные пакетного файла

Команды, входящие в пакетный файл, могут содержать фиктив­
ные символы, которые заменяются на действительные с началом
пакетной обработки. Эти фиктивные символы называются перемен­
ными или параметрами. Каждая переменная состоит из двух сим­
волов, первым из которых всегда является знак процента (%),
а вторым — любая цифра от 0 до 9. Таким образом, в каждом па­
кетном файле может быть до десяти различных переменных: %0,
%1, %2 и т. д. Переменные можно использовать в любых командах
пакетного файла, а одна и та же переменная в одном и том же па­
кетном файле может использоваться многократно.

Пример. Пакетный файл для копирования одного файла в другой
и сравнения оригинала с копией.

Такой файл можно создать следующим образом:

А>сору con copycomp.bat
сору %1 % 2
comp %1 %2
AZ

1 File(s) copied

ПО Глава 5

Ни в одной из команд приведенного выше пакетного файла не
задаются в явном виде имеца файлов, участвующих в копировании.
Фактические имена файлов будут определены при инициализации
пакетного файла.

Пример
А > сорусошр а:accounts.dat Ь:

Указанную командную строку можно разделить на три части:
в первой части инициируется файл с именем COPYCOMP.BAT; вто­
рая и третья части определяют, на какие фактические символы
должны быть заменены переменные %1 и %2 в этом пакетном фай­
ле. Если нажать клавишу то начнут выполняться команды паке­
та и на экране появятся следующие сообщения:
А > copy a:accounts.dat b:

1 File(s) copied
А > comp a:accounts.dat b:
Insert diskette(s) with files to compare
and strike any key when ready
Files compare ok
Compare more files(Y/N)?
A>
A> —

(Во второй строке выведено сообщение об успешном завершении
копирования; в четвертой и пятой строках содержатся требование
установить дискеты со сравниваемыми файлами и указание нажать
по готовности любую клавишу; в шестой строке выдано сообщение
об успешном завершении сравнения двух файлов, а в седьмой —
запрос: «Нужно ли сравнивать другие файлы? (Да/Нет)». Символы
последних двух строк указывают на завершение операции.)

В приведенном выше примере процесса пакетной обработки
имена файлов достаточно ввести с клавиатуры только один раз.
Заметим, что в процессе обработки пользователю кроме этого при­
дется нажать еще две клавиши: одну — для выполнения операции
сравнения файлов, а другую — для завершения этой операции.

Каждой переменной пакетного файла соответствует определен­
ная группа символов в командной строке. Первая группа символов
всегда является именем самого пакетного файла (в группу вклю­
чается и стоящий перед собственно именем файла идентификатор
дисковода, если он есть), и она всегда подставляется вместо пере­
менной %0. Вторая группа символов подставляется в пакетном
файле вместо переменной % 1, и только вместо нее, третья — вместо
переменной % 2 и т. д.

Для некоторой группы символов может не найтись соответст­
вующей переменной в пакетном файле, и тогда такие символы
просто игнорируются. Например, если в пакетном файле нет пере­

Дополнительные средства ДОС ПВМ 111

менной % 0, то заданное в инициирующей его команде имя пакетного
файла не будет использоваться в качестве подставляемых символов.
Такая ситуация иллюстрируется предыдущим примером.

Вместе с тем может оказаться, что для некоторых переменных
пакетного файла в инициирующей командной строке нет соответ­
ствующих фактических символов. Тогда при выполнении команд
пакетного файла такие переменные игнорируются, что приводит к
непредсказуемым последствиям. В одних случаях возникают ошиб­
ки, в других пользователю предоставляется возможность вводить
недостающие символы в процессе выполнения команд пакета.

Пример
А > copycomp brbackup.bat
А > сору brbackup.bat

1 File(s) copied
А > comp b:backup.bat
Enter 2nd file name or drive id

(В третьей строке содержится сообщение об успешном завершении
копирования, а в пятой — требование на ввод имени второго файла
или идентификатора дисковода.)

Здесь в первой инициирующей выполнение пакета команде нет
символов, определяющих фактическое имя результирующего файла,
т. е. символов, которые можно было бы подставить вместо перемен­
ной %2. При выполнении команды COPY в качестве дисковода,
соответствующего результирующему файлу, используется принятый
по умолчанию дисковод А, и считается, что результирующий файл
имеет имя, одинаковое с исходным. Это может, однако, не соответ­
ствовать желанию пользователя. В отличие от COPY в команде
СОМР оба дисковода должны быть заданы в явном виде, поэтому в
момент выполнения команды СОМР процесс пакетной обработки
прерывается и выдается запрос на ввод с клавиатуры недостающего
идентификатора дисковода.

Если фактическое имя файла, которое должно использоваться
в командах пакета, содержит знак процента, то при задании этого
имени символ % надо набрать два раза. Например, для того чтобы
внутри пакетного файла использовалось имя файла ТАХ %.DAT,
на клавиатуре следует набрать ТАХ % %.DAT.

Вывод на экран комментариев
Команда ДОС ПВМ REM предназначена прежде всего для вы­

вода на экран комментария в процессе пакетной обработки. Если
первыми тремя символами в командной строке являются символы
REM (заглавные или обычные), то на экран выводится вся строка и
никаких других действий не производится. Например, добавив к
пакетному файлу COPYAB.BAT (рис. 5.7) комментарии, можно

112 Глава 5

А>сору con backup.bat
rem *********************************
rem * Используйте свой активный дискет *
rem * с защитой от несанкционированной *
rem * за писи в качестве "исходного, “ *
rem* Резервный дискет используйте в *
rem * качестве "результирующего." *
rem * Для ответа на любой вопрос или *
rem * наводящее сообщение нажмите *
rem * клави шу N. *

Л1
1 Fi le<s) copied

A>_

rem *********************************
copyab

Рис. 5.8. Команды REM в пакетном файле.

превратить его тем самым в общую процедуру копирования. Для
этого достаточно создать новый пакетный файл, содержащий ряд
команд REM для вывода на экран комментариев и в конце команду,
инициирующую выполнение существующего пакетного файла
COPYAB.BAT (рис. 5.8).

После командного слова REM должен стоять по крайней мере
один пробел; затем следует текст сообщения, которое может быть
пустым или содержать до 123 символов.

Организация пауз в ходе пакетной обработки
При выполнении многих команд ДОС ПВМ на экране появля­

ется сообщение типа “Strike any key when ready” («По готовности
нажмите любую клавишу»), и процесс выполнения приостанавли­
вается в ожидании от пользователя того или иного действия, в
данном случае нажатия клавиши пробела, клавиши 4-1 или какой-
нибудь другой. С помощью команды PAUSE пользователь может
включать в процесс пакетной обработки наряду с указанными
стандартными паузами и свои собственные. Например, в пакетном
файле COPYAB.BAT используются транзитные команды DISKCOPY
и DISKCOMP, и если на дисководе, принятом по умолчанию, нет
диска с командными файлами DISKCOPY.COM и DISKCOMP.COM,
то ДОС ПВМ не сможет выполнить эти команды. С помощью коман­
ды PAUSE на экран можно всегда выводить инструкции для уста­
новки нужного диска, и тогда в отсутствие требуемых файлов сооб­
щения об ошибках не появятся (рис. 5.9).

DISKCOPY.COM
DISKCOMP.COM

Дополнительные средства ДОС ПВМ НЗ

А>сору con a:copyab.bat
pause «Put DOS disk in default drive»
diskcopy a: b:
pause »Put DOS disk in default drive<<
diskcomp a: b:

1 File(s) copied
A>_

Рис. 5.9. Команды PAUSE в пакетном файле.

Пакетный файл AUTOEXEC

При загрузке ДОС ПВМ путем включения системного блока или
нажатия клавиш в комбинации Ctrl|Alt|Del система производит
поиск на диске А пакетного файла AUTOEXEC.BAT. Если этот файл
существует на указанном носителе, то первые команды для ДОС
ПВМ поступают из него, а не с клавиатуры. В этом случае система
выдает запрос на ввод даты и времени только тогда, когда в файл
AUTOEXEC.BAT включены соответствующие команды DATE и
TIME. Как и любой пакетный файл, AUTOEXEC.BAT может со­
держать любое количество допустимых команд ДОС ПВМ, рези­
дентных или транзитных, при этом последние требуют наличия со­
ответствующего командного файла.

Пример. Создание файла AUTOEXEC.BAT, такого, чтобы вся­
кий раз при загрузке ДОС ПВМ выводился запрос даты и времени и
производился сдвиг вправо изображения на экране дисплея на 2 сим­
вола.

А > copy con: autoexec.bat
date
time
mode ,r
mode ,r
AZ

1 File(s) copied
A> —

(В предпоследней строке выведено сообщение об успешном заверше­
нии копирования с клавиатуры в файл AUTOEXEC.BAT.)

114 Глава 5

При загрузке ДОС ПВМ на экране дисплея появятся следующие
сообщения:
А > date
Current date is Tue 1-01-1980
Enter new date: 2/12/84
A > time
Current time is 0:00:13.29
Enter new time: 16:15
A > mode ,r
A > mode ,r
A>
A> —

(Во второй строке выведено сообщение: «Текущая дата — втор­
ник, 1-01-1980», а в третьей содержатся требование на ввод новой
даты и ответ на этот запрос (2/12/84). Аналогично в пятой строке
выведено текущее время, а в шестой содержится запрос на ввод
нового значения времени и ответ на этот запрос.)

При выполнении каждой команды MODE, входящей в пакетный
файл, экран очищается и изображение сдвигается на 1 символ
вправо; при этом предполагается, что дисплей подсоединен к каналу
цветного монитора и графического дисплея.

Часть II

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ БЭЙСИК

Глава 6

ОСНОВНЫЕ ПОНЯТИЯ

В данной и последующих девяти главах рассматриваются вопросы програм­
мирования на языке Бэйсик для персональных вычислительных машин, связь
Бэйсика с другими языками программирования, описываются простейшие команд
ды вывода информации на экран дисплея, ввода данных с клавиатуры, а также
средства редактирования, позволяющие существенно упростить ввод программ
в вычислительную машину и исправление ошибок. Показано, как хранить про­
граммы на диске и как пользоваться такими программами.

Языки программирования

Чтобы решить ту или иную задачу с помощью вычислительной
машины, в последнюю необходимо ввести точные, четко сформули­
рованные инструкции или команды. Составление такой последо­
вательности команд, выполнив которые машина решит поставлен­
ную задачу, является целью программирования. Современные вы­
числительные машины не приспособлены для ввода команд, сформу­
лированных на естественном языке, например английском, испан­
ском, немецком или французском. Поэтому при работе с машиной
используют один из специальных языков программирования, главное
отличие которых от естественных языков состоит в строго фикси­
рованном грамматическом строе и крайне ограниченном количестве
используемых слов.

В основе языка ЭВМ лежит язык ее вычислительного устройст­
ва — микропроцессора. Команды такого машинного языка — это
последовательности нулей и единиц, которые представляются ком­
бинациями электрических импульсов. Машинный язык непосредст­
венно не используется — работать исключительно только с по­
следовательностями нулей и единиц слишком утомительно. Для
общения с машиной служат языки программирования, в какой-то
степени напоминающие естественные языки (обычно английский).
Программы, написанные на таких языках, транслируются в про­
граммы на машинном языке.

Языком программирования, наиболее близким к машинному
языку, является ассемблер, в котором допускается использование
вместо числовых кодов мнемонических имен и отдельных символов.

116 Глава 6

Однако команды ассемблера больше связаны с внутренней структу­
рой вычислительной машины и протекающими в ней процессами,
чем с характером решаемых на этой машине задач. Таким образом,
чтобы написать программу на ассемблере, нужно знать, как рабо­
тает вычислительная машина.

Значительно легче программировать на языках высокого уровня,
ориентированных не на внутреннее устройство вычислительной
машины, а на характер решаемых задач, например на языках Бэй-
сик, Кобол, Паскаль, Фортран. В любом из них каждая отдель­
ная команда соответствует целой последовательности команд ма­
шинного языка, в результате чего программы становятся короче и
нагляднее.

Синтаксис языка программирования и составление программ
Любой язык программирования основан на строгих правилах

употребления допустимых слов и символов при составлении ин­
струкций. Набор таких правил отдельного языка называется его
синтаксисом. Одни синтаксические правила достаточно просты
и легко запоминаются, другие более сложны и их приходится заучи­
вать наизусть. Так, например, почти во всех языках программиро­
вания операция сложения представляется привычным знаком плюс
(+), тогда как умножение записывается в виде звездочки (*), а
деление в виде косой черты (/), и это объясняется отсутствием на
клавиатуре привычных знаков умножения (X или-) и деления (:).

+++ Знание набора всех синтаксических правил отнюдь не явля­
ется достаточным условием для составления программы. Для
программирования необходимо еще уметь анализировать задачу,
разбивать ее на отдельные логические части, подбирать нужный
набор команд, обеспечивающий правильное выполнение каждой
части. Навык и умение программировать приобретаются с опытом,
причем одним программирование дается легче, другим — труднее.

Бэйсик

Это наиболее популярный язык высокого уровня, используемый
для работы на малых вычислительных машинах. Он универсален
(на нем можно программировать задачи, связанные с экономикой,
промышленностью, научными исследованиями, а также задачи,
возникающие в повседневной жизни) и в то же время довольно
прост и его легко выучить.

Основы Бэйсика были разработаны в 1964 г. в Дартмутском
колледже и оформлены в виде языка, удовлетворявшего скромные
потребности пользователей общей большой вычислительной систе­
мы. Первоначально при программировании на Бэйсике в качестве

Основные понятия 117

средств передачи данных использовались телетайпы, а не клавиату­
ра и экран дисплея. Кроме того, Бэйсик предоставлял очень огра­
ниченные возможности работы с накопителями на магнитных дисках
(НМД). В последующие годы язык развивался и совершенствовался
фирмами — производителями ЭВМ: в него были включены средства
графического вывода, работы с НМД и другими периферийными
устройствами. Из-за отсутствия единого стандарта на все эти
расширения языка каждая фирма изменяла язык по-своему. В ре­
зультате возникло много версий Бэйсика, часто несовместимых.
Так, программа, написанная на Бэйсике для вычислительных машин
фирм Apple и Radio Shack, могла оказаться непригодной для ПВМ.
Однако, зная хотя бы одну версию Бэйсика, легко запомнить осо­
бенности любой другой его версии.

Версии Бэйсика ПВМ
Для ПВМ используются три разновидности Бэйсика: кассет­

ный, дисковый (расширенный кассетный) и расширенный Бэйсик
(расширенный дисковый). Интерпретатор кассетного Бэйсика всегда
хранится в постоянной памяти ПВМ, что обеспечивает возможность
трансляции Бэйсик-программ на машинный язык сразу же после
включения машины. Интерпретаторы дискового Бэйсика и расши­
ренного Бэйсика необходимо загружать в динамическую память
перед началом трансляции программ. Большинство программистов
пользуются дисковым Бэйсиком или расширенным Бэйсиком, по­
скольку кассетный Бэйсик не предусматривает работу с НМД.

Указанные три версии Бэйсика ПВМ имеют много общего,
поэтому в дальнейшем будет описываться один язык — Бэйсик ПВМ,
конструкции которого входят в любую из трех версий, и только там,
где различия между версиями существенны, будут указаны осо­
бенности каждой версии.

Начало и окончание работы Бэйсик-интерпретатора

Для ввода и выполнения программы и отдельных команд Бэй­
сика необходимо передать управление ПВМ одному из трех ин­
терпретаторов. Для каждого интерпретатора эта процедура имеет
свои особенности.

Начало работы
Кассетный Бэйсик. Поскольку интерпретатор кассетного Бэй­

сика всегда находится в постоянной памяти, он готов к работе сразу
же, как только подано питание на системный блок. Для запуска
интерпретатора кассетного Бэйсика при включенном системном
блоке следует открыть крышку дисковода А, а затем привести вы-

П8 Глава 6

The IBM Personal*Computer Basic
Version C1.00 Copyright IBM Corp 1981
61404 Bytes free
Ok

В

The IBM Personal Computer Basic
Version D1.10 Copyright IBM Corp 1981
1982
38907 Bytes free
Ok

The IBM Personal Computer Basic
Version A1.10 Copyright IBM Corp 1981,
1982
33402 Bytes free
Ok

C
Рис. 6.1. Идентификационные сообщения Бэйсика ПВМ.А — кассетный Бэйсик. Приведенное на экране сообщение имеет следующее содержание; «Бэйсик ПВМ фирмы IBM. Версия С1.00, 1981 г. Свободная память 61404 байт». В — диско­вый Бэйсик. Приведенное на экране сообщение имеет следующее содержание: «Бэйсик ПВМ фирмы IBM. Версия 01.10, 1981—1982 гг. Свободная память 38907 байт». С — расширенный Бэйсик. Приведенное на экране сообщение имеет следующее содержание: «Бэйсик ПВМ фирмы IBM. Версия А1.10, 1981 —1982 гг. Свободная память 33402 байт».
числительную машину в исходное состояние нажатием комбинации
клавиш Ctrl|Alt|Del. В результате экран дисплея очистится и кур­
сор займет исходное положение на экране. В течение 5 с дисковод
А будет быстро разгоняться, а затем остановится, поскольку его
крышка открыта. Приблизительно через 10 с после этого появится
идентификационное сообщение для кассетного Бэйсика (рис. 6.1).

Основные понятия 119

Включение системного блока в отсутствие накопителей на дис­
кетах или при открытых крышках дисководов также приводит
к запуску интерпретатора кассетного Бэйсика. При подключении
питания выполняется специальный системный тест, и поэтому
идентификационное сообщение появляется не так быстро: для этого
требуется время от 30 с до 2 мин в зависимости от объема дина­
мической памяти конкретной ПВМ.

Если дисковод А — типа Винчестер, то перед запуском кассет­
ного Бэйсика его необходимо выключить. В тех случаях, когда этого
сделать нельзя, вместо кассетного Бэйсика следует использовать дис­
ковый или расширенный Бэйсик.

Дисковый Бэйсик и расширенный Бэйсик. Для запуска как
интерпретатора дискового Бэйсика, так и интерпретатора расши­
ренного Бэйсика необходима ДОС ПВМ. Поэтому прежде всего
надо произвести загрузку этой системы (гл. 3). Интерпретатор
дискового Бэйсика находится в файле BASIC.COM, а расширен­
ного — в файле BASICA.COM. Для запуска любого из этих ин­
терпретаторов следует набрать имя соответствующего файла без
конечного слога СОМ и нажать клавишу Если нужный файл
размещается не на том дисководе, который идентифицируется по
умолчанию, то перед именем файла необходимо набрать идентифи­
катор соответствующего ему дисковода.

Пример. Если принятым по умолчанию является дисковод В,
а файл с интерпретатором расширенного Бэйсика находится на
дисководе А, то запуск производится с помощью следующей коман­
ды:
В > a:basica

Не более чем через 5 с произойдет сброс экрана и появится
идентификационное сообщение (рис. 6.1).

Окончание работы

Закончить работу любого из трех интерпретаторов можно путем
выключения системного блока. Пр и этом следует соблюдать осторож­
ность, чтобы не отключить питание в момент выполнения какой-
либо команды или программы. Для завершения работы интерпрета­
торов дискового и расширенного Бэйсика можно также использо­
вать команду SYSTEM, которая передает управление операцион­
ной системе ДОС ПВМ.

Пример
Ок
system ।
А> —

BASIC.COM
BASICA.COM

120 Глава 6

Появление на экране символов А > говорит о том, что вновь
произошла передача управления операционной системе ДОС ПВМ.
Все Бэйсик-программы, с которыми мы работали до выполнения ко­
манды SYSTEM, после ее выполнения удаляются из динамической
памяти. Эти программы не восстанавливаются, даже если впослед­
ствии вновь запустить один из Бэйсик-интерпретаторов.

Режимы обработки

Режим немедленной обработки
Сообщение “Ок”, появляющееся на экране дисплея в конце

идентификационного сообщения, означает, что интерпретатор готов
обрабатывать команды Бэйсика. После этого можно работать в так
называемом режиме немедленной обработки или прямого общения,
поскольку при таком режиме каждая введенная в машину команда
выполняется сразу.

Пример
Ок
print “Стремитесь к простоте программ.”

После набора этой команды на клавиатуре и нажатия клавиши
на экране появится фраза

Стремитесь к простоте программ.
Ок

Таким образом, по указанной команде машина вывела на экран
сообщение, которое было заключено в кавычки. Появившееся
после этого сообщение Ок (над курсором) свидетельствует о готов­
ности интерпретатора принять следующую команду.

Рассмотренный выше пример показывает, как с помощью опе­
ратора PRINT на экране отображается сообщение. Такое сообщение
может быть совсем коротким, а может быть и длинным.

Пример
Ок
print “Прежде чем начать программировать,
разработайте блок-схему программы”.
Прежде чем начать программировать,
разработайте блок-схему программы.
Ок

В данном примере используется дисплей, ширина экрана кото­
рого равна 40&символам. Заметим, что теперь команда PRINT
располагается на двух строках; такой автоматический пере­

Основные понятия 121

нос выполняется всегда, когда команда не умещается в одной
строке экрана. Нажимать клавишу •ф'следует только по окончании
набора всей команды. Отдельный оператор Бэйсика ПВМ может
включать в себя до 255 символов: если эта граница нарушается,
интерпрератор игнорирует все символы, следующие за 255-м.

Оператор PRINT может также выполнять арифметические дей­
ствия и полученные результаты выводить на экран.

Пример
Ок
print 169/13+87
100
Ок
print 82*14—91
1057
Ок

Заметим, что ни в одном из операторов данного примера не ис­
пользовались кавычки, поскольку все, что в операторе PRINT
заключено в кавычки, выводится дословно, без изменений. Срав­
ним, например, второй оператор PRINT предыдущего примера со
следующим:
Ок
print “82*14—91”
82*14—91
Ок

Сообщения об ошибках

Вводя с клавиатуры ту или иную команду, можно ошибиться и
набрать не те буквы или допустить какую-то синтаксическую ошиб­
ку. В этом случае команда выполняться не будет и появится сооб­
щение об ошибке.

Пример

Ок
prnt 430*22
Syntax error
Ok

Сообщение “Syntax error” («Синтаксическая ошибка») говорит
о том, что интерпретатор не может определить, какую команду
следует выполнить, т. е. вводимый текст содержит ошибку. Иногда
интерпретатор идентифицирует тип допущенной ошибки. Например,

122 Глава 6

если в арифметическом выражении вместо числовой переменной или
константы встретилось строковое значение, то будет указано, что
допущена ошибка, связанная с несоответствием типов данных: на
экране появится сообщение «Туре mismatch» («Несоответствие
типов»).

Пример
Ок
print “единица” /2
Type mismatch
Ок

Не всякая ошибка, допущенная при вводе команды, является
синтаксической. Предположим, что надо умножить 555 на 33.
Набирая команду, можно случайно вместо знака умножения нажать
клавишу со знаком сложения:
Ок
Print 555+33
588
Ок

Хотя введенная команда не дает нужного результата (не вычис­
ляет произведения двух чисел), вид ее вполне допустим и интерпре­
татор не будет запрашивать повторного ввода.

В любом случае, если допущена какая-то ошибка, пусть да­
же не сопровождаемая выдачей сообщения, следует внимательно
проверить введенную команду и, выявив ошибку, произвести повтор­
ный ввод, но на этот раз более внимательно.

Программируемый режим

Вместо того чтобы вводить команды в режиме немедленного
исполнения, можно составить из них программу, которая будет
выполняться позже в нужный момент. Такой способ работы с ПВМ
называется программируемым режимом, режимом отсроченной об­
работки или режимом непрямого общения. В режиме отсроченной
обработки команды обычно называются операторами, хотя часто
оба термина употребляются как синонимы. Это связано с тем,
что большинство команд режима немедленной обработки можно ис­
пользовать в качестве операторов режима отсроченной обработки и
наоборот. Однако есть такие команды, которые работают только в
режиме немедленной обработки, и такие операторы, которые выпол­
няются только в программируемом режиме. Описание всех команд и
операторов Бэйсика приведено в приложении А.

Основные понятия 123

Номер строки программы
Характерной чертой программируемого режима является при­

писывание оператору номера строки, в которой он стоит. Номером
строки может быть любое число от 0 до 65529; оно ставится перед
оператором.

Пример
Ок
10 print “Старайтесь не делать ошибок.”

Выполнение программы
При вводе строки, начинающейся с номера, операторы, содержа­
щиеся в этой строке, сначала помещаются в динамическую память.
Поскольку при этом машиной не обрабатывается никакая явная
команда, сообщение “Ок” на экране не появляется, хотя система
находится в состоянии готовности к приему новой команды или
строки программы.

Программа обычно состоит из нескольких строк, каждая из
которых имеет свой уникальный номер. Всякий раз, набрав на
клавиатуре новую строку, следует нажать клавишу указывая
тем самым, что строка закончена. После этого новая строка поступает
в динамическую память и добавляется к уже хранящимся там стро­
кам программы. Для выполнения всей программы вводят команду
RUN. Порядок, в котором выполняются строки программы, опре­
деляется номерами строк.

Пример. В приводимом ниже фрагменте программы сначала вво­
дятся две строки, которые добавляются к строке предыдущего
примера, а затем выполняются все три строки.
Ок
20 print “Это требует внимания,
30 print “но экономит время.”
run
Старайтесь не делать ошибок.
Это требует внимания,
но экономит время.
Ок

Команда RUN в ее простейшей форме (в виде одного командного
слова) инициирует выполнение программы, начиная со строки с
наименьшим номером. Существует, однако, модификация команды
RUN, позволяющая запускать программу с любой другой строки:
для этого после командного слова RUN указывается номер строки, с
которой надо начать выполнение программы.

124 Глава 6

Пример. Пусть в памяти машины по-прежнему хранятся три
строки, введенные в предыдущем примере. Покажем, как можно
начать выполнение этой программы со второй строки:
Ок
run 20
Это требует внимания,
но экономит время.
Ок

После выполнения всех строк программы ПВМ вновь переходит
в режим немедленной обработки, однако программу можно оста­
новить и раньше с помощью оператора STOP. Если в ходе прогона
программы в некоторой строке встретится оператор STOP, то вы­
полнение программы прекращается, выводится сообщение, указы­
вающее точку останова, и система переходит в режим немедленной
обработки.

Пример. В приведенную выше программу вначале вставляется
промежуточный оператор STOP, и затем осуществляется прогон
модифицированной программы.
Ок
25 stop
run
Старайтесь не делать ошибок.
Это требует внимания,
Break in 25
Ok

Сообщение “Break in 25” означает, что программа остановилась
на строке с номером 25; ее выполнение можно продолжить с по­
мощью команды CONT.

Пример
Ок
cont
но экономит время.
Ок

Оператор END также прерывает выполнение программы, но
в отличие от оператора STOP после выполнения END не выводится
сообщение о номере последней выполненной строки. В некоторых
случаях можно повторно начать прерванное оператором END вы­
полнение программы с помощью команды CONT.

Прервать выполнение программы можно также одновременным
нажатием клавиш Ctrl и Scroll Lock. При этом, как и при исполь­

Основные понятия 125

зовании оператора STOP, на экране появится сообщение о номере
последней выполненной строки, а выполнение программы можно
будет продолжить с помощью команды CONT.

Ввод операторов языка Бэйсик

Команды с клавиатуры выполняются машиной правильно только
при их безошибочном вводе. Ввод операторов, имеющих довольно
простой вид и состоящих из одного лишь командного слова, не
вызывает никаких трудностей. Однако большинство операторов
содержит несколько компонент. При использовании таких опера­
торов необходимо знать правила их применения и следить за тем,
чтобы в них присутствовали все обязательные компоненты, в нуж­
ном порядке и разделенные соответствующими знаками препинания
или должным числом пробелов.

Бэйсик-интерпретатор программ игнорирует все пробелы между
номером строки и началом команды. Аналогично не учитывается и
большинство остальных пробелов (хотя и не все). В некоторых
ситуациях наличие или, наоборот, отсутствие пробела может при­
вести к изменению функций команды.
♦♦♦ При работе с ПВМ используйте примеры, помещенные в
этой книге и других источниках, как учебные модели. Будьте осо­
бенно внимательны при появлении новых комбинаций операторов,
поскольку в этом случае ошибка может проявиться не в момент
ввода неверного оператора, а позднее, при прогоне программы,
частью которой он является.

При задании командных слов разрешается использовать как
прописные, так и строчные буквы в любом сочетании. Все буквы
после ввода преобразуются интерпретатором в прописные, но
такое преобразование осуществляется не для всех компонент опе­
раторов. Так, предыдущие примеры этой главы показывают, что
символы, заключенные в кавычки в операторе PRINT, всегда выво­
дятся на экран без изменения.

Управление длиной строки дисплея

Ширина изображений на экране может быть запрограммирована
либо на 40 либо на 80 символов в строке с помощью команд
WIDTH 40 и WIDTH 80 соответственно. Если в качестве дисплея
используется обычный телевизор или цветной видеомонитор, то
использовать команду WIDTH 80, как правило, не рекомендуется:
изображение символов может оказаться очень нечетким и потому
неудобным для чтения.

126 Глава 6

Длинные команды и строки программы
Несколько следующих друг за другом команд режима немедлен­

ной обработки или операторов программируемого режима можно
помещать на одной строке. При этом команды или операторы одной
строки отделяются друг от друга двоеточием.

Пример
Ок
10 print “один” iprint “два” .-print “три”

Здесь в одной строке записано три оператора; в общем случае их
может быть и больше. Максимально допустимое число символов в
одной строке как для программируемого режима, так и для режима
немедленной обработки равно 255. Длинная строка может занимать
до семи 40-символьных или четырех 80-символьных дисплейных
строк. При вводе длинной строки клавишу 4-J нажимают всего лишь
один раз после набора последнего оператора или последней команды
данной строки.

+++ Возможно, что изображения выведенных на экран дисплея
строк в приведенных примерах будут выглядеть несколько иначе при
наборе и вводе тех же самых команд в другую ПВМ. Это связано с
тем, что реальный интерпретатор при выводе длинной строки на
дисплей неизменно «обрубает» ее на 40-м (или 80-м) символе, даже
если перенос приходится на середину некоторого слова (в наших
примерах этого не делается).

Использование сокращенных имен команд

Для набора 10 наиболее часто употребляемых команд в Бэйсике
ПВМ предусмотрены специальные функциональные клавиши, обес­
печивающие ускоренный ввод этих команд. Например, если нажать
Таблица 6.1. Стандартное назначение функциональных клавиш
при программировании на Бэйсике

Клавиша Определение Клавиша Определение
F1 LIST F6 ,“LPT1:” n
F2 RUN1) F7 TRON1)
F3 LOAD” F8 TROFF x>
F4 SAVE” F9 KEY
F5 CONT1) F10 SCREEN 0,0,0!)

*) Включая нажатие клавиши

Основные понятия 127

клавишу F2, это вызовет тот же эффект, что и набор команды RUN
с последующим нажатием клавиши При этом в нижней строке
экрана высвечиваются команды, соответствующие используемым
функциональным клавишам, назначение которых не установлено
раз и навсегда. В гл. 11 будет показано, как можно изменять назна­
чение этих клавиш программным способом.

При работе в режиме немедленной обработки действует сле­
дующее постоянное соглашение о быстром вводе некоторых команд:
одновременное нажатие клавиши Alt и одной из 26 буквенных
клавиш инициирует ввод заранее оговоренного командного слова,
начинающегося с буквы, изображенной на буквенной клавише.

Пример, При нажатии двух клавиш в комбинации Alt|P вво­
дится командное слово PRINT. Командные слова, которые можно
вводить таким способом, перечислены в табл. 6.2.

Таблица 6.2. Командные слова, вводимые с помощью клавиши Alt

Клавиша Команда Клавиша Команда Клавиша Команда
А AUTO J J R RUN
В BSAVE К KEY S SCREEN
С COLOR L LOCATE T THEN
D DELETE M MOTOR U USING
Е ELSE N NEXT V VAL
F FOR О OPEN W WIDTH
G GOTO P PRINT X XOR
Н HEX$ Q Q Y Y
I INPUT Z Z

Для ускорения ввода в большинстве версий Бэйсика, включая
Бэйсик ПВМ, разрешается замена командного слова PRINT вопро­
сительным знаком. При обнаружении знака вопроса на месте
командного слова интерпретатор всюду подставляет вместо него
полное имя PRINT.

Инициирование печатающего устройства
Если одновременно нажать клавиши и PrtSc, то вся информа­

ция, высвеченная в этот момент на экране, будет распечатана на
печатающем устройстве точно так же, как в ДОС ПВМ. Однако
комбинация клавиш Ctrl|Prt Sc, которая также активизировала пе­
чатающее устройство в ДОС ПВМ, при работе с Бэйсиком не оказы­
вает на это устройство никакого влияния. Обычно в Бэйсике пре­
дусматривается использование параллельного печатающего устрой­
ства, но это соглашение можно изменить с помощью команды MODE
в ДОС ПВМ (гл. 3).

128 Глава 6

Комментарии к программе
Иногда можно легко понять, какое действие произведет тот или

иной оператор Бэйсика, прочитав соответствующий ему текст.
Однако такое возможно далеко не всегда, особенно если речь идет о
программе, с которой некоторое время не работали. Для того чтобы
понять, что делается в программе, в нее обычно включают операто­
ры REM, содержащие замечания или комментарии, описывающие
действия операторов.

Операторы REM не оказывают никакого влияния на ход вы­
полнения программы; единственное их назначение — сделать про­
грамму более ясной и понятной. Весь текст строки программы,
следующий за командным словом REM, воспринимается интерпре­
татором как некоторое пояснительное замечание. Поэтому, если
комментарий является частью строки, содержащей несколько опе­
раторов, соответствующий оператор REM должен быть последним
оператором данной строки.

Вместо командного слова REM допустимо ставить просто кавыч­
ку; интерпрератор воспринимает кавычку как сокращение для REM.
Если комментарий стоит в конце строки, содержащей несколько опе­
раторов, а вместо слова REM используется кавычка, то двоеточие
перед кавычкой не ставится.

Пример. Использование в программе комментария.
Ок
10 rem вывести температуру кипения воды
20 ' для различных температурных шкал
30 print 212 'по Фаренгейту
40 print 100 'по Цельсию
50 print 80:rem по Реомюру

Редактирование операторов Бэйсика

В Бэйсике ПВМ предусмотрены средства редактирования,
с помощью которых можно исправлять либо модифицировать любые
команды режима немедленной обработки или строки программ ре­
жима отсроченной обработки, пока они видны на экране. Подробно
средства редактирования, включая команду EDIT, клавиши редак­
тирования и перемещения курсора, описаны в гл. 4.

Вывод строк программ на экран
После заполнения последней строки экрана изображение сдви­

гается вверх, и таким образом самые верхние строки исчезают. Как
только команда режима немедленной обработки исчезла с экрана,
её дальнейшее редактирование становится невозможным. При

Основные понятия 129

программируемом режиме дело обстоит иначе, так как исчезнувшие
строки можно повторно вывести на экран. Для этого предназначена
команда LIST, позволяющая выдавать на экран как всю программу,
находящуюся в данный момент в памяти машины, так и отдельные ее
части.

Пример. Использование команды LIST (предполагается, что в
памяти машины хранится программа предыдущего примера).

list
10 REM вывести температуру кипения воды
20 ' для различных температурных шкал
30 PRINT 212 'по Фаренгейту
40 PRINT 100 'по Цельсию
50 PRINT 80:REM по РеомюруОк

Заметим, что при повторном выводе программы на экран все
командные слова состоят из прописных букв (в данном случае —
это слова REM и PRINT).

Если программа занимает в памяти более 22 дисплейных строк,
она не умещается на экране полностью. С помощью команды LIST
(в простейшем ее виде) можно “прогонять” программу через экран:
каждый раз при его заполнении все изображение сдвигается на стро­
ку вверх, а освобожденная нижняя строка занимается очередными
операторами программы. Для того чтобы в нужный момент оста­
новить такое продвижение, следует одновременно нажать клавиши
Ctrl | Num Lock. Вывод строк программы можно прервать с помощью
комбинации клавиш CtrljScroll Lock. Кроме того, в самой команде
LIST можно указать диапазон номеров строк, которые нужно вы­
вести.

Пример

list 10—20
10 REM вывести температуру кипения воды
20 ' для различных температурных шкалОк
List 40 —
40 PRINT 100 'по Цельсию
50 PRINT 80.-REM по РеомюруОк
list —30
10 REM вывести температуру кипения воды
20 ' для различных температурных шкал
30 PRINT 212 'по Фаренгейту
list 10

5 № 2275

130 Глава Ь

10 REM вывести температуру кипения воды
Ок

В данном примере показаны четыре варианта команды LIST.
В первом из них диапазон выводимых строк задан в явном виде с
помощью номеров первой и последней строк. Во втором варианте
команды LIST в явном виде задан номер первой выводимой строки;
при выполнении такой команды выводятся все строки программы от
заданной до последней. При выполнении третьей разновидности
команды LIST на экран выдаются строки программы, начиная с пер­
вой и кончая строкой с номером, указанным явно в этой команде.
С помощью команды четвертого вида выводится одна строка с за­
данным в ней номером.

В любом варианте оператора LIST вместо явного номера строки
можно поставить точку. При выполнении такой команды интерпре­
татор LIST заменяет точку на номер последней выведенной строки.

Пример
list 40
40 PRINT 100 'по Цельсию
Ок
list .—
40 PRINT 100 'по Цельсию
50 PRINT 80:REM по Реомюру
Ок
list .
50 PRINT 80:REM по Реомюру
Ок

Аналогичным образом строки программы можно выводить на
печатающее устройство. Для этого предназначена специальная ко­
манда LLIST. Способы задания выводимых строк в ней остаются
теми же.

Замена и добавление строк программы

Заменить существующую строку программы на новую очень
легко: для этого надо набрать на клавиатуре новую строку с тем
же самым номером, что и у старой (заменяемой), и нажать клавишу

Если между двумя существующими строками Бэйсик-программы
требуется вставить новую строку, надо приписать этой новой строке
номер в промежутке между номерами смежных с ней строк. После
нажатия клавиши новая строка попадет в память и интерпре­
татор автоматически поместит ее на нужное место.

Основные понятия 131

Принципиальная трудность возникает лишь в том случае, когда
номера строк программы так тесно следуют друг за другом, что не­
возможно найти число в интервале между номерами двух соседних
строк. Во избежание подобной ситуации следует при первоначаль­
ном написании программы присваивать последовательным строкам
номера, отличающиеся друг от друга на 10. При необходимости
можно также заново перенумеровать строки.

Исключение строк и удаление программы из памяти машины

Одну строку программы можно удалить, набрав ее номер и нажав
клавишу <-«. Если же воспользоваться командой DELETE, то мож­
но удалить как одну, так и сразу несколько строк. Формат этой
команды похож на формат команды LIST, в чем можно убедиться на
приводимых ниже примерах.

list 20
20 ' для различных температурных шкал
Ок
delete .Ок
list 10—30
10 REM вывести температуру кипения воды
30 PRINT 212 'по Фаренгейту Ок
delete 30—50 Ок
list
10 REM вывести температуру кипения водыОк

Отличие формата команды DELETE от формата команды LIST
состоит в следующем. При задании диапазона выводимых на экран
строк в команде DELETE необходимо в явном виде указать как
номер первой строки диапазона, так и номер последней строки
(в случае LIST можно было задавать только один из этих номеров).
Таким образом, нельзя исключить все строки программы, начиная
с первой и кончая строкой с заданным номером, просто опустив
первый номер строки в команде DELETE. Точно так же невозмож­
но удалить и все строки, идущие за первым указанным номером,
опустив в команде DELETE второй нохмер строки, поскольку но­
мера строк, сообщаемые в команде DELETE, должны быть явными
номерами существующих строк программы; в противном случае
команда DELETE выполняться не будет, и появится сообщение
“Illegal function call” («Недопустимый вызов функции»).
5*

132 Глава 6

Для удаления из памяти сразу всех строк программы предусмот­
рена команда NEW. Эта операция должна выполняться всякий раз
перед вводом очередной программы, иначе ее строки перемешаются
со строками старой программы.

Изменение нумерации программных строк
С помощью команды RENUM можно заново перенумеровывать

строки. Эта команда позволяет присваивать новые номера одного
порядка целому блоку программных строк, начиная со строки с
заданным номером и кончая последней строкой, находящейся в
памяти. При использовании команды RENUM помимо заменяе­
мого задаются также первый (наименьший) новый номер строки и
приращение— разность между двумя соседними новыми номерами.

Пример
list
10 REM вывести температуру кипения воды
20 ' для различных температурных шкал
30 PRINT 212 'по Фаренгейту
40 PRINT 100 'по Цельсию
50 PRINT 80:REM по РеомюруОк
renum 35,30,5Ок
list
10 REM вывести температуру кипения воды
20 ' для различных температурных шкал
35 PRINT 212 'по Фаренгейту
40 PRINT 100 'по Цельсию
45 PRINT 80:REM по РеомюруОк

При выполнении команды RENUM в этом примере перенуме­
рация начинается со строки 30, которой дается новый номер 35, а
каждой последующей программной строке новый номер присваи­
вается так, что разность между двумя соседними номерами равна 5.

Любой из номеров, задаваемых в команде RENUM, можно
опустить. Если при этом отсутствует первый из номеров, то он
считается равным 10; если не указан второй номер, то перенумера­
ция начнется с самой первой строки программы. Если не задано
третье число, то каждый последующий новый номер будет отличать­
ся от предыдущего на 10.

Номер строки, с которой начинается перенумерация, в команде
RENUM должен задаваться так, чтобы строка с указанным номером
действительно имелась в программе: в противном случае никакая

Основные понятия 133

перенумерация выполняться не будет, и появится сообщение “Illegal
function call” («Недопустимый вызов функции»). Это же сообщение
будет выдано и при попытке изменить с помощью команды RENUM
последовательность операторов.

Операторы GOTO, GOSUB, IF-THEN, ON-GOTO и ON-GOSUB
всегда содержат ссылки на номера различных строк программы;
команда RENUM изменяет и эти номера. Если в ходе такой замены
встречается ссылка на несуществующую строку, то выдается сооб­
щение, в котором указывается номер отсутствующей строки и
номер строки, в которой обнаружена ссылка на нее, а затем процесс
перенумерации строк продолжается.

Автоматическая нумерация строк
Для сокращения объема данных, набираемых на клавиатуре при

вводе программы, можно использовать средство автоматической
нумерации строк — команду AUTO (и тем самым исключить набор
номеров строк). В этой команде указывается номер первой строки
программы и приращение — число, на которое должны отличаться
друг от друга номера двух соседних строк программы.

Пример
auto 70,10
70 print 459.67+212 'Ранкин
80 print 273.15+100 'Кельвин
90 —

Для прекращения автоматической нумерации строк надо одно­
временно нажать клавиши Ctrl и Scroll Lock. При последующем
нажатии клавиши Esc текущая строка убирается с экрана, но тем
не менее ей тоже присваивается номер, который затем приписыва­
ется строке, набираемой вместо удаленной.

При автоматической генерации номеров строк может оказаться,
что номер очередной строки уже занят находящейся в памяти стро­
кой программы. В этом случае вместе с очередным номером строки
на экран выводится кавычка, означающая, что следующая за этой
кавычкой строка будет введена на место уже имеющейся в программе
строки с тем же номером. (При вводе новой строки в память кавычка
заменяется пробелом.) Для сохранения имеющейся программной
строки следует, ничего не набирая на клавиатуре, сразу после появ­
ления кавычки нажать клавишу Аналогично с помощью той же
клавиши можно пропустить любой автоматически сгенерированный
номер, а не только выводимый на экран вместе с кавычкой.

При использовании команды AUTO не обязательно задавать в
ней оба числа (номер первой строки и приращение). В зависимости
от того, какие числа заданы, а какие — нет, различаются шесть
вариантов этой команды (табл. 6.3).

134 Глава 6

Таблица 6.3. Допустимые варианты команды AUTO

Вариант команды Номер первой строки Приращение
AUTO
AUTO 10
AUTO 10,

10
Определенный ранее

AUTO, 10 0
AUTO, 0

AUTO 10,10 Определенный ранее

10
10

Определенное ранее; если при­
ращение ранее не задавалось,
то по умолчанию оно при­
нимается равным 10

Определенное ранее
Определенное ранее; если при­

ращение ранее не задавалось,
то по умолчанию оно прини­
мается равным 10

Определенное ранее

Бэйсик-программы на диске

При работе на ПВМ рекомендуется в каждый момент времени
держать в динамической памяти не более одной Бэйсик-програм­
мы, поэтому надо иметь возможность хранить программы на уст­
ройствах внешней памяти и при необходимости вызывать их отту­
да. Для пересылки программ из динамической памяти в дисковые
файлы и обратно предназначены пять команд: LIST, SAVE, LOAD,
MERGE и RUN. (Кассетный Бэйсик не располагает средствами
работы с дисководами, однако с помощью имеющихся в нем команд
SAVE и LOAD можно записывать программы в кассетные файлы и
считывать их из этих файлов.) Для записи программы на диск или
считывания ее с диска необходимо задать имя файла в соответствии
с правилами, описанными в гл. 3 (рис. 3.6). Как и обычно, перед
именем самого файла может стоять идентификатор соответствующего
дисковода. Если такого идентификатора нет, то считается, что файл
находится на дисководе, принятом по умолчанию в системе ДОС
ПВМ. Можно опускать также и само имя файла: в этом случае
интерпретатор будет использовать имя BAS.

Запись программы в дисковый файл

С помощью команд LIST и SAVE осуществляется пересылка
Бэйсик-программы из основной памяти в дисковый файл. Если имя
файла, в который записывается программа, совпадает с именем фай­
ла, уже существующего на указанном дисководе, то старый файл
стирается, а на его месте создается новый.

Пример. Две команды, каждая из которых записывает некото­

Основные понятия 135

рую программу в дисковый файл BOILPT.BAS, размещенный на
дисководе В.

save “b:boilpt”
Ok
list /brboilpt”
Ok

Команда LIST позволяет пересылать все символы программы на
любое внешнее устройство точно так же, как при выводе их на экран
дисплея. Команда SAVE отличается от нее тем, что обычно произво­
дит сжатие текста программы за счет сокращения длины командных
слов до одного символа. Для исключения операции сжатия следует
добавить в конце команды SAVE запятую и букву А:

save “boilpt” ,а
Ok

Формат, в котором программа записывается на диск при вы­
полнении команды LIST, похож на соответствующий формат для
команды SAVE. (Команду MERGE, описываемую ниже, можно
использовать только для программ, записанных в файл с помощью
команды SAVE с буквой А в конце.)

Команда SAVE позволяет также записывать программу в файл
в зашифрованном виде, защищая ее тем самым от постороннего
вмешательства. Если зашифрованная программа снова пересылается
в основную память, она становится недоступной для команд LIST
и EDIT. При использовании команды SAVE с этой целью следует
соблюдать осторожность, поскольку отмена защитных мер стано­
вится невозможной. Для того чтобы программа записывалась по
команде SAVE в зашифрованном виде, следует поставить в конце
этой команды (после заключенного в кавычки имени файла) запя
тую и букву Р.

Пример

save “boilpt” ,р
Ok

При выполнении команды SAVE программа всегда записывается
в файл целиком, как и в простейшем случае использования команды
LIST. Однако с помощью команды LIST можно записывать в файл и
отдельные части программы. Для этого в команде нужно задать
соответствующий диапазон изменения номеров строк записываемого
фрагмента.

136 Глава 6

Пример
list 10—50, “boilpt”
Ok

Использование программ, хранящихся в дисковых файлах
Любую программу, помещенную в дисковый файл по команде

LIST или SAVE, можно извлечь и вновь разместить в основной па­
мяти с помощью оператора LOAD. При выполнении этого оператора,
как и в случае команды NEW, производится очистка памяти, так
что новая программа занимает место программы, находившейся в
памяти непосредственно перед выполнением команды LOAD.

Пример
load “boilpt”
Ok

С помощью команды LOAD можно не только извлечь программу
из внешней памяти, но и выполнить ее. Для этого нужно в конце
команды поставить запятую и букву R.

Пример
Ок
load “program” ,r

Все операции, выполняемые по команде LOAD, можно реали­
зовать, также используя один из вариантов команды RUN: для
этого в конце обычной команды RUN надо поставить имя файла, и
тогда команда LOAD станет неявной частью команды RUN.

Пример
Ок
run “program”

Если при выполнении команд LOAD или RUN машине не уда­
ется найти указанный файл, то выдается сообщение об ошибке, но
программа, находящаяся в этот момент в памяти, не стирается.

Служебные команды для работы с дисковыми файлами
Для удобства пользователя в дисковый и расширенный Бэйсик

включены команды, имитирующие три команды ДОС ПВМ. Одна из
этих команд предназначена для вывода дисковых справочников,
другая — для удаления файлов, а третья — для их переименования.

Команда FILES в ее простейшей модификации позволяет полу­
чать полный текст справочника принятого по умолчанию дисковода.
С помощью этой же команды можно выводить справочник любого

Основные понятия 137

заданного дисковода и даже получать справочную информацию толь­
ко об интересующих файлах. В этих случаях нужно задавать в
команде FILES идентификатор дисковода, имя файла, а возможно,
и то и другое; эти данные указываются в конце команды FILES
и должны заключаться в кавычки.

Примеры. Команды FILES (тексты справочников, которые вы­
водятся после выполнения этих команд, опущены).

files
files “b:”
files “*.bas”

Действие команды FILES больше всего напоминает действие ко­
манды ДОС ПВМ D1R/W (гл. 3), хотя между этими командами есть
и различия. В обеих командах для задания родового имени фай­
ла разрешается использовать символы * и ?, но интерпретация их
при выполнении одной команды не совсем такая, как при выполне­
нии другой. Так, в команде FILES требуется в явном виде указы­
вать любое расширение имени файла. Например, по команде FILES

будет выдана информация обо всех файлах, имена которых
состоят не менее чем из двух символов и не имеют никаких расши­
рений. Для того чтобы получить справочную информацию по всем
файлам (с любыми именами), надо использовать команду FILES

В ДОС ПВМ команды DIR и DIR эквивалентны.
Еще одно различие между командами FILES и DIR возникает
тогда, когда символ * стоит после некоторой буквы, например
“Р*.*”. В этом случае «звездочка» в команде FILES соответствует
одному или нескольким символам, а в команде DIR не обязательно,
т. е. на ее месте в имени файла может и не быть никакого символа.
Например, при выполнении команды FILES “Р*.*” не будет выве­
дена информация о файле с именем P.BAS, а при выполнении DIR
“Р*.*” будет.

Команда KILL позволяет удалить из справочника диска задан­
ное имя файла. При задании в этой команде имени файла не до­
пускается использовать родовые имена файлов, поскольку при
выполнении KILL все символы в имени файла интерпретируются
буквально. Имя указываемого файла должно быть заключено в ка­
вычки.

Пример

kill “temp.bas”
Ok

С помощью команды NAME-AS можно изменить имя диско­
вого файла. Для этого в ней нужно указать в кавычках одновре­
менно старое и новое имя. Если файл находится не на принимаемом

138 Глава 6

по умолчанию дисководе, то перед старым именем файла следует
поставить идентификатор нужного дисковода. Любой идентификатор,
стоящий впереди нового имени файла, игнорируется. Не разреша­
ется использовать обобщенные (родовые) имена файлов.

Пример. Имя файла TEST.BAS заменяется на имя PERM.BAS.
name “test.bas” as “perm.bas”
Ok

Глава 7

КОНСТАНТЫ, ПЕРЕМЕННЫЕ, МАССИВЫ

В данной главе рассматриваются различные типы данных, допустимые в Бэй-
сике ПВМ, и некоторые способы их использования в программах.

Строковые данные
Строка представляет собой цепочку символов, непосредствен­

но следующих друг за другом. Обычно строковое значение заклю­
чается в кавычки:
PRINT “улица Мадлен, 25”

В строковое значение могут входить прописные и строчные бук­
вы, числа, знаки препинания, т. е. строка может содержать любой
из 256 символов, перечисленных в Приложении D. Единственным
ограничением является предельно допустимое количество символов:
не более 255. Самая короткая строка не содержит никаких символов
и называется пустой или нулевой строкой.

Вычислительная машина работает только с числами и поэтому
не может хранить символы в непосредственном виде. При вводе в
машину символы преобразуются в соответствии с Американским
стандартным кодом для обмена информацией ASCII (American Stan­
dard Code for Information Interchange). Например, прописная буква
А имеет код 65, а строчная 98. Коды всех допустимых символов при­
ведены в Приложении D.

Большинство символов можно ввести в машину простым нажа­
тием соответствующей клавиши. Однако есть такие символы, кото­
рые вводятся специальным способом с помощью клавиши Alt и де­
сяти цифровых клавиш малой клавиатуры. Для этого сначала опре­
деляют числовой код символа, который нужно ввести. Затем нажи­
мают клавишу Alt и, удерживая ее в этом положении, набирают код
на малой клавиатуре. После отпускания клавиши Alt на экране
появится соответствующий символ. Например, при нажатии клави­
ши Alt с последующим использованием в указанном порядке кла­
виш 1, 7, 2 и освобождением Alt на экране появится символ 1/4.

Однако нельзя получить непосредственно с клавиатуры в режи­
ме немедленной обработки символ с кодом 127 или символ, код
которого заключен между 0 и 31. Такие символы выводятся на
экран дисплея программным способом; как это делается, мы пока­
жем в гл. 8, а в гл. 11 опишем процедуры ввода этих символов с
клавиатуры под управлением программ.

140 Глава 7

Числовые данные

В Бэйсике ПВМ числовые данные можно представлять пятью
различными способами, каждый из которых имеет свое определенное
назначение. Три типа представления дают возможность записывать
числа с различной степенью точности; при этом увеличение точно-

Рис. 7.1. Примеры различных типов числовых данных.

Лелое Восьмеричное Шестнадцатеричное

32767 877777 8H7FFF
100 8144 8Н64
23 «27 8Н17

2 «2 8Н2
а 80 8Н0

-1 -81 -8Н1
-187 -&273 -8НВВ

-32767 «77777 -&H7FFF

С одычнои точностью С двойной точностью
1234567 1234567890123456

9999-99 99999999999999.99
123.123 12345678.123456789

.1234567 .12345678904123456
0 0
-.1234567 -.12345678904123456

-123.123 -12345678.123456789
-9999.99 -99999999999999.99

-1234567 1234567890123456

сти достигается за счет дополнительных затрат памяти и пониже­
ния скорости выполнения арифметических операций. Поэтому иногда
выгоднее использовать типы данных, имеющие меньшую точность.
Два других типа введены для удобства программирования более
сложных задач.

Целый тип представляет собой запись без десятичной запятой
числа в диапазоне от —32768 до 32767. Каждое значение целого
типа занимает две ячейки памяти. При выполнении арифметичес­
ких операций наибольшая скорость достигается, если операции
производятся только над целыми числами. В Бэйсик-программе
любое число без десятичной запятой рассматривается как целое
при условии, что значение этого числа не выходит за указанные
пределы.

Числа с плавающей запятой могут содержать десятичную запя­
тую и дробную часть и записываться в обычном виде или в экспо-

Константы, переменные, массивы 141

А Обычная форма представления числа
Буква пЕ“ употребляется здесь для задания значении
с обычной точностью, а “О11—для задания значении
с двойной точностью

факультативный знак
//Плюс" или обязательный
знак и минус" |

Факультативный знак«плюс'’
или обязательный знак «минус4
для порядка числа

1.23456Е + 15,

Мантисса является целым
или дробным числом, сос­
тоящим из значащих цифр
представляемого значения;
если десятичная точка от­
сутствует, то по умолчанию
предполагается, что она ста*
ит справа от последней
цифры мантиссы

Порядок представляет собой
однозначное или двузначное
целое число, указывающее на
сколько разрядов вправо (при
положительном знаке) или вле­
во (при отрицательном знаке)
нужно сместить десятичную
точку в мантиссе, чтобы полу­
чить фактическое значение
представляемой величины

В Примеры
-1.23456Е+15 « -1234560000000000
1.23456Е+15 - 1234560000000000

1.234567890123456D4-30 « 123456789012345600QQOOOOOOOOOOO
9.876Е-10 « .0000000009876

-9.876Е-10 s* -.0000000009876
1Е-20 » .00000000000000000001

1Е+20 = юооооооооооооооооооа
4.4556677D-10 ~ *00000000044556677

Рис, 7.2. Экспоненциальное представление числовых данных.

ненциальной форме (рис. 7.2). Наибольшее допустимое число
1701412-1032, а наименьшее отличное от нуля 0,5877471 • 10-38. Су­
ществуют два типа представления чисел с плавающей запятой,
которые отличаются друг от друга только степенью точности: в од­
ном случае числа записываются с точностью до 6 знаков, а в дру­
гом — до 16.

Число с обычной точностью — это число с плавающей запятой,
содержащее не более семи десятичных цифр. Для хранения числа
в таком представлении используются четыре ячейки памяти. Сле­
дует иметь в виду, что арифметические действия выполняются опе­
раторами Бэйсика таким образом, что седьмую цифру нельзя счи­
тать достоверной, поэтому точными являются только первые 6 цифр.
Например, число с обычной точностью, с четырьмя значащими циф­
рами до запятой, будет точным до сотых долей, а число с одной
значащей цифрой до запятой представляется с точностью до пятого
знака после запятой. В Бэйсик-программах всякое число, в конце
которого стоит восклицательный знак, воспринимается как число с

142 Глава 7

обычной точностью; при этом автоматически производится округ­
ление до семи цифр.

Пример
Ок
print 1234.56789!
1234.568

Число с двойной точностью — это представление веществен­
ного числа с точностью до 16 значащих цифр. Для хранения числа
с двойной точностью используется 8 ячеек памяти. В действитель­
ности во внутримашинном представлении число с двойной точно­
стью имеет 17 значащих цифр, но, поскольку последняя цифра
не точна, на внешнем уровне (в программах) такое число всегда
представляется 16 цифрами, точность которых гарантирована.
Двойная точность требуется, например, для записи денежных
сумм, выражаемых в долларах и центах, если соответствующие
числа превышают $9999.99.

В Бэйсик-программах любое число, содержащее больше семи
значащих цифр, автоматически рассматривается как значение с
двойной точностью, если только в конце числа не стоит восклица­
тельный знак. Для того чтобы некоторое число представлялось
в машине с двойной точностью, надо поставить символ 41= за послед­
ней цифрой этого числа. Если в числе менее семи цифр, то при пере­
воде его во внутренний код машины после последней цифры авто­
матически добавляются нули.

Шестнадцатеричные и восьмеричные числа
Обычно при программировании для записи чисел удобнее всего

использовать привычную десятичную систему счисления с деся­
тичными цифрами от 0 до 9. Внутри машины все числа представ­
ляются в системе счисления с основанием 2. Такие числа записыва­
ются в виде последовательностей нулей и единиц и называются
двоичными. Бэйсик-интерпретатор автоматически выполняет пре­
образование чисел из десятичной системы в двоичную, так что про­
граммист может всегда пользоваться привычной ему десятичной
системой. Это преобразование требует выполнения целого ряда
арифметических действий (нельзя, лишь взглянув на десятичное
число, сразу указать его двоичный эквивалент).

Некоторые программисты (особенно те, кто знаком с ассембле­
ром) считают, что для определенного рода задач удобнее использо­
вать систему счисления, которая легко преобразуется в двоичную.
В качестве таких систем счисления чаще всего используют систему
с основанием 8 (восьмеричная) и систему с основанием 16 (шестнад­
цатеричная). Например, код ASCII иногда задается в шестнадцате­

Константы, переменные, массивы 143

ричном представлении. При преобразовании в двоичное число
каждая цифра восьмеричного (или шестнадцатеричного) числа непо­
средственно заменяется соответствующим двоичным числом.

Таблица 7.1. Представление чисел в шестнадцатеричной, восьмеричной
и двоичной системах

Шестнадца­теричное представле­ние Восьмеричное представление Двоичное представление Шестнадца­теричное представле­ние Восьмеричное представление Двоичное представление
0 0 0000 8 10 1000
1 1 0001 9 11 1001
2 2 0010 А 12 1010
3 3 ООП В 13 1011
4 4 0100 С 14 1100
5 5 0101 D 15 1101
6 6 оно Е 16 1110
7 7 0111 F 17 1111

В табл. 7.1 показано, какое двоичное число соответствует каждой
шестнадцатеричной и каждой восьмеричной цифре, а на рис. 7.3
поясняется, как можно легко преобразовать произвольное восьме-

10101001 Двоичное число 10101001 Двоичное число
ПГ 9 Шестнадцатеричное

число
Тб 7 Восьмеричное число

А. Для преобразования двоич- В. Для преобразования двоичного
ного числа в шестнадцатерич­ числа в восьмеричное следует разбить
ное следует разбить все цифры все цифры двоичного представления
двоичного представления на на группы по 3 цифры (мысленно до­
группы по 4 цифры, а затем бавив, если надо, нули впереди чис­
воспользоваться табл. 7.1 ла), а затем воспользоваться табл. 7.1

Рис. 7.3. Преобразование шестнадцатеричных чисел в восьмеричные и двоич­
ные.

ричное или шестнадцатеричное число в соответствующее двоичное
представление или произвести обратное преобразование. Для преоб­
разования восьмеричных или шестнадцатеричных чисел в десятичные
и обратно, как и в двоичном случае, требуется выполнение достаточ­
но сложных вычислений; для этого можно использовать переводную
таблицу, специальный карманный калькулятор или программу.

Чтобы число в Бэйсик-программе воспринималось как восьме­
ричное целое, надо перед первой цифрой этого числа набрать сим­
вол &.

144 Глава 7

Пример
print &40
32
Ok

Для записи чисел в шестнадцатеричной системе наряду с деся­
тичными цифрами от 0 до 9 используют буквы А, В, С, D, Е и
F. Для задания шестнадцатеричного числа перед первой его цифрой
вводятся амперсанд (&) и буква Н.

Пример
print &hdaO
3488
Ok

Бэйсик не располагает средствами представления дробных
восьмеричных или шестнадцатеричных чисел; допустимы лишь це­
лые числа, изменяющиеся в пределах от —&ПТП до &77ТП (для
восьмеричных чисел) и от —&H7FFF до &H7FFF (для шестнадца­
теричных чисел). Более подробное описание двоичной, восьмерич­
ной и шестнадцатеричной систем счисления можно найти в книге
“Microcomputer Primer” (Mitchell Waite and Michael Pardee, Ho­
ward W. Sams & Co., Inc.) T).

Т) Такие сведения содержатся в любой книге по основам вычислительной
техники.— Прим. ред.

Переменные
Возможности вычислительной машины были бы слишком огра­

ничены, если бы при работе с ней можно было использовать только
постоянные величины (константы). Поэтому в любом языке програм-

Первый символ должен
быть буквой

Необязательный последний символ
(один из четырех стандартных:.#, %,!,
^указывает на тип переменной(табл 7.3)

2-й, 3-й и последующие символы могут быть любыми
буквами, цифрами или точками;недопустимо лишь, чтобы
полученная последовательность символов образовала зореэер'
ворованное слово (табл. 72)

Рис. 7.4. Правила образования имен переменных в Бэйсике ПВМ.

Константы, переменные, массивы 145

мирования есть средства, позволяющие выделить часть памяти
машины для хранения изменяющихся значений. Каждое такое зна­
чение идентифицируется уникальным именем, которое в совокуп­
ности с определенным значением называется переменной. Имя пере­
менной в Бэйсике выбирается по определенным правилам (рис. 7.4)
и может быть любой длины при условии, что оно умещается водной
строке программы. Следует, однако, помнить, что интерпретатор
учитывает только первые 40 символов имени и игнорирует все ос­
тальные. В табл. 7.2 перечислены слова, которые нельзя использо-
Таблица 7.2. Зарезервированные слова (запрещенные к использованию
в качестве имен переменных)1}

ABS CVS FRE LOG POINT SQR
AND DATA GET LPOS POKE STEP
ASC DATE$ GOSUB LPRINT POS STICK
ATN DEF GOTO LSET PRESET STOP
AUTO DEFDBL HEX$ MERGE PRINT STR$
ВЕЕР DEFINT IF MID$ PRINT# STRIG
BLOAD DEFSNG IMP MKD$ PSET STRINGS
BSAVE DEFSTR INKEY$ MKI$ PUT SWAP
CALL DELETE INP MKS$ RANDOMIZE SYSTEM
CDBL DIM INPUT MOD READ TAB(
CHAIN DRAW INPUT# MOTOR REM TAN
CHR$ EDIT INPUTS NAME RENUM THEN
C1NT ELSE INSTR NEW RESET TIMES
CIRCLE END INT NEXT RESTORE TO
CLEAR EOF KEY NOT RESUME TROFF
CLOSE EQV KILL OCTS RETURN TRON
CLS ERASE LEFT$ OFF RIGHTS USING
COLOR ERL LEN ON RND USR
COM ERR LET OPEN RSET VAL
COMMON ERROR LINE OPTION RUN VARPTR
CONT EXP LIST OR SAVE WAIT
COS FIELD LLIST OUT SCREEN WEND
CSNG FILES LOAD PAINT SGN WHILE
CSRLIN FIX LOC PEEK SIN WIDTH
CVD FN 2> LOCATE PEN SOUND WRITE
CVI FOR LOF PLAY SPACES WRITE#

SPC(XOR

Зарезервированное слово может быть частью длинного имени переменной; однако если к одиночному зарезервированному слову приписать в конце один из стандартных определяющих тип символов, то полученное в результате слово все равно не может слу­жить именем переменной.2) Сочетание букв FN разрешается использовать где угодно, но только не в качестве начальных букв имени, поскольку любое имя, начинающееся с FN, воспринимается интер­претатором как имя функции, определяемой пользователем.

146 Глава 7

вать в качестве имен переменных, поскольку они зарезервированы
для командных и других ключевых слов. Вместе с тем любое заре­
зервированное слово может быть использовано как часть имени пе­
ременной. Например, имя DATAVAL допустимо, хотя и DATA,
и VAL — зарезервированные слова и по отдельности именами пе­
ременных служить не могут.

Типы переменных
Каждому типу данных — строковому, целому, с обычной и с

двойной точностью — соответствует определенный тип переменной.
Тип переменной определяется последним символом ее имени. Соот­
ветствие между типами переменных и определяющими их символами
указано в табл. 7.3. Имена, отличающиеся друг от друга лишь пос-

Таблица 7.3. Типы переменных

Тип
Символ, опреде­ляющий тип (стоит последним в имени) *) Количество байт Диапазон значений

Целый % 2 от —32768 до 32767
С двойной точ­ 8 от — 1.701411733192644D + 38

ностью
С обычной точ­ 1 4

до 1.701411733192644D 4-38
от — 1.701412Е4-38

ностью
Строковый $ 2-(-2>

до 1.701412Е-4-38
от 0 до 255 символов

*) Если последний символ имени переменной не является одним из перечисленных стандартных символов, определяющих тип, то такая переменная будет считаться вещест­венной с обычной точностью; это соглашение можно изменить с помощью оператора DEF (гл. 8).2) Длина строковой переменной равна 2 байт плюс количество символов значения переменной.
ледним определяющим тип символом, воспринимаются интерпрета­
тором как имена различных, совершенно несвязанных переменных.
Так, А$, A!, A# и А% —это имена четырех разных переменных.

Всякий раз, когда интерпретатор встречает в программе новое
имя переменной, он выделяет определенную область памяти для
хранения ее значений соответственно определяемому типу (табл. 7.3).

Обычно если имя переменной не оканчивается одним из спе­
циальных символов, определяющих ее тип (%, $, !), то по
принципу умолчания считается, что имя принадлежит числовой пе­
ременной с обычной точностью. Это соглашение нарушается в слу­
чае использования четырех модификаций оператора DEF, пользуясь
которыми можно задавать тип переменной одной начальной буквой
ее имени без применения классифицирующих суффиксов.

Константы, переменные, массивы 147

Пример. Опре^мение целых переменных с помощью модифика­
ций оператора DEF.
10 DEFINT A,J—М

В программе, содержащей указанный оператор, любая перемен­
ная, имя которой начинается с A, J, К, L или М, является пе­
ременной целого типа (независимо от того, оканчивается ли ее имя
знаком %). Так, имена AARD, Л, К, LOOP, MARK будут опре­
деляться как целые переменные. Аналогично с помощью операторов
DEFSTR, DEFSNG, DEFDBL можно задавать начальные буквы
имен строковых переменных и переменных с обычной и двойной
точностью соответственно. Однако действие оператора DEF в любой
его модификации отменяется, если тип переменной указан в явном
виде, т. е. имя содержит один из специальных суффиксов, определя­
ющих тип переменной (%, #, $, 1).

Выполнение оператора DEF должно предшествовать первому
использованию определяемых им переменных. Этот оператор при­
сваивает начальные значения всем переменным, имена которых начи­
наются с указанных в нем букв: числовым переменным присваивает­
ся значение нуль, а строковым — нулевая длина строки. Однако
действие оператора DEF не распространяется на переменные, имена
которых содержат стандартные, определяющие тип суффиксы.

Присваивание значений

Всякая переменная в программе должна принимать некоторые
значения, поэтому интерпретатор автоматически присваивает каж­
дой новой переменной (т. е. встретившейся в первый раз) значение,
равное нулю (для числовых переменных) или нулевой строке (для
строковых переменных). Кроме того, в Бэйсике ПВМ предусмот­
рено несколько операторов, позволяющих присваивать переменным
и другие значения: чаще всего это делается с помощью оператора
LET. В развернутой записи этот оператор имеет следующий вид:
500 LET TAX.RATE-6.5
510 LET TAX.AUTH$— “Отдел кредитов”

Командное слово LET необязательно, и обычно программисты
его опускают, упрощая вид оператора. Например,
500 TAX.RATE—6.5
510 TAX.AUTH$ — “Отдел кредитов”

Оператор LET присваивает переменной с именем, указанным
слева от знака равенства, значение, записанное справа от этого
знака. Переменная и присваиваемое ей значение должны быть сов­
местимы по типу данных. Если это условие не выполняется и, на­

148 Глава 7

пример, переменной строкового типа присваивается числовое зна­
чение, то будет выдано сообщение об ошибке “Type mismatch” («Не­
соответствие типов»).

Преобразование числовых типов данных

Числовое значение двойной точности, например 1.2345678, при­
сваиваемое переменной, которая имеет обычную точность или
является целой (например, А! или В %), округляется в соот­
ветствии с типом переменной. Аналогично, если значение обычной
точности присваивается целой переменной (скажем, значение 1.2
присваивается переменной N%), это значение округляется до бли­
жайшего целого числа.

Пример
а! = 1034500.89
Ок
print а!
1034501
Ок

В тех случаях, когда целое значение, например 253, присваива­
ется переменной с обычной или двойной точностью (например,
CD* или CD!), это значение дополняется десятичной запятой и
следующими за ней нулями. Аналогично преобразуются значения
обычной точности в случае присваивания их переменным с двойной
точностью, по при этом преобразованное значение содержит не
более шести точных цифр.

Массивы
В Бэйсике предусмотрены средства, позволяющие некоторым

стандартным образом давать имена сразу целому массиву перемен­
ных. Вместо того чтобы присваивать уникальное имя каждой от­
дельной переменной, можно задать одно имя для целого их массива,
а каждый элемент этого массива идентифицировать с помощью
числового индекса.

Пример. Допустим, что надо написать программу для решения
задачи, связанной с анализом цен на различные виды изделий.
Каждому виду изделий можно поставить в соответствие отдельное
уникальное имя переменной, значением которой является стоимость
изделий данного вида (рис. 7.5). Однако в этом случае всякий
раз, когда поступают сведения о новом виде изделий, пришлось
бы вводить в программу новое имя переменной, а это, как правило,
приводит к переписыванию почти всей программы. Вместо этого
можно хранить значения стоимостей всех видов изделий в одном
массиве, а стоимость конкретного вида изделий определять с помо­

Константы, переменные, массивы 149

щью индекса массива (рис. 7.6). В дальнейшем будет показано, что в
подобных ситуациях значительно удобнее использовать массивы.

Для обращения к отдельному элементу массива достаточно после
имени массива написать индекс, заключенный в скобки. Индексом
может служить не только константа, но и переменная^ что дает

597

Гайки

632

Голты

2588

Гвозди

1125

динты

Крнзки

871

Ш.ай5ы

339

Штифты

Рис. 7.5. Использование разных имен для хранения значений.

возможность задавать действия, относящиеся к любому элементу
массива.

Пример
10 А=12.3
20 В (J)= 12.3

При выполнении оператора строки 10 значение 12.3 присваивается
всегда одной и той же переменной А. При выполнении второго

Элем.(1) Злом.(2) Злем.(З) Элем.(А) Злем.(5) Злем.(б) Злом.(7)

Рис. 7.6. Хранение значений в массиве.

597 632 1125 871 2588 85 339

оператора (строка 20) это значение может быть присвоено любому
элементу массива В; какой именно элемент принимает значение
12.3, определяется текущим значением переменной J.

Правила образования имен массивов в Бэйсике ПВМ те же,
что и для имен простых переменных (рис. 7.4 и табл. 7.2). В од­
ной и той же программе допустимы одинаковые имена массивов и
простых переменных; в этом случае они считаются никак не связан­
ными друг с другом, как если бы они имели различные имена.
Все элементы одного массива имеют один и тот же тип — строковый,
целый, с обычной или с двойной точностью. Действие операторов
DEF, в которых определяются начальные буквы имен переменных
заданного типа, распространяется и на имена массивов. Точно так
же, как и в случае простых переменных, тип массива может быть

150 Глава 7

задан явным образом — для этого в конце имени массива ставится
один из стандартных символов, определяющих тип (%, #, $, !);
соответствие между этими символами и типами данных такое же,
как и в случае простых переменных. Как и для простых перемен­
ных, стандартный символ определения типа, стоящий в конце имени
массива, отменяет действие оператора DEF, относящееся к этому
имени.

Размерности массивов

В Бэйсике ПВМ массив может иметь несколько индексов. Мас­
сив с одним индексом можно представить себе как одномерный
столбец (или одномерную строку) значений (рис. 7.6). Использова-

Элем.(1,1) Элем. (1,2) Элем.(1,3) Элем.(Элем.(1,5)Элем. (1,6) Элем. (1,7)

597 632 1125 871 2588 85 339
691 705 1004 759 3412 60 352

0 0 0 0 0 0 0
0 0 0 0 0 0 0

Элем. (52t1) Элем.(52,2)Элем.(52,5)Элем.(52^) Элем.(52,5)Элем.(52,6)ЭлемА5217)

Рис. 7.7. Хранение значений в двумерном массиве.

ние второго индекса аналогично добавлению второго измерения
(рис. 7.7).

Пример. Допустим, что необходимо фиксировать стоимость
различных видов изделий каждую неделю в течение всего года.
Для этого можно было бы использовать 52 отдельные переменные
для каждого вида изделий, однако работать с таким огромным
количеством различных имен переменных очень неудобно. Поэтому
лучше использовать 52 одномерных массива, а еще лучше — один
двумерный массив. Первый индекс такого двумерного массива мог
бы указывать на конкретный вид изделий, а второй — на конкрет­
ную неделю.

Один массив может иметь три, четыре, пять и более индексов.
Трехмерный массив можно представить себе как куб, а для боль­
ших размерностей трудно найти простой геометрический образ.
Максимально допустимое число индексов для одного массива —
255.

Константы, переменные, массивы 151

Задание размерности массива
Если в программе предполагается использовать одномерный мас­

сив, содержащий более 10 элементов, или какой-либо многомерный
массив, то прежде всего необходимо его описать, т. е. определить
количество индексов и максимальное значение каждого из них.
Для задания размерности массивов предназначен оператор DIM,
в котором перечисляются имена массивов и указываются максималь­
ные значения их индексов.

Пример. Определение четырехмерного массива строкового типа
с максимальными значениями индексов 4, 8, 2 и 50.
ПО DIM S$ (4,8,2,50)

В одном операторе DIM можно описывать несколько массивов.
Для этого после командного слова DIM следует перечислить опи­
сания различных массивов, отдели' их друг от друга запятыми.

Пример
10 DIM ITEMS(35), COST#(2,35), UNIT% (2,35)

Если в программе имеется оператор DEF, действие которого
распространяется на имена массивов, перечисленных в операторе
DIM, то он должен обязательно предшествовать оператору DIM.
В этом случае при выполнении оператора DIM для каждого ука­
занного в нем массива будет отведен достаточный объем динамиче­
ской памяти, всем элементам числовых массивов будут присвоены
начальные значения, равные нулю, а всем элементам строковых
массивов — нулевые строки. Если для размещения всех массивов
объем памяти оказывается недостаточным, выдается сообщение
“Out of memory” («Нехватка памяти»), и оператор DIM выполня­
ется только для первых перечисленных в нем массивов, которые
полностью уместились в памяти.

Оператор DIM можно также использовать и в режиме немедлен­
ной обработки. Однако в этом случае с определяемыми в этом опе­
раторе массивами нельзя работать в программируемом режиме
после выполнения команды RUN, которая уничтожает все описания
массивов.

Изменение размерностей массивов
Определив размерность массива посредством оператора DIM,

ее уже нельзя изменить с помощью некоторого другого оператора
DIM. Для этого необходимо сначала удалить соответствующий мас­
сив из памяти с использованием стирающего оператора ERASE.
Этот последний состоит из командного слова ERASE и следующего
за ним списка имен массивов. Имена массивов в этом списке пере­
числяются через запятую, причем максимальные значения индексов
массивов не указываются.

152 Глава 7

Пример
10 DIM ITEM$(40),COST(40),PRICE(40)
20 REM

90 REM
100 ERASE PRICE,COST
110 DIM COST (2,40)
120 REM

При выполнении нового оператора DIM, переопределяющего
структуру некоторого массива, всем элементам этого массива при­
сваиваются нулевые начальные значения.

Наименьшее значение индекса массива
По умолчанию, т. е. если не предпринимается специальных

действий, всякий индекс массива изменяется, начиная с нуля. Од­
нако часто удобнее и привычнее работать с массивом, изменяя
его индекс от единицы. Для того чтобы первому элементу массива
действительно соответствовало значение индекса, равное единице,
и тем самым не тратилась зря память, отводимая под элемент с
индексом, равным нулю, можно использовать следующий оператор:
100 OPTION BASE 1

С помощью оператора OPTION BASE устанавливается наимень­
шее значение индексов массивов 0 или 1. Этот оператор должен
выполняться в программе до первого оператора, содержащего имена
массивов, включая операторы DEF и DIM. В противном случае
будет выдано сообщение “Duplicate Definition” («Повторное опре­
деление»). Оператор OPTION BASE можно использовать как в
режиме немедленной обработки, так и в программируемом режиме,
однако перед выполнением программы по команде RUN наименьшее
значение индекса всегда устанавливается равным нулю. Таким
образом, команда OPTION BASE 1, выполненная в режиме не­
медленной обработки, не окажет никакого влияния на массивы,
используемые в программе. Это значит, что если индексы в програм­
ме должны меняться, начиная с единицы, то программа должна
содержать свой собственный оператор OPTION BASE.

Глава 8

РАБОТА С ЧИСЛОВЫМИ И СТРОКОВЫМИ ДАННЫМИ

Существует множество способов манипулирования константами, перемен­
ными, массивами и выполнения нац ними различных совместных операций.
В данной главе описывается ряд дополнительных методов присваивания значений
переменным, а также демонстрируется, как с помощью выражений и функций
можно комбинировать различные данные, выполнять преобразования одних ти­
пов данных в другие и отображать требуемые значения на экране дисплея.

Присваивание значений переменным
Наиболее распространенным средством однократного присваи­

вания значения переменной является оператор LET (гл. 7). Однако
он оказывается неудобным в случае присваивания значений боль­
шому числу переменных и ввода присваиваемых значений с клавиа­
туры в процессе выполнения программы. Поэтому для выполнения
этой операции в Бэйсике ПВМ предусмотрены специальные, более
эффекта вные о пер аторы.

Операторы DATA и READ
Эти операторы позволяют просто и эффективно осуществить

операцию присваивания постоянных значений большому числу пе­
ременных и элементам массивов. При этом операторы DATA создают
список постоянных значений, а операторы READ присваивают
эти значения переменным и элементам массивов.

Пример
list
99 'Таблица номеров счетов
100 DATA 100, Ферн Герцберг, 150, Оги Богдис,

200, Ксавьер Декото
1139 'Присвоить номер счета и имя
1140 READ acct(l),cust$(1),acct(2), cust$(2),

acct(3), cust$(3)
Ok

Оператор DATA может содержать любые допустимые числовые
(рис. 7.1) или строковые константы. Используемая строковая кон­
станта заключается в кавычки, если она начинается со значащих
пробелов или кончается ими либо если один из входящих в нее
символов — запятая или двоеточие. При этом заключенная в
кавычки строка не должна содержать кавычек.

154 Глава 8

Если в программе встречается несколько операторов DATA,
то все они участвуют в формировании одного и того же списка
значений. Этот список создается последовательно, начиная со зна­
чений, указанных в первом операторе DATA (расположенном пер­
вым в тексте программы), и кончая значениями, относящимися
к последнему из них (рис. 8.1). Операторы DATA не относятся
к числу исполняемых.

Рис. 8.1. Все операторы DATA формируют единый список значений.

Список значений, формируемый
операторами DATA

Артишоки
Аспарагус
Фасоль
Свекла
Спаржевая капуста
брюссельская капустам------------------------
яблоки

, Абрикосы
Авокадо
Бананы
Черника
Вишня

7000 DATA Артишоки,Аспарагус, Фасоль, Свекла **1
7010 DATA Спаржевая капуста, Брюссельская капуста „___
8000 DATA Яблоки, Абри косы. Авокадо, Бананы
8010 DATA Черника, Вишня

Первый выполняемый оператор READ присваивает первое
значение из списка, формируемого операторами DATA, первой
переменной. Второй переменной оператора READ присваивается
второе значение, третьей — третье и т. д. до тех пор, пока не
будут присвоены значения всем переменным этого оператора.
Если в дальнейшем в программе выполняется еще один оператор
READ, он берет присваиваемые значения из того же списка, начи­
ная с позиции, перед которой закончил работу предыдущий оператор
READ (рис. 8.2).

Неиспользованные значения из списка DATA игнорируются,
а если при выполнении некоторого оператора READ оказалось,
что список уже просмотрен до конца, то выдается сообщение об
ошибке “Out of DATA...” («Нет данных...»). Типы переменных
и элементов массивов, указанных в операторе READ, должны быть
совместимы с типами присваиваемых им значений. Так, недопусти­
мо, чтобы переменная была строковой, а значение — числовым
(или наоборот). В случае подобного несоответствия выдаются сооб­
щение “Syntax error...” («Синтаксическая ошибка...») и текст опера­
тора READ, в котором обнаружилось несоответствие типов данных.
Если и переменная, и значение являются числовыми, но их типы

Работа с числовыми и строковыми данными 155

различаются по точности, оператор READ выполняет преобразо­
вания, аналогичные действию оператора LET (гл. 7).

При использовании оператора DATA в режиме немедленной
обработки ошибок не возникает, однако перечисленные в нем зна­
чения окажутся недоступными как в режиме немедленной обработки,
так и в программируемом режиме; объясняется это тем, что в ре-

Список значений, форми­
руемый операторами

DATA
' Артишоки
Аспарагус

k Фасоль
' Свекла

Спаржевая капуста
брюссельская капуста

> Яблоки
Абрикосы
Авокадо
бананы
Черника
Вишня

10 DIM FRT$(5O)zyEG$$(5O)

20 READ VEGSC21)ZVEG$(22),VEG$(23)

30 READ VEG$(24)zVEG$(25)zVEG$(26)

40 READ FRT$(13)ZFRT$(14)ZFRT$(15)

50 READ FRT$(16)ZFRT$(17)ZFRT$(18)

7000 DATA Артишоки, Аспарагус, Фасоль, Свекла
7010 DATA Спаржевая капуста, Брюссельская капуста
8000 DATA Яблоки, Абрикосы, Авокадо, Бананы
8010 DATA Черника, Вишня

Рис. 8.2. Операторы READ присваивают переменным значения из списка,
формируемого операторами DATA.

жиме немедленной обработки оператор READ выбирает очередное
значение из списка, созданного к этому моменту операторами
DATA программируемого режима.

Оператор RESTORE
Бэйсик-интерпретатор ПВМ отслеживает текущую позицию в

списке значений DATA с помощью специального указателя, кото­
рый перемещается вперед всякий раз, когда некоторый оператор
READ считывает из списка очередное значение. Прямое управление
перемещением этого указателя может быть осуществлено с помощью
оператора RESTORE. В простейшем случае оператор RESTORE
возвращает указатель к началу списка, формируемого операторами
DATA; при этом очередной оператор READ, следующий после опе­
ратора RESTORE, будет использовать значения из списка повторно.

Оператор RESTORE позволяет также устанавливать указа­
тель на элемент списка, соответствующий любому промежуточному

156 Глава 8

7000 DATA Артишоки, Аспарагус, Фасоль, Свекла
7010 DATA Спаржевая капуста, Брюссельская капуста
8000 DATA Яблоки, Абрикосы, Авокадо, Бананы
8010 DATA Черника,Вишня

10 DIM FRT$(5O),VEG$(5O)
20 READ VEGSC21)ZVEG$(22)ZVEG$(23)
30 READ VEG$(24)ZVEG$(25)ZVEG$(26)

Список значении,фор­
мируемый операторами

DATA
Артишоки
Аспарагус.
Фасоль
Свекла

40 READ FRT$(13)ZFRT$(14)ZFRT$(15)
50 REAP FRT$C16)ZFRT$(17)ZFRT$(18)

100 RESTORE 8000 Спаржевая капуста
Брюссельская капуста

' Яблоки
110 READ FRT$(2O)ZFRT$(21)ZFRT$(22) ----- Абрикосы

Авокадо

'бананы
120 READ FRT$(23)ZFRT$<24)ZFRT$(25)------ Черника

Вишня

Рис. 8.3. Оператор RESTORE перемещает указатель в списке значений, фор­
мируемом операторами DATA (в данном случае он настроен на строку 8000).

оператору DATA. Для этого в операторе RESTORE надо указать
номер строки требуемого оператора DATA. Если в строке с указан­
ным номером обнаружится такой оператор, то будет выбран бли­
жайший оператор DATA, расположенный в программе после ука­
занной строки.

Ввод значений с клавиатуры

При программировании довольно часто значения строковых
или числовых переменных должны быть заданы пользователями
программ. Для этого в Бэйсике предусмотрен оператор INPUT,
который считывает вводимые значения с клавиатуры и присваивает
их переменным или элементам массивов. В простейшем случае
этот оператор выглядит так:
350 INPUT А

Когда очередным выполняемым оператором оказывается опера­
тор подобного вида, на экран дисплея выводится знак вопроса.
Появление этого знака означает, что пользователь программы
должен ввести с клавиатуры необходимую информацию. При этом
клавиша 4“ обеспечивает перемещение курсора влево на один сим­
вол, а клавиша Esc стирает всю строку, включая знак вопроса, что
позволяет начать ввод записи снова. Обе эти клавиши действуют до

Работа с числовыми и строковыми данными 157

тех пор, пока не нажимается клавиша 4^, указывающая на окон­
чание ввода.

При ответе на запрос оператора INPUT строковое значение
необходимо заключить в кавычки при условии, что оно содержит
запятые либо начинается (или кончается) значащими пробелами.
При этом заключенная в кавычки строка не должна содержать
кавычек.

Наводящие сообщения оператора INPUT

При работе далеко не всех программ удобно, чтобы требование
на ввод с клавиатуры тех или иных значений выводилось на экран
в виде одного лишь знака вопроса. Оператор INPUT позволяет
кроме знака вопроса (или вместо него) выводить некоторое наво­
дящее сообщение. Текст этого сообщения должен указываться в
операторе INPUT в виде строковой константы, стоящей непосред­
ственно за командным словом, при этом строковая константа зак­
лючается в кавычки и отделяется от имени переменной точкой с
запятой.

Пример. Наводящее сообщение в режиме немедленной обработки:
input “Срок займа в годах”; срок
Срок займа в годах? 10Ок

Для того чтобы после наводящего сообщения не появился знак
вопроса, точку с запятой в операторе INPUT следует заменить
запятой. Тогда вводимая пользователем запись будет располагаться
непосредственно за последним символом сообщения.

Пример

input “Срок займа в годах = ”, срок
Срок займа в годах = 10Ок
Ввод с клавиатуры нескольких значений

С помощью одного оператора INPUT можно ввести значения
сразу нескольких переменных или элементов массивов. Для этого
достаточно перечислить все эти переменные и элементы массивов в
конце оператора INPUT, отделив их друг от друга запятыми.
Как и в предыдущих случаях, при работе программы пользовате­
лю будет выведен либо только знак вопроса, либо наводящее сооб­
щение, если оно было включено в оператор INPUT. В качестве
ответа пользователь должен указать значения каждой переменной
оператора INPUT, отделив их друг от друга запятыми.

158 Глава 8

Пример
list
10 INPUT “Имя и № в системе coucTpaxa”;N.$,SS=ft=
Ок
run
Имя и № в системе соцстраха? Элвин Фокс, 123-45-678
Ок

Проверка правильности записей, вводимых с клавиатуры
После того как пользователь программы нажимает клавишу

•4-1, отмечая окончание ввода, производится проверка правильности
вводимого сообщения. При необходимости выполняются преобра­
зования числовых значений для согласования их точности с точ­
ностью соответствующих им переменных, подобно тому как это
делается операторами LET и READ. Если количество набранных
пользователем значений больше или меньше числа переменных
и элементов массивов оператора INPUT либо если пользователь
вводит строковое значение в качестве значения числовой перемен­
ной, то выдается сообщение “?Redo from start” («Повторите ввод»).
После этого сообщения осуществляется повторный ввод всех значе­
ний с самого начала строки.

Взаимный обмен значениями между переменными
Оператор SWAP инициирует обмен значениями между двумя

переменными.
Пример

COST1 = 5
Ок
COST2 = 21
Ок
SWAP COST1.COST2
Ок
PRINT COST1
21
Ок
PRINT COST2
5
Ок

Указанные в операторе SWAP переменные должны иметь один
и тот же тип данных, в противном случае выдается сообщение
«Туре mismatch» («Несоответствие типов»). Переменные оператора
SWAP (каждая в отдельности и обе вместе) могут быть как просты­
ми переменными, так и элементами некоторого массива.

Работа с числовыми и строковыми данными 159

Обнуление значений переменных и элементов массивов
Оператор CLEAR обнуляет значения сразу всех переменных и

элементов массивов, не затрагивая строк программы: числовые
переменные становятся при этом равными нулю, а строковым при­
даются нулевые строковые значения. Кроме того, оператор CLEAR
уничтожает результаты работы выполненных ранее операторов
DIM и DEF.

Вывод данных

Оператор PRINT предназначен для вывода значений переменных
и элементов массивов как в режиме немедленной обработки, так и
в программируемом режиме.

Пример. Действие оператора PRINT при выводе числовых
и строковых значений.
list
100 INPUT “Наименование изделия” ; 1ТЕМ$
ПО INPUT “Стоимость” ; VALUE
200 PRINT
210 PRINT ITEMS; “стоимость в долл.”;УАЕиЕ
Ok
run
Наименование изделия? Медный светильник
Стоимость? 83.50
Медный светильник стоимость в долл. 83.5
Ок

Этот пример демонстрирует некоторые особенности оператора
PRINT. Так, в своем простейшем виде оператор PRINT (строка
200) обеспечивает вывод на экран дисплея пустой строки. Строка
210 показывает, что с помощью одного оператора PRINT можно
вывести несколько значений (в примере выводятся строковая пе­
ременная, строковая константа и числовая переменная).

Вывод пробелов

Число пробелов между соседними словами определяется типами
соответствующих значений, а также знаками препинания, исполь­
зуемыми в операторе PRINT при перечислении значений или
имен переменных. Любые два значения, разделенные в операторе
PRINT точкой с запятой, выводятся непосредственно друг за другом.
При выводе таким образом строковых значений можно получить
конкатенацию нескольких строк, и в ряде случаев это удобно.
Однако слитное написание числовых значений практически всегда
бессмысленно, и поэтому после каждого числового значения обяза-

160 Глава 8

тельно дается один пробел. Использование точки с запятой в опе­
раторе PRINT при выводе числовых и строковых значений было про­
иллюстрировано в предыдущем примере.

Замена в операторе PRINT точки с запятой на запятую позво­
ляет выводить значения в стандартной табличной форме по столб­
цам. В этом случае оператор PRINT делит весь экран дисплея на
несколько зон; ширина каждой зоны (кроме последней) равна 14 сим­
волам. Ширина последней зоны составляет 12 символов при 40-
символьном экране и 10 символов при 80-символьном экране. Если
в операторе PRINT перед именем переменной (или собственно
значением) стоит запятая, то перед выводом соответствующего
значения курсор переместится к началу очередной зоны.

Пример
list
50 PRINT “Наименование изделия”, “—Стоимость—”
100 READ ITEMS,COST
110 PRINT ITEMS,,COST
120 READ ITEMS,COST
130 PRINT ITEMS,,COST
140 PRINT
1000 DATA Письменный стол,875,Стул,260
Ok
run
Наименование изделия
Письменный стол
Стул
Ок

— Стоимость —
875
260

В данном примере первая выводимая строковая константа про­
граммы (строка 50) выходит за пределы первой зоны, и поэтому вто­
рая константа выводится в третьей зоне. Для того чтобы после­
дующие выводимые значения располагались в нужных столбцах, в
соответствующих операторах PRINT (строки 110 и 130 программы)
между именами переменных ставятся две запятые и при выводе
вторая зона пропускается.

Установка исходной позиции курсора при выводе данных
При отсутствии в конце оператора PRINT запятой или точки с

запятой выполнение этого оператора завершается перемещением
курсора в крайнюю левую позицию экрана и на одну строку вниз.
По аналогии с механизмом пишущих машинок и телетайпов это
действие названо возвратом каретки.

Возврат каретки можно отменить, если поставить в конце опет
ратора PRINT запятую или точку с запятой. Если оператор PRINT
оканчивается точкой с запятой, то курсор остается в конце послед­

Работа с числовыми и строковыми данными 161

него выведенного значения, а если запятой, то курсор устанавлива­
ется в начало следующей зоны.

Пример. Используя точку с запятой в операторе PRINT, можно
включить в наводящее сообщение значение некоторой переменной.

list
100 INPUT “Как Вас зовут”; N$;
110 PRINT “Сколько Вам лет, ” ; N$;
120 INPUT AGE
Ok
run
Как Вас зовут? Иола
Сколько Вам лет, Иола? 32
Ок

В приведенной программе строковое значение (строка 100)
сначала вводится пользователем, а затем это значение (строка 110)
включается с помощью оператора PRINT во второе выводимое
сообщение. Поскольку в конце оператора PRINT стоит точка с за­
пятой, возврата каретки не происходит и ответ пользователя на
запрос второго оператора INPUT (строка 120) располагается в той
же строке экрана дисплея, что и само сообщение.

При выводе достаточно длинных строк возврат каретки про­
изводится автоматически при достижении курсором крайней правой
позиции на экране дисплея. Автоматический возврат каретки про­
исходит всегда независимо от знака пунктуации, стоящего в конце
оператора PRINT. Это приводит иногда к неожиданному побочному
эффекту: если в результате выполнения оператора PRINT запол­
няется в точности одна строка экрана, возврат каретки производится
подряд два раза (если только в конце PRINT не стоит точка с
запятой). В результате двойного возврата каретки на экране пропу­
скается пустая строка, а если перед этим была заполнена последняя
строка экрана, то весь текст на экране сдвигается на одну строку
вверх.

Пример. Вывод значений на 40-символьный экран дисплея.

list
10 PRINT „“123456789012”;
20 PRINT „“абвгдежзиклм”
30 PRINT „“123456789012”;
Ok
run

123456789012
абвгдежзиклм
123456789012

Ok

6 № 2275

162 Глава 8

В результате выполнения любого из трех указанных выше опе­
раторов PRINT одна строка экрана дисплея заполняется целиком.
Поскольку первый из этих операторов оканчивается точкой с за­
пятой, возврата каретки, сопровождающего обычно завершение
оператора PRINT, не происходит, и осуществляется лишь авто­
матический возврат каретки после заполнения последней позиции
в строке экрана. Поскольку в конце второго оператора PRINT не
стоит точка с запятой, возврат каретки производится два раза под­
ряд, в результате чего пропускается незаполненная строка.

Одна из особенностей оператора PRINT, связанная с выводом
длинных строк, состоит в следующем. Если оказывается, что вы­
водимое значение не умещается в оставшейся части текущей строки,
то оператор PRINT выводит это значение целиком на следующей
строке, начиная с крайней левой позиции.

Пример
print “А” „ “1234567890123”
А
1234567890123Ок

Две запятые в операторе PRINT приводят к перемещению кур­
сора на 30-ю символьную позицию строки экрана, после чего опе­
ратор должен вывести 13-символьное строковое значение. Посколь­
ку целиком это значение не умещается в оставшихся 10 позициях на
текущей строке (рассматривается 40-символьный экран), оно вы­
водится с начала следующей строки.

Выводимые числовые значения
Вид выводимых числовых значений зависит от целого ряда

факторов. Если выводимое значение отрицательное, то перед са­
мим значением выводится знак минус, а если положительное, то
вместо знака плюс выводится (в качестве первого символа) пробел.
Как при отрицательных, так и при положительных значениях после
последней выведенной цифры оператор PRINT добавляет один
пробел.

Пример
list
240 INPUT “Введите число: ”,N
250 PRINT
260 PRINT N; “плюс —N; “равно 0”
Ok
run
Введите число: 3
3 плюс —3 равно 0
Ok

Работа с числовыми и строковыми данными 163

Если в числе не слишком много значащих цифр, оно выводится
в обычном десятичном представлении. Значения с обычной точно­
стью, содержащие более семи значащих цифр, и значения с двой­
ной точностью, имеющие более 16 значащих цифр, выводятся в экс­
поненциальном представлении (рис. 7.2).

Пример
list
1300 DEFSNG S.DEFDBL D
1400 INPUT “Значение с обычной точностью” jSINGLE
1410 INPUT “Значение с двойной точностью”;DOUBLE
1420 PRINT
1430 PRINT “Значение с обычной точностью: ”;SINGLE
1440 PRINT “Значение с двойной точностью: ”;DOUBLE
Ok
run
Значение с обычной точностью? 12345678900
Значение с двойной точностью? .001234567890123456789
Значение с обычной точностью: 1.234568Е+10
Значение с двойной точностью: 1.234567890I23457E—03Ок
run
Значение с обычной точностью? 1234.56789
Значение с двойной точностью? 123456789.123456789
Значение с обычной точностью: 1234.568
Значение с двойной точностью: 123456789.1234568Ок

Стоящий после числовой константы восклицательный знак ука­
зывает на обычную точность, знак процента (%) — на целый тип зна­
чения, в остальных случаях числовая константа считается зна­
чением с двойной точностью. Все числовые значения выводятся в де­
сятичной форме (восьмеричные и шестнадцатеричные константы пе­
ред выводом преобразуются).

При выполнении оператора PRINT не выводятся нули, стоящие
в начале числа до десятичной запятой, и нули, стоящие после запя­
той в конце всего числа, что не очень удобно при выводе значений
денежных сумм (например, стоимость 83.50 будет иметь вид 83.5).
Для вывода значений денежных сумм в удобном виде в Бэйсике пре­
дусмотрен оператор PRINT USING (гл. 10).

Выражения над переменными и массивами

При составлении программ часто возникает необходимость ком­
бинировать и сравнивать значения различных переменных, элемен­
тов массивов и констант для самого разнообразного их последую­
6*

164 Глава 8

щего использования. Такие сочетания и сравнения осуществляются
с помощью выражений.

Выражение состоит из операндов (тех значений, которые сравни­
ваются или комбинируются) и знаков операций, определяющих спо­
соб комбинирования или сравнения. Наряду с обычными арифме­
тическими операциями сложения, вычитания, умножения и деле­
ния в выражения могут входить и более сложные операции над чис­
лами. Кроме того, используются операции сравнения (значений двух
операндов), логические операции, которые соединяют операнды соот­
ветственно правилам логики, а также одна строковая операция.

Выражения можно использовать практически во всех тех слу­
чаях, когда переменные или константы служат для вычисления не­
которых значений. Например, с помощью выражения можно задать
выводимое значение в операторе PRINT, определить значение ин­
декса для элемента массива, установить размерность массива в
операторе DIM. Ограничения, накладываемые на использование вы­
ражений, как правило, довольно естественны. Так, выражениям
нельзя присваивать значения с помощью операторов LET, READ
или INPUT. Выражения, перечисленные в качестве значений в опе­
раторе DATA, воспринимаются интерпретатором как строковые
константы, т. е. не вычисляются. И наконец, тип значения, полу­
чаемого в результате вычисления всего выражения, должен быть
согласован с характером использования этого выражения. Напри­
мер, выражение, определяющее строковое значение, нельзя исполь­
зовать в качестве индекса массива.

Приоритет операций

В программах часто присутствуют сложные выражения, содер­
жащие большое число операций и операндов. При вычислении та­
ких выражений интерпретатору должно быть известно, в какой по­
следовательности нужно выполнять входящие в них операции.
Однако обычно результат вычислений зависит от порядка выполне­
ния операций. Например, если при вычислении выражения 100+
+ 10*5 сначала выполняется умножение, то результат равен 150
(10*5=50 и 100+50=150), а если сначала выполняется сложение,
то в результате получится 550 (100+10=110 и 110*5=550). Одна­
ко в некоторых случаях порядок выполнения операций выражения
несуществен. Например, при вычислении выражения 6—3+1—23
неважно, какие операции выполнять сначала, сложение или вычи­
тание; результат будет одним и тем же: —19.

В Бэйсике ПВМ выражения вычисляются в соответствии со стан­
дартными правилами операторного предшествования. Приоритеты
различных операций приведены в табл. 8.1. Согласно этой таблице,
умножение имеет больший приоритет, чем сложение, так что ре­
зультатом выражения 100+10*5 будет 150; некоторые операции

Работа с числовыми и строковыми данными .165

Таблица 8.1. Стандартные приоритеты операцийОбозначение операции Приоритет *) Число операндов Название операции
Числовые операции 2)

А 12 2 числовых Возведение в степень
— 11 1 числовой Изменение знака
* 10 2 числовых Умножение
/ 10 2 числовых Деление

9 2 числовых Деление нацело * 2 3)
MOD 8 2 числовых Вычитание по модулю 4)
+ 7 2 числовых Сложение
— 7 2 числовых Вычитание

Ч Операции перечислены в порядке убывания приоритета; операции с одинаковым приоритетом выполняются последовательно слева направо. Стандартный приоритет опера­ций можно изменить с помощью скобок: выражения в скобках всегда вычисляются в пер­вую очередь.2) Если числовые операнды одного и того же выражения различаются по точности, то среди них выбирается операнд с наибольшей точностью, а все остальные операнды преоб­разуются к его типу.3) Значения операндов при делении нацело должны быть в пределах от —32768 до 3276 7; для получения результата этой операции отбрасывается остаток от деления.4) Эта операция дает остаток от деления значения первого операнда на значение вто­рого.5) В операции сравнения операнды должны быть совместимыми по типу, т. е. либо оба числовые, либо оба строковые.в) Подробно логические операции описаны в табл. 8.2. Операндами логических опе­раций могут быть выражения с операциями сравнения или числовые значения от —32768 до 32767.

Строковые операции
+ 7 2 строковых КонкатенацияОперации сравнения 5)— 6 2 однотипных Равно

6 2 однотипных Не равно
6 2 однотипных Не равно
6 2 однотипных Меньше чем
6 2 однотипных Больше чем

<с — 6 2 однотипных Меньше или равно
6 2 однотипных Меньше или равно
6 2 однотипных Больше или равно

— > 6 2 однотипных Больше или равно

Логические операции «)
NOT 5 1 логический Отрицание
AND 4 2 логических Конъюнкция
OR 3 2 логических Дизъюнкция
XOR 2 2 логических Исключающая дизъюнкция
EQV 2 2 логических Эквивалентность
IMP 1 2 логических Импликация

166 Глава 8

имеют одинаковый приоритет. Если в одном и том же выражении
встречается несколько равноприоритетных операций, то первой
выполняется крайняя левая операция, затем — вторая слева и т. д.
Например, результат вычисления выражения 200/5—4*10 ра­
вен 0, поскольку 200/5=40, 4*10=40 и 40—40=0.

Изменение стандартного порядка операций
Стандартный порядок выполнения операций можно изменить

с помощью скобок, так как первыми всегда выполняются опера­
ции, заключенные в скобки. Например, 200/(5—4)*10 равно 2000,
так как (5—4) = 1, 200/1=200 и 200*10=2000. В пределах скобок
операции выполняются в стандартном порядке, если только он не
нарушается наличием внутренних скобок. Скобки могут вклады­
ваться одни в другие практически неограниченно; первым всегда
выполняется подвыражение, заключенное в самые внутренние скоб­
ки. Хотя существует теоретический предел числа вложений скобок,
который зависит от степени сложности выражения, на практике он
достигается весьма редко. Если все же выражение не удовлетворяет
этому ограничению, выдается сообщение “Out of memory...” («Не­
хватка памяти...»).

Числовые выражения
В числовые выражения входят операции над целыми, вещест­

венными с обычной и двойной точностью, восьмеричными и шест­
надцатеричными значениями. Если числовое выражение содержит
операнды различных типов, то при его вычислении среди них выде­
ляется тип, имеющий наибольшую точность, и все остальные опе­
ранды преобразуются к этому типу. С той же точностью вычисля­
ется и результат всего выражения. Заметим, что это преобразова­
ние не повышает действительной точности операндов. Например,
целое значение, преобразованное в вещественный тип данных, всег­
да дополняется нулевой дробной частью (все значащие цифры дроб­
ной части преобразованного числа равны нулю). Аналогично значе­
ние с обычной точностью при преобразовании к двойной точности бу­
дет иметь не более шести значащих цифр, отличных от нуля.

Окончательная точность результата числового выражения опре­
деляется характером его использования. Если выражение входит
в оператор PRINT, то его значение выводится с той же точностью,
с которой оно было вычислено; если же результат выражения при­
сваивается некоторой переменной, то он преобразуется так, чтобы
соответствовать точности этой переменной. При использовании вы­
ражения в качестве индекса массива результат его вычисления ок­
ругляется до целого значения.

Числовые операции, допустимые в Бэйсике ПВМ, описаны в
табл. 8.1. Всего таких операций восемь: четыре из них — это

Работа с числовыми и строковыми данными 167

обычные арифметические действия сложения, вычитания, умноже­
ния и деления, а остальные четыре — менее распространенные опе­
рации возведения в степень, перемены знака, деления нацело и вы­
числения остатка. При выполнении операции возведения в степень
значение умножается само- на себя заданное число раз. Операция
перемена знака преобразует заданное число в число с той же абсо­
лютной величиной, но противоположного знака. Деление нацело
выполняется как обычное деление, только операнды при этом долж­
ны быть не меньше —32768 и не больше 32767, а дробная часть ре­
зультата деления отбрасывается (не округляется), и остается лишь
целая часть частного. Операция вычисление остатка позволяет
получить остаток от деления одного числа на другое.

Пример
list
10 INPUT “1-е число”;Ы1
20 INPUT “2-е число”;№
30 PRINT “Возведение в степень:

Nl; “A”;N2; “=”;N1AN2
40 PRINT “Перемена знака: —N1; —N1
50 PRINT “Деление нацело:

Nl; “\”;N2; “=”;N1\N2
60 PRINT “Вычисление остатка:

Nl; “MOD”;N2; “=”;N1 MOD N2
70 RUN 'Рестарт; для останова нажать <Break>
Ok
run
1-е число? 10
2-е число? 3
Возведение в степень: 10 А 3 = 1000
Перемена знака: — 10 =—10
Деление нацело: 10\3 = 3
Вычисление остатка: 10 MOD 3 = 1
1-е число?
Break in 10
Ok

Заметим, что в приведенном примере повторный запуск про­
граммы производится с помощью команды RUN (строка 70). Для
прерывания выполнения программы и перехода к режиму немед­
ленной обработки следует использовать комбинацию операторов
Ctrl | Scroll | Lock (клавиша Break).

Строковые выражения
В наборе операций Бэйсика ПВМ имеется одна чисто строковая

операция — конкатенация, т. е. соединение строковых значений
друг с другом с образованием одной длинной строки.

168 Гласа 8

Пример. Выполнение операции конкатенации.

list
10 INPUT “1-е строковое значение”;S1$
20 INPUT “2-е строковое значение”;52$
30 S$=S1$+S2$
40 PRINT Sl$; “ + ”;S2$;“ = ”;S$
Ok
run
1-е строковое значение? пере
2-е строковое значение? оценка
пере + оценка = переоценка
Ок

Выражения с операциями сравнения

Операция сравнения позволяет сравнивать два значения и уста­
навливать, выполняется ли между ними заданное соотношение.
Допустимы следующие шесть типов отношений: равно, не равно,
меньше, меньше или равно, больше, больше или равно. Соответ­
ствующие операции сравнения приведены в табл. 8.1.

Если операция сравнения выполняется над числовыми значе­
ниями, то эти значения могут быть разного типа. Однако при срав­
нении значений, имеющих различную точность, следует иметь в ви­
ду некоторые особенности представления чисел в памяти вычисли­
тельной машины. Например, представление числа 1,23456789 в ви­
де значения с обычной точностью меньше, чем представление этого
же числа в виде значения с двойной точностью. На первый взгляд
может показаться, что первое значение должно быть больше вто­
рого, поскольку значение с обычной точностью 1,234568 (значение
числа, округленное до 6 знаков после запятой) больше, чем
1,23456789. Однако следует помнить, что седьмая значащая цифра
значения с обычной точностью считается ненадежной и при срав­
нении игнорируется. Таким образом, в действительности сравни­
ваются значения 1,23456789 и 1,23456000.

Для сравнения двух числовых значений лучше всего вычесть
одно из другого и сравнить разность с нулем. Если при этом хотя
бы одно из значений целое, то числа можно считать равными при
условии, что разность отличается от нуля меньше чем на 1; если
среди сравниваемых значений нет целых, но есть хотя бы одно с
обычной точностью, то разность должна отличаться от нуля меньше,
чем на .000001, а если оба значения с двойной точностью, то меньше
чем на 1Е-16. Например, вместо Аф=В! лучше писать ABS
(А#—В!)<.000001.

Строковое значение можно сравнивать только с другими стро­
ковыми значениями. Две строки сравниваются посимвольно до вы­

Работа с числовыми и строковыми данными 169.

явления двух первых несовпадающих символов. Затем сравниваются
(как обычные числовые значения) машинные коды этих несовпа­
дающих символов и определяется наибольший код; соответствующая
строка считается большей. Если первая строка короче второй и
все ее символы совпадают с соответствующими символами второй
строки, то большей считается вторая, более длинная строка. Две
строки одинаковой длины с совпадающими в одинаковых позициях
символами считаются равными; в частности, равными считаются
две нулевые строки.

В случае числовых операндов выражения с несколькими опера­
циями сравнения употребляются редко, а в случае строковых опе­
рандов их использование просто недопустимо. Это связано с тем,
что выражения с операциями сравнения принимают целые значения
(О — «Ложь», —1 — «Истина»). Например, выражение А=В=С
принимает значение «истина» (—1) только тогда, когда А=В и
С=—1 или А<>В и С=0. Выражение типа А$=В$=С$ вы­
зовет сообщение об ошибке “Type mismatch” («Несоответствие ти­
пов»), поскольку при выполнении первого сравнения А$=В$
получится числовое значение, которое нельзя сравнивать со стро­
ковой переменной С$.

Выражения с операциями сравнения наиболее часто использу­
ются при программировании в составе операторов условного пере­
хода для задания условий, определяющих выбор очередного шага
работы программы (гл. 9).

Логические выражения

Логические операции имеют смысл только для логических зна­
чений «Истина» и «Ложь». Поскольку эти значения являются резуль­
татами операций сравнения, неудивительно, что операндами ло­
гических выражений, как правило, являются выражения с опе­
рациями сравнения.

В Бэйсике ПВМ предусмотрено шесть логических операций:
NOT, AND, OR, XOR, IMP и EQV. Каждая операция (кроме од­
номестной операции NOT) сопоставляет значениям двух своих опе­
рандов новое значение «Истина» или «Ложь», полученное в соответ­
ствии с правилами логики (табл. 8.2).

Обычно человеку легче разобраться в логическом выражении,
если вместо абстрактных операндов в него входят знакомые повсед­
невные понятия. Например, с помощью логических выражений
можно определять свою позицию по отношению к кандидатам
противоборствующих партий во время предвыборной кампании.
В этом случае официальные позиции республиканской и демокра­
тической партий можно представить в качестве операндов. Для
каждого пункта платформы первым операндом является утверж­
дение: «Республиканцы поддерживают этот пункт», а вторым —

170 Глава 8

Таблица 8.2. Результаты логических операций

Значение первого операнда Операция Значение второго операнда Значение выражения Значение первого операнда Операция Значение второго операнда Значение выражения
NOT И Л И XOR И л
NOT л и и XOR л и

л XOR и и
л XOR л л

И AND и и и EQV и и
и AND л л и EQV л л
л AND и л л EQV и л
л AND л л л EQV л и
и OR и и и IMP и и
и OR л и и IMP л л
л OR и и л IMP и и
л OR л л л IMP л и

«Демократы поддерживают этот пункт». Тогда с помощью логи­
ческого выражения можно определить ложность или истинность
утверждения «Я поддерживаю этот пункт».

Используя операцию NOT, операндом которой является пози­
ция республиканцев, вы утверждаете, что ваши мнения противо­
положны. Выражение с операцией AND говорит о том, что вы под­
держиваете пункт платформы только в том случае, если его поддер­
живают и республиканцы, и демократы. Выражение с операцией
OR означает, что вы поддерживаете пункт платформы, если его под­
держивает хотя бы одна из партий. В случае операции XOR вы под­
держиваете пункт платформы, если его поддерживает только ка­
кая-нибудь одна из партий, но не обе. Операция EQV противополож­
на XOR: она говорит о том, что вы поддерживаете пункт платфор­
мы, если сразу обе партии поддерживают или отвергают его. Вы­
ражение с операцией IMP утверждает, что вы поддерживаете пункт
платформы всегда, кроме случая, когда этот пункт поддерживают
республиканцы и отвергают демократы.

Функции

Функции, в определенном смысле, можно рассматривать как по­
нятие, промежуточное между командами и выражениями. Как и
команде, каждой функции соответствует определенное командное
слово, и, подобно выражению, она сопоставляет значениям не­
скольких операндов новое значение. В Бэйсике ПВМ имеется 61

Работа с числовыми и строковыми данными 171

стандартная функция, большинство из которых выдают в качестве
результата числовое значение. Функции реализуют различные вы­
числения, анализ строковых данных, преобразование типов дан­
ных, а также позволяют осуществлять непосредственное управление
вычислительной машиной и ее внешними устройствами и анализи­
ровать состояние и содержание файлов данных. Имеется 17 функций,
результатами выполнения которых являются строковые значения,
и еще 7 функций, которые хотя и вычисляют числовые значения, но
связаны со строковыми данными. Все функции, входящие в Бэйсик
ПВМ, перечислены в приложении А, а наиболее употребительные
из них будут описаны ниже.

Функция может заменять некоторое выражение или быть его
частью. Для использования функции следует указать ее идентифи­
цирующее имя и перечислить за ним операнды, заключив их в скоб­
ки.

Пример. Строковая функция.
print string$(40,“*”)
««я*****#*****»***#***#****#****#*###***
Ok

Как видно из примера, функция STRINGS формирует строко­
вое значение, состоящее из одного и того же повторяющегося сим­
вола. Функция имеет два операнда; значение второго операнда —
повторяющийся символ, причем число его повторений (коэффициент
повторения) задается первым операндом. Значение коэффициента
повторения должно быть положительным и не больше 255.

Функция не обязательно должна иметь два операнда; в Бэйсике
ПВМ имеются функции с одним операндом (их довольно много), а
также несколько функций с тремя операндами. Примером функции
с тремя операндами является функция INSTR, которая проверяет,
является ли одна цепочка символов (строка) частью (подстрокой)
некоторой другой. В качестве операндов этой функции выступает
проверяемая строка, искомая строка и номер первой позиции, с
которой нужно начинать просмотр проверяемой строки. В резуль­
тате вычисления функции выдается целое число, равное номеру
позиции начала вхождения искомой строки в проверяемую.

Пример

list
10 INPUT “Проверяемая строка: ”, S$
20 INPUT “Искомая строка: ”, F$
30 INPUT “Просмотр с позиции: ”, Р%
40 PRINT “Вхождение: ”;INSTR(P°/o,S$, F$)
Ok
run
Проверяемая строка: Завораживающий

172 Глава 8

Искомая строка: щий
Просмотр с позиции: 7
Вхождение: 12Ок

Первый операнд в INSTR (номер позиции начала просмотра)
может отсутствовать; в этом случае считается, что он равен 1, т. е.
проверяемая строка просматривается с первого символа.

Функции выделения подстроки
Наиболее часто используются следующие три функции выделе­

ния подстроки: LEFTS (выделение начала строки), RIGHTS (вы­
деление конца строки) и MID$ (выделение середины строки). Для
каждой из них надо указать исходную строку и число выделяемых
символов, а в случае функции MID$ необходимо задать номер по­
зиции в исходной строке, начиная с которой будет выделяться под­
строка (слева направо).

Пример
list
10 INPUT “Строка: ”, S$
20 INPUT “Количество символов: ”,N%
30 INPUT “Номер нач. поз. для MID$: ”,SP%
40 PRINT “Конец: ”;RIGHT$(S$,N°/o)
50 PRINT “Начало: ”;LEFT$(S$,N%)
60 PRINT “Середина: ”;MID$(S$,SPo/o,N%)
Ok
run
Строка: Он рад своей победе
Количество символов: 6
Номер нач. поз. для MID$: 8
Конец: победе
Начало: Он рад
Середина: своей
Ок

Если количество выделяемых символов задать числом, большим
длины всей строки, то ошибки не произойдет; в этом случае функ­
ции LEFTS и RIGHTS выдадут всю исходную строку, a MID$ —
всю оставшуюся часть строки, начиная с заданной позиции. Когда
число выделяемых символов задается равным нулю или номер на­
чальной позиции для функции MID$ больше длины всей исходной
строки, результатом выполнения любой из трех функций будет ну­
левая подстрока.

С помощью функции MID$ можно также присваивать значение
некоторой подстроке:
MID$(S$,5,3) - “цемент”

Работа с числовыми и строковыми данными 173

В этом случае первый операнд определяет исходную строку, а вто­
рой операнд — номер позиции в этой строке, начиная с которой
символы будут заменяться на новые значения. Третий операнд ука­
зывает, сколько символов в исходной строке получат новые значе­
ния; эти новые значения символов выбираются из строки, стоящей
справа от знака равенства, начиная с ее первого символа. Третий
операнд может отсутствовать, и тогда используется вся строка,
стоящая справа от знака равенства.

Функции, определяемые пользователем
Помимо стандартных функций пользователь может определить

и свои собственные. Так, можно определить функцию округле­
ния числовых значений до сотых долей (такая функция удобна, на­
пример, при выполнении операций над значениями денежных сумм):
10 DEF FNCENT(X) = INT(X*100+.5)/100

Оператор определения функции начинается с командного слова
DEF, после которого должно быть указано имя функции, начинаю­
щееся обязательно с букв FN. Оставшаяся часть этого имени может
представлять собой любое допустимое имя переменной (см. рис. 7.4 и
табл. 7.2). Вслед за именем функции идет список параметров, за­
ключенный в скобки. Параметры — это имена фиктивных перемен­
ных, резервирующих место в памяти для фактических значений,
которые должны быть определены к моменту выполнения функции.
В оставшейся части оператора записывается выражение, определяю­
щее, какие действия производит данная функция. Операндами это­
го выражения обычно являются фиктивные переменные из списка
параметров. В качестве операндов могут использоваться и другие
переменные, элементы массивов, константы, функции. Разрешается
использовать любые допустимые виды выражений при условии, что
тип результирующего значения выражения совместим с типом, опре­
деляемым именем функции (и результат выражения, и значение
функции должны быть либо оба строковыми, либо оба числовыми).

Действительное вычисление значения выражения происходит
лишь в момент обращения к функции.

Пример
list
10 DEF FNCENT(X) = INT(X*100+.5)/100
100 INPUT “Объем реализации: $”,АМТ=Н=
ПО INPUT “Налоговая ставка: ”,RATE
120 TAX-ENCENT (RATE/100*AMT#)
500 PRINT „ AMT#
510 PRINT,“Налог с оборота”,TAX
520 PRINT, “Итого» ,FNCENT(TAX+AMT#)
Ok

174 Глава 8

run
Объем реализации: $9.97
Налоговая ставка: 6.5

Налог с оборота
Итого

9.97
.65
10.62Ок

Для использования в программе определенной ранее функции
следует указать ее имя (начинающееся с FN), а затем в скобках пере­
числить значения, которые будут подставлены вместо фиктивных
переменных в списке параметров функции. Каждое значение должно
быть совместимо по типу с соответствующей фиктивной переменной
(строковой или числовой). При выполнении функции указанные
значения подставляются вместо фиктивных переменных только в
этой функции и нигде больше, даже если в программе встречаются
переменные с теми же именами, что и у фиктивных переменных. Если
в выражение, определяющее функцию, входят какие-либо нефик­
тивные переменные, то при вычислении функции берутся их те­
кущие значения. Тип и точность результирующего значения опре­
деляются именем функции.

Функции преобразования числовых данных

В Бэйсике ПВМ предусмотрен целый ряд функций, преобразую­
щих данные из одного типа в другой. Из них по крайней мере три
функции преобразуют значение с обычной или двойной точностью
в целое число: функция FIX просто отбрасывает все цифры после
десятичной запятой; функция INT определяет наибольшее це­
лое, не превосходящее значения каждого ее операнда, а функция
CINT округляет заданное число до ближайшего целого.

Пример. Различия между функциями FIX, INT и CINT.
list
10 INPUT “Число” ;A
20 PRINT “FIX(“ ;A”;”) = ”;FIX(A)
30 PRINT “INT(” ;A”;”) - ”;INT(A)
40 PRINT “CINT(” ;A”;n) = ”;CINT(A)
50 PRINT
60 RUN 'Рестарт; для останова нажать <Break>
Ok
run
Число? 101.625
FIX(101.625) = 101
INT(101.625) - 101
CINT(101.625) = 102

Работа с числовыми и строковыми данными 175

Число? 500.1
FIX(500.1) = 500
INT(500.1) = 500
CINT(500.1) = 500
Число? —265.1
FIX(—265.1) = —265
INT(—265.1) = —266
CINT(—265.1) = —265
Число? —133.9
FIX(—133.9) = —133
INT(—133.9) = —134
CINT(—133.9) = —134
Число?
Break in 10
Ok

Результат вычисления как функции FIX, так и функции INT
является значением с обычной точностью (с нулевой дробной ча­
стью). Значение, полученное в результате вычисления CINT, яв­
ляется значением целого типа и должно изменяться в пределах от
—32768 до 32767. Поэтому операнды этой функции не должны при­
нимать значений, выходящих за указанные пределы; в противном
случае произойдет ошибка.

Функция CSNG округляет заданное значение с двойной точ­
ностью до семи или менее значащих цифр следующим образом:
print csng(97.5436750000001)
97.54368
Ok

Функция CDBL преобразует целое значение или значение с
обычной точностью в значение с двойной точностью (фактическая
точность самого числа при этом не повышается).

Пример
print cdbl(10%/3%)
3.333333253860474
Ok
print cdbl(l. 11/1.5!)
.7333333492279053
Ok

Из данного примера следует, что получаемые значения с двой­
ной точностью правильны лишь до седьмого знака, а все следующие
за этим знаком цифры могут оказаться неверными.
Цифровые строки

Кроме трех числовых форматов числа можно представить еще и в
виде строковых значений, например «1234.56». В ряде случаев удоб­

176 Глава 8

нее работать с числовыми значениями, а не с их представлениями
в виде цифровых строк. Так, употребление цифровых строк в выра­
жениях с операциями сравнения может привести к неверным ре­
зультатам. Например, выражение “10”=“10.0” ложно, хотя 10= 10.0
истинно.

Цифровую строку можно преобразовать в числовое значение
с помощью функции VAL. Преобразование начинается с крайнего
левого знака и заканчивается, когда преобразован последний знак
либо когда встретился недопустимый нецифровой знак. Цифровая
строка может содержать любое количество стоящих впереди пробе­
лов, знак плюс или минус, любое число цифр и десятичную точку;
допустима также запись числа в экспоненциальном представлении.
Если строка начинается с нецифрового знака, то результатом вы­
полнения VAL является нуль.

Примеры. Действие функции VAL.
print val(“1234.56789”);val(“—1234.56789!”)

1234.56789 — 1234.568
Ok
print val (“9.29558d7 миль”),уа1(“Индекс 94596”)

92955800 0
val(“47.5%”)
Svntax error
Ok

Точность выполняемого функцией VAL преобразования опреде­
ляется «точностью» цифровой строки — количеством цифр и абсо­
лютной величиной числа. Если первым нецифровым символом явля­
ется восклицательный знак, то результат преобразования представ­
ляет собой число с обычной точностью. В то же время знаки ф
и % не интерпретируются здесь, как в обычных числовых констан­
тах. Так, если первым нецифровым символом является знак про­
цента (%), это будет считаться ошибкой.

Действие функции STR$ противоположно действию функции
VAL: она преобразует числовое значение в цифровую строку. Пре­
образованное в строку числовое значение будет иметь тот же фор­
мат, что и при выводе с помощью оператора PRINT. Единственное
отличие от оператора PRINT — отсутствие в данном случае допол­
нительного пробела после последней цифры строки.

Пример
print 6620; “км/ч” ,str$(6620); “км/ч”

6620 км/ч 6620 км/чОк
print str$(&h3f)

63
Ok

Работа с числовыми и строковыми данными 177

print str$(.0000000299792458);“ м/с”
.0000000299792458 м/с
Ок

Кроме STR$ имеется еще пять функций, преобразующих раз­
личными способами числовое значение в цифровую строку. Функции
ОСТ$ и НЕХ$ преобразуют десятичное числовое значение в его
восьмеричное и соответственно шестнадцатеричное представления
в виде цифровых строк (при необходимости производится округле­
ние). Преобразуемое значение должно быть не меньше —32768 и не
больше 65535.

Примеры
list
10 INPUT “Число: ” ,№/о
20 PRINT №/о;“есть ”;НЕХ$(№/о);“ шести.,

ОСТ$ (N%);“ восьм.”
30 RUN 'Рестарт; для останова нажать <Break>
Ок
run
Число: 100

100 есть 64 шести., 144 восьм.
Число: 129,8

129 есть 82 шести., 202 восьм.
Число:
Break in 10
Ok

Функции MKI$, MKS$ и MKD$ предназначены для работы
с дисковыми файлами данных; они преобразуют числовые величины
в целые значения и в числа с обычной и двойной точностью, пред­
ставленные в виде цифровых строк (гл. 12).

Функции преобразования символов в код ASCII
Функция ASC позволяет получать для произвольного символа

значение его числового кода ASCII (коды всех символов приведе­
ны в приложении D). Обратная ей функция CHR$ интерпретирует
произвольное числовое значение как код и выдает соответствующий
этому коду символ.

Пример. Использование функций ASCII и CHR$ в режиме не­
медленной обработки.
print asc(“А”)

65
Ok
print chr$(64+33)
a
Ok

Глава 9

ОРГАНИЗАЦИЯ ПРОГРАММЫ

Лишь немногие программы могут быть записаны в виде длинной последо­
вательности выполняемых один за другим операторов. В данной главе описываются
средства Бэйсика, позволяющие управлять этим процессом. Они включают в себя
оператор безусловного перехода, операторы условного перехода и операторы
цикла. Кроме того, рассматриваются способы структурирования программ пугем
создания программных модулей и организации их совместной работы. Использо­
вание этих способов существенно облегчает разработку и отладку программ
и повышает эффективность последних.

Организация ветвления
Естественный порядок выполнения операторов означает, что

операторы выполняются один за другим в порядке их написа­
ния. Для изменения этого стандартного порядка выполнения опе­
раторов в Бэйсике предусмотрено несколько средств.

Оператор GOTO
С помощью оператора GOTO можно изменять естественный

порядок выполнения операторов и передавать управление любой
заранее заданной строке программы, которая указывается после
командного слова GOTO.

Пример
list
10 INPUT “Тип издания: ” ,1ТЕМ$
20 GOTO 100
30 1ТЕМ$=“Тип издания— ”+1ТЕМ$
100 PRINT 1ТЕМ$Ок
run
Тип издания: ежемесячник
ЕжемесячникОк

Номер строки задается в GOTO в виде константы. Если в кон­
станте встречается десятичная точка, то интерпретатор Бэйсика
игнорирует ее и все следующие за ней десятичные цифры.
+++ Не разрешается использовать в качестве номера строки
число в экспоненциальном представлении, переменную или выра­
жение.

Организация программы 179

Если в программе нет строки, номер которой указан в GOTO, то
выдается сообщение “Undefined line number ...” («Неопределенный
номер строки...»).

В операторе GOTO может быть указан номер любой строки про­
граммы, в том числе и строки, в которой нет ничего кроме коммен­
тария. Поскольку, однако, оператор REM не исполняется, лучше пе­
редавать управление следующему за ним исполняемому оператору.
В этом случае программа будет выполняться правильно и после
удаления комментариев. Следующий пример иллюстрирует, что
может произойти, если не придерживаться этой рекомендации.

Пример

list
100 REM Инициализация массивов
110 READ COST(N)
120 READ PRICE(N)
130 N=N+1:GOTO 100
9000 DATA 375,44.50,90
Ok
delete 100
Ok
run
Undefined line number in 130
Ok

В приведенном примере сообщение об ошибке не появится,
если оператор GOTO в строке 130 заменить на оператор GOTO НО.

Выполнение оператора GOTO в режиме немедленной обработки
аналогично выполнению команды RUN, но в отличие от этой коман­
ды оператор GOTO просто начинает выполнение программы с пер­
вого оператора указанной строки, не присваивая никаких началь­
ных значений переменным и не меняя никаких данных. С этой точки
зрения оператор GOTO в режиме немедленной обработки полезен
при отладке и тестировании. В остальных случаях использовать его
в этом режиме не рекомендуется, поскольку существует большая
вероятность задать неправильный номер строки или непреднаме­
ренно изменить значение переменной так, что фактически изменит­
ся вся программа, и это приведет к появлению многочисленных оши­
бок.

Оператор ON-GOTO

Часто возникает необходимость передавать управление не одной
и той же программной строке, а разным строкам — в зависимости
от сложившейся в ходе выполнения программы ситуации. Средст­
вом такой передачи управления является оператор ON-GOTO, ко­

Г80 Глава 9

торый содержит выражение и список номеров строк. Значение вы­
ражения рассматривается как указатель этого списка: 1 озна­
чает, что переход должен осуществляться к строке, номер которой
указан в списке первым, 2 означает, что переход должен осуществ­
ляться к строке, номер которой указан вторым, и т. д.

Пример

list
1000 INPUT “Введите номер элемента

(от 1 до 3): ”,№/о
1010 ON N GOTO 1100,1200,1300
1020 PRINT “Номер не определен”:GOTO 1000
1100 PRINT “Водород”:СОТО 1000
1200 PRINT Телий”:ООТО 1000
1300 PRINT “Литий”:ООТО 1000
Ok
run
Введите номер элемента (от 1 до 3): 2
Гелий
Введите номер элемента (от 1 до 3): _

Дробные значения выражения,указанного в операторе ON-GOTO,
округляются до ближайшего целого числа. Если значение этого
выражения равно 0 или больше числа элементов списка номеров,
то оператор ON-GOTO не выполняется и управление передается
следующему за ним оператору. При отрицательном значении вы­
ражения выдается сообщение «Illegal function call...» («Недопусти­
мый вызов функции...»).

Условная передача управления

С помощью оператора ON-GOTO при некоторых дополнительных
действиях можно осуществить практически любое управление
порядком выполнения операторов Бэйсик-программы. Однако в
ряде случаев этот оператор неудобен и приводит к слишком гро­
моздким конструкциям. В подобных ситуациях лучше использовать
другой оператор условного перехода — оператор IF-THEN.

Оператор IF-THEN

Оператор IF-THEN предписывает выполнять некоторое дей­
ствие только в том случае, когда выполняется заданное условие.
Это условие записывается в операторе IF-THEN в виде логического
выражения, а действие, которое нужно выполнить, задается с по­
мощью обычных операторов Бэйсика. Если выражение принимает
значение «Истина», то действие, заданное оператором, выполняется.

Организация программы 181

В противном случае, т. е. когда выражение «Ложно», оператор, за­
дающий действие, пропускается.

Пример. Использование оператора IF-THEN.
list
100 INPUT “Введите два числа: ”,А,В
ПО IF A>B THEN PRINT “1-е число больше”
120 IF B>A THEN PRINT “2-е число больше”
130 IF B=A THEN PRINT “Числа равны”
139 ' Если оба числа не равны 0, то рестарт
140 IF А<>0 AND В<> 0 THEN GOTO 100
150 END
Ok
run
Введите два числа: —3,5
2-е число больше
Введите два числа: 1е4,1000
Числа равны
Введите два числа: 0,0
Числа равны
Ок

Если действие в IF-THEN задается оператором GOTO (как в
в строке 140 приведенной выше программы), то можно опустить либо
командное слово THEN, либо командное слово GOTO, но не оба
сразу. Таким образом, оператор в строке 140 приведенного выше
примера можно записать в виде

140 IF А<>0 AND В<>0 THEN 100
либо

140 IF А<>0 AND В<>0 GOTO 100

Действие в операторе IF-THEN можно задавать последователь­
ностью нескольких операторов, разделенных двоеточием.

Пример

list
90 GOTO 1000
900 PRINT “Ат. вес элемента ”;ELMT$; “paBeH”;AW
1000 INPUT “Введите номер элемента: ”,N%
1010 IF N%=0 THEN END
1100 IF N% = 18 THEN ЕЬМТ$=“Аргон”

:AW=39.948:GOTO 900
1200 IF N%=26 THEN ELMT$=“Железо”

:AW=55.847:GOTO 900
1300 IF №/o=82 THEN ELMT$=“Свинец”

:AW=207.2:GOTO 900
1400 PRINT “Атомный вес элемента”;

182 Глава 9

N%; “неизвестен”
1410 GOTO 1000
Ok
run
Введите номер элемента: 26
Ат. вес элемента Железо равен 55.847
Введите номер элемента: __

В последовательность операторов, определяющих конструкцию
IF-THEN, может входить любой оператор; если при этом использу­
ется оператор GOTO, то он, естественно, будет последним реально
выполняемым.

Следует соблюдать осторожность и при использовании опе­
ратора REM: поскольку интерпретатор игнорирует всю часть стро­
ки, расположенную после командного слова REM, комментарии
нужно помещать в самом конце строки.

Конструкция IF-THEN-ELSE

Обычно оператор IF-THEN разветвляет программу на 2 части,
которые затем соединяются вновь. Одна ветвь выполняется, если
логическое выражение оператора IF-THEN истинно, а другая ветвь,
если оно ложно. Обе ветви по окончании работы передают управле­
ние, как правило, одному и тому же оператору программы.

Пример
list 940-960
940 IF TERMS$= “S” THEN DSCNT-40:GOTO 960
950 DSCNT=30
960 PRINT STRS(DSCNT); “% NET PRICE

FNCENT(TOTAL*(1—DSCNT/100))

Операторы, выполняемые когда выражение в IF-THEN ложно,
могут располагаться в отдельной строке программы (как в приведен­
ном примере), а могут включаться в сам оператор IF-THEN. В по­
следнем случае они записываются в конце этого оператора после
командного слова ELSE.

Пример
list 940-960
940 IF TERMSS = “S” THEN DSCNT=40 ELSE

DSCNT=30
960 PRINT STRS(SDCNT); ”% NET PRICE

FNCENT (TOTAL*(1—DSCNT/100))

Ф++ Заметим, что перед командным словом ELSE двоеточие не
ставится.

Организация программы 183

Циклы
Часто возникает необходимость выполнять одни и те же шаги

программы по нескольку раз. В подобной ситуации многократного
переписывания одних и тех же строк программы можно в нужном
месте передать управление предыдущим операторам с тем, чтобы они
выполнялись повторно. Однако в некоторых случаях требуется
повторять не всю программу, а лишь некоторую ее часть и не бе­
сконечно долго, а вполне определенное число раз. Для этого необ­
ходимы средства, позволяющие определять, в какой момент следует
прекратить повторное выполнение выделенной части программы.
Можно, например, считать число повторений (или итераций), ис­
пользуя целую переменную, и в зависимости от ее значения с по­
мощью оператора IF-THEN определять каждый раз, следует ли
прекратить повторения или нет.

Пример

list
30 CTR% = 1 'Начальное значение счетчика
40 IF CTR%>8 THEN 70
50 PRINT 2ACTR%;
60 CTR°/o=CTR% + l:GOTO 40
70 REM Возобновление последовательности
80 END
Ok
run
2 4 8 16 32 64 128 256
Ok

При выполнении этой программы строки 50 и 60 повторяются до
тех пор, пока значение переменной CTR % не превысит 8; при каждом
выполнении строки 60 значение этой переменной увеличивается на 1.
Поэтому передача управления снова на строку 50 будет повторяться
ровно 8 раз.

Операторы FOR и NEXT

Как было показано в предыдущем примере, циклы в программе
можно организовывать с помощью обычных операторов условного
перехода. Однако при этом приходится использовать несколько раз­
личных операторов: оператор присваивания счетчику начального
значения, оператор IF-THEN, содержащий условия окончания цик­
ла, и оператор, увеличивающий значение счетчика. Для упрощения
программирования циклов в Бэйсике ПВМ предусмотрены специ­
альные операторы FOR и NEXT, включающие все необходимые
действия по организации цикла.

184 Глава 9

Пример

list
40 FOR CTR°/6 = 1 TO 8
50 PRINT 2ACTR%;
60 NEXT CTR°/o
70 REM Возобновление последовательности
80 END
Ok
run
2 4 8 16 32 64 128 256
Ok

Оператор FOR идентифицирует начало циклического участка
программы, дает имя числовой переменной, которая будет служить
счетчиком числа повторений цикла, присваивает этому счетчику на­
чальное значение и устанавливает максимально возможное значение
числа повторений. Счетчик должен быть простой переменной и не
может быть элементом массива. При выполнении оператора FOR
проверяется текущее значение счетчика циклов; если оно не превос­
ходит максимального, то выполняютя операторы программы, рас­
положенные между FOR и NEXT. При выполнении оператора NEXT
происходит передача управления на начало цикла — на оператор,
следующий за FOR.

Операторы FOR и NEXT всегда должны идти в паре и быть со­
гласованы друг с другом. Если оператор NEXT стоит перед опера­
тором FOR с тем же счетчиком циклов, то при выполнении такого
NEXT выдается сообщение об ошибке “NEXT without FOR...”
(«Нет оператора FOR для данного NEXT...»). Подобное сообщение
выдается и в том случае, когда операторов NEXT в программе не­
достаточно для того, чтобы каждому FOR соответствовал свой
NEXT.

В тот момент, когда при выполнении оператора FOR обнаружено,
что текущее значение счетчика превосходит максимальное значение
(установленное в операторе FOR), происходит передача управления
оператору, следующему за NEXT. Таким образом, когда значение
счетчика превосходит максимальное, входящие в цикл операторы
не выполняются.

Пример

list
10 FOR К=Ю ТО 9
20 PRINT “Цикл выполнен”
30 NEXT К
40 PRINT “Конечное значение =” ;КОк

Организация программы. 185

run
Конечное значение = 10Ок
Шаг цикла FOR/NEXT

Обычно после каждого очередного выполнения всех операторов,
образующих цикл, содержимое его счетчиков увеличиваетя на 1.
В ряде случаев, однако, оказывается удобнее, чтобы величина при­
ращения была отлична от 1. Это можно сделать, добавив в конце
оператора FOR ключевое слово STEP и указав за ним нужное зна­
чение, на которое будет увеличиваться счетчик на каждой итерации
цикла. В качестве величины приращения, или шага цикла, разре­
шается использовать любые значения, в том числе отрицательные
и дробные.

Пример. Использование отрицательного дробного значения
«приращения» (в действительности показание счетчика каждый раз
уменьшается).
list
40 FOR L=3.5 ТО 1 STEP —.5
50 PRINT L;
60 NEXT L
70 REM Возобновление последовательности
80 END
Ok
run
3.5 3 2.5 2 1.5 1
Ok

Если шаг цикла отрицателен, то цикл повторяется до тех пор,
пока значение управляющей переменной не станет меньше конеч­
ного значения, заданного в операторе FOR. В этом случае началь­
ное значение счетчика в операторе FOR должно быть больше ко­
нечного.

Использование счетчика цикла FOR/NEXT

Переменная, играющая роль счетчика повторений (заданная в
операторе FOR), может использоваться внутри цикла точно так же,
как любая другая числовая переменная. В частности, можно даже
изменять ее значение, что, однако, делать не рекомендуется, так как
это может повлиять на число повторений операторов цикла: опера­
тор NEXT всегда дает приращение самому последнему значению
счетчика.

При переходе из цикла на ветвь по какому-либо оператору ус­
ловного или безусловного перехода значение счетчика повторений

186 Глава 9

выбирается равным его последнему значению внутри цикла. При
нормальном завершении цикла, т. е. при выходе из цикла через опе­
ратор NEXT, значение счетчика равно последнему его значению
плюс величина шага цикла. В последнем примере переменная L при
выполнении строки 70 будет иметь значение 0,5.

Задание параметров и организация вложенных циклов FOR/NEXT

Для задания начального и конечного значений счетчика повторе­
ний цикла, а также величины приращения для счетчика в операторе
FOR можно использовать константы, переменные или выражения.

------- 100 FOR ИМ ТО 5

------- 140 FOR С2М ТО *10 STEP *2

------ 17а FOR СЗ=С2 то о step 2

[—200 FOR К=8.5 ТО 10.5 STEP .5

L-240 NEXT К

------ 280 NEXT СЗ

------- 310 NEXT CZ

-------390 NEXT Ct

Рис. 9.1. Вложенные циклы FOR/NEXT.

Но как только оператор FOR выполнен, эти значения считаются
неизменными в течение всего времени выполнения итераций цикла.
Изменение значений переменных внутри цикла не влияет на началь­
ное, конечное значения счетчика и на значение шага, которые были
вычислены в начале цикла.

Циклы FOR/NEXT могут быть вложены друг в друга (рис. 9.1).
Для этого достаточно опустить имя переменной в операторе NEXT,
и тогда оператор NEXT будет соответствовать последнему выпол­
ненному оператору FOR. Однако так поступать не следует, если во
вложенных циклах возможна передача управления из внутреннего
цикла во внешний, поскольку в этом случае указанное выше соот­

Организация программы 187

ветствие будет нарушено и при выполнении программы возникнет
ошибка.

Пример
list
10 DIM N$(2,10)
20 FOR J% = 1 TO 2
30 FOR K% = 1 TO 10
40 INPUT “Имя: ”,N$(Jo/o,K%)
50 IF N$(J%,K%)= ” ” THEN GOTO 70
60 NEXT
70 NEXT
Ok
run
Имя: Милтон
Имя: Чосер
Имя:
NEXT without FOR in 70
Ok

В приведенной программе оператор NEXT в строке 60 является
окончанием внутреннего цикла, начинающегося в строке 30. Однако
если в строке 50 произойдет передача управления на строку 70, то
оператор NEXT строки 70 будет воспринят как последний оператор
внутреннего цикла. Но строка 70 формально является последней
строкой внешнего цикла, начинающегося в строке 20. Поскольку
при указанной передаче управления строка 70 интерпретируется
как завершающая внутренний цикл, для внешнего цикла не найдет­
ся завершающей строки с оператором NEXT. В результате програм­
ма остановится и будет выдано сообщение об ошибке.

Операторы WHILE и WEND
Программировать цикл с помощью операторов FOR и NEXT

удобно, если некоторые действия нужно выполнять известное, за­
ранее заданное число раз. Однако иногда возникает необходимость
изменять число повторений в процессе выполнения цикла либо пре­
рывать процесс выполнения цикла в зависимости от сложившейся
ситуации. В подобных случаях в FOR/NEXT-цикл можно вве­
сти оператор IF-THEN, который при выполнении определенных ус­
ловий передаст управление за пределы цикла. Можно использовать
также операторы WHILE и WEND, предназначенные специально
для организации циклов с нестандартными, нерегулярными, непред­
сказуемыми условиями завершения и позволяющие обходиться без
дополнительных операторов IF-THEN.

Оператор WHILE, с которого начинается в программе цикл
WHILE/WEND, состоит из командного слова WHILE и выражения,

188 Глава 9

заданного с помощью отношений и логических операций. Когда вы­
ражение принимает истинное значение, выполняются операторы,
следующие за оператором WHILE вплоть до оператора WEND.
Как только встречается оператор WEND, управление передается на
оператор WHILE. При повторном выполнении оператора WHILE
заново вычисляется содержащееся в нем выражение и, если оно по-
прежнему истинно, снова выполняются операторы цикла (распо­
ложенные между WHILE и WEND). Как только выражение в опе­
раторе WHILE будет иметь ложное значение, управление переда­
ется оператору, следующему за WEND.

Пример

list
1000 INPUT “Строка для сжатия: ”,S$
1010 RMV$= “ “ ' Удаление указанных символов из введенной

строки
2000 WHILE INSTR(1,S$, RMV$)<>0
2009 '------ Удаление символов по одному---------------
2010 S$=LEFT$(S$,INSTR(1,S$,RMV$) — 1)+

RIGHT$(S$,LEN(S$)— INSTR(1,S$,RMV$))
2020 WEND
3000 PRINT S$
ok
run
Строка для сжатия: а б в г д e
абвгдеОк

Приведенная программа сжимает исходную строку, удаляя из
нее все пробелы. Пока пробелы присутствуют в строке, выражение в
операторе WHILE (строка 2000) принимает истинное значение и вы­
полнение цикла WHILE/WEND (строки 2000—2020) повторяется.
На каждой итерации цикла из сжимаемой строки удаляется один
пробел (строка 2010). Как только все пробелы будут удалены, опе­
раторы цикла больше не выполняются, а управление передается
следующему за WEND оператору, который выводит сжатую строку
(строка 3000). При сжатии можно удалять вместо пробела любой
другой символ; для этого достаточно изменить соответствующим об­
разом значение переменной RMVS (строка 1010).

В операторе WHILE могут также использоваться арифметиче­
ские выражения. В этом случае выполнение цикла повторяется до
тех пор, пока значение такого выражения отлично от нуля. Напри­
мер, вместо оператора WHILE в приведенной выше программе можно
было бы использовать следующий оператор:

2000 WHILE INSTR (1,S$,RMV$)

Организация программы 189

Допускаются вложенные друг в друга циклы WHILE/WEND,
при этом каждому оператору WHILE должен соответствовать свой
оператор WEND, иначе произойдет ошибка.

Структурирование программ
Чем сложнее и длиннее программа, тем острее ощущается пот­

ребность в специальных методах разработки и организации ее функ­
ционирования. Трудности, обусловленные бессистемным написанием
большой и сложной программы, можно сравнить с трудностями,
возникающими при попытке съесть сразу целиком весь батон кол­
басы; в то же время, если разрезать колбасу на ломтики, то съесть
ее не представит никакого труда.

Простейший способ разбиения программы на части — это выде­
ление в ней обособленных разделов по их функциональному назна­
чению. Обычно первую часть программы составляют различные
описания и определения, вторую часть — процедуры инициализа­
ции, третью — ввод данных, затем следует обработка и, наконец,
вывод данных. Для того чтобы в целостной программе отделить
один раздел от другого, можно использовать в каждом из них свой
диапазон номеров строк, достаточно удаленный от диапазонов дру­
гих разделов. Если при написании программы установлен какой-
либо стандартный способ нумерации строк для различных ее разде­
лов, то впоследствии можно легко находить строки с операторами
DIM, с операторами DEF, с операторами DATA и т. д.

Некоторые программные разделы можно в свою очередь подраз­
делять на модули, модули разбивать на отдельные сегменты и т. д.
Конечная цель состоит в том, чтобы полученные в результате окон­
чательного разбиения элементарные модули были достаточно малы
и их можно было бы легко разрабатывать, программировать и отла­
живать. Дополнительное преимущество такого подхода к созданию
больших сложных программ состоит в том, что многие из получен­
ных модулей можно будет использовать как некие «суперкоманды»
в любой другой программе.

Подпрограммы

Часто в различных местах одной и той же программы должна
выполняться одна и та же процедура, например сжатие строк. Для
этого при написании программы можно включить в нее (в соответ­
ствующих местах) несколько экземпляров цикла WHILE/WEND
из предыдущего примера, однако такое дублирование неэкономно.
Вместо этого можно выделить из основной программы процедуру
сжатия строк и при необходимости передавать ей управление из
основной программы. Такая процедура называется подпрограммой,
а передача ей управления — вызовом подпрограммы. После того

190 Глава 9

как подпрограмма закончила работу, управление передается в то
место основной программы, откуда произошло обращение к подпро-,
грамме.

Операторы GOSUB и RETURN
Оператор GOSUB осуществляет вызов подпрограммы. Подобно

оператору GOTO, он передает управление определенной указанной
в нем строке, но при этом еще запоминается и точка вызова, в кото­
рую необходимо вернуться после завершения работы вызванной
подпрограммы. Завершает работу подпрограммы оператор RETURN.
При его выполнении управление передается в основную програм­
му — оператору, следующему за GOSUB, инициировавшим вызов
подпрограммы.

Пример. Использование подпрограмм.
list
1000 INPUT “Строка для сжатия: ”,FS$
1009 'Удаление пробелов из FS$
1010 S$=FS$:RMV$=” ”:GOSUB 2000
1030 PRINT S$
1040 END
1997 '==Подпрограмма сжатия строк= = = = =
1998 ' Значение RMV$— удаляемый символ
1999 В S$ — исходная строка и результат
2000 'WHILE INSTR(l,S$,RMV$)<>0
2010 S$=LEFT$(S$,INSTR (1 ,S$,RMV$)—1)+

RIGHT$(S$LEN(S$)— INSTR(I,S$,RMV$))
2020 WEND
2030 RETURN
Ok

В приведенной программе для удаления всех пробелов из стро­
кового значения используется соответствующая подпрограмма. Эта
подпрограмма (строки 2000—2020) исключает из строки, являющей­
ся значением переменной S$, все символы, равные значению пере­
менной RMV$. Поэтому в основной программе перед вызовом под­
программы надо присвоить этим переменным соответствующие зна­
чения (строка 1010). Оператор GOSUB (строка 1010) запускает под­
программу, а после ее завершения оператор RETURN (строка 2030)
осуществляет возврат управления оператору, следующему за
GOSUB; в данном случае это оператор PRINT (строка 1030). Опера­
тор END (строка 1040) отделяет основную программу от подпро­
граммы.

Обращение к подпрограмме может происходить из нескольких
мест основной программы. Например, если в программу предыду­
щего примера добавить строку, приведенную ниже, то подпрограм­

Организация программы 191

ма будет вызываться еще раз для удаления знака переноса из стро­
ки, являющейся значением переменной S$:

1020 RMV$=“-”:GOSUB 2000 'Удал, переносов

Подпрограммы и стек адресов возврата

При многократном выполнении выхода из подпрограмм с по­
мощью операторов GOTO, ON-GOTO или IF-THEN (вместо опера­
тора RETURN) в конце концов может появиться сообщение об ошиб­
ке «Out of memory ...» («Нехватка памяти...»). Это следует иметь в
виду при использовании внутри подпрограммы операторов передачи
управления за ее пределы. Причина возникающей ошибки довольно
своеобразна: дело в том, что Бэйсик-интерпретатор отводит срав­
нительно небольшой участок динамической памяти для хранения
списка адресов возврата из подпрограмм. Такой список организует­
ся в виде стека и называетя рабочим стеком. Каждый раз при вызове
подпрограммы в стек заносится соответствующий этому вызову
адрес возврата. При выполнении оператора RETURN из стека вы­
бирается адрес возврата, записанный последним, и происходит пере­
дача управления по этому адресу, после чего он удаляется из стека.
Операторы, подобные GOTO или IF-THEN, осуществляют выход
из подпрограммы, не затрагивая стека. Если такой выход из под­
программ происходит часто, то адреса из стека не удаляются, а
лишь добавляются при каждом новом вызове подпрограммы, так что
в результате размер стека может превысить величину отведенного
ему участка памяти. В этом случае программа прекращает работу
и выдается сообщение об ошибке (гл. 15).

Для нестандартного выхода из подпрограммы на конкретную,
строку программы в расширенном Бэйсике предусмотрена возмож­
ность задавать в операторе RETURN номер строки. При выполнении
такого оператора RETURN управление передается строке, номер
которой указан в операторе RETURN, после чего из стека удаляется
последний занесенный в него адрес. Описанное средство следует ис­
пользовать с осторожностью, поскольку при выполнении процедур
в середине какого-либо цикла FOR/NEXT или WHILE/WEND эти
циклы будут оставаться в активном состоянии.

Оператор ON-GOSUB

Оператор ON-GOSUB, как и обычный оператор GOSUB, осущест­
вляет вызов подпрограммы, но при этом управление передается стро­
ке, номер которой выбирается из заданного в ON-GOSUB списка
номеров в соответствии со значением указанного в ON-GOSUB вы­
ражения. В этом отношении оператор ON-GOSUB аналогичен опе­
ратору ON-GOTO.

192 Г.шва 9

Пример
890 ON ASC(R$)—48 GOSUB 910, 930, 950, 970

Значение выражения служит индексом в списке номеров: зна­
чение, равное 1, означает, что управление передается строке с но­
мером, стоящим первым в списке номеров; значение, равное 2, оз­
начает, что управление передается строке с номером, стоящим вто­
рым в этом списке, и т. д. Если значение выражения является дроб­
ным, то оно округляется до ближайшего целого. При значении вы­
ражения, равном 0 или большем числа элементов списка номеров,
никакой передачи управления по оператору ON-GOSUB не проис­
ходит, и программа продолжает выполняться со следующего за
ON-GOSUB оператора. При отрицательном значении выражения
выдается сообщение об ошибке «Illegal function call ...» («Недопу­
стимый вызов функции...»).

Вложенные подпрограммы

Обращения к подпрограммам могут вкладываться одно в другое;
при этом вложенность подпрограмм несколько отличается от вложен­
ности циклов или вложенности скобок в выражении. В случае под­
программ вкладываются не сами подпрограммы, а вызывающие их
операторы GOSUB. Таким образом, первая подпрограмма может
вызывать вторую, вторая — третью и т. д.
Пример
list
1100 GOSUB 8000 'Вывод цитаты в рамке
2000 END
7999 '^^Подпрограмма печати цитаты= = = = = =
8000 GOSUB 9000 'Печать строки звездочек
8010 PRINT “Если программа неправильна, не имеет

значения, какова ее эффективность.”
8020 PRINT “Обычно важнее удобочитаемость программы, чем ее

эффективность.”
8030 GOSUB 9000 'Печать строки звездочек
8040 RETURN
8999 '^^Подпрограмма печати звездочек= =
9000 FOR XCOUNT%-1 ТО 20
9010 PRINT “*
9020 NEXT XCOUNT%
9030 RETURN
Ok

Основная программа в этом примере состоит лишь из оператора
GOSUB (строка 1100) и оператора END (строка 2000). Первая под­

Организация программы 193

программа (строки 8000—8040) осуществляет печать текста цитаты,
окаймленного звездочками. Для печати звездочек первая подпро­
грамма вызывает вторую (строки 9000—9030). Окончательный ре­
зультат выполнения всей программы выглядит следующим образом:
run
* * * ~ ~ ~ ~ ~ ~ ~ ~

Если программа неправильна, не имеет
значения, какова ее эффективность.

Обычно важнее удобочитаемость программы,
чем ее эффективность.

Ок
Вложенные подпрограммы являются довольно мощным средством

разработки и отладки больших программ. Используя принцип вло­
жений, можно не только разбивать сложную программу на отдель­
ные модули и для каждого из них писать свою подпрограмму, но и
разделять на модули любые подпрограммы. Чем меньше будет каж­
дый выделенный программный модуль, тем легче будет его програм­
мировать и отлаживать и тем больше вероятность его многократ­
ного использования в различных других программах.

Рекурсия
Вид вложенности, когда подпрограмма обращается к самой себе,

называется рекурсией. Понятие рекурсии охватывает также и си­
туацию, при которой первая подпрограмма вызывает вторую, а та
в свою очередь вызывает первую.

Пример, Использование рекурсии.
list
1000 INPUT “Строка для сжатия: ”,FS$
1009 '------- Удаление пробелов из FS$
1010 S$=FS$:RMV$ = “ ”:GOSUB 2000
1030 PRINT S$
1040 END
1999 '== Рекурсивная подпрограмма сжатия строк-
1998 ' В RMV$ — удаляемые символы
1999 ' В S$ — исходная строка и результат
2000 IF INSTR (l,S$,RMV$)<>0

THEN S$=LEFT$(S$,INSTR (1,S$,RMV$)—1)+
RIGHT$(S$,LEN(S$)—INSTR (1,S$,RMV$)):
GOSUB 20000

2010 RETURN
Ok

Эта программа удаляет пробелы из заданного строкового значе­
ния точно так же, как это делалось в одном из ранее рассмотренных

7 № 2275

194 Глава 9

в этой главе примеров. До тех пор пока подпрограмма (строки
2000 и 2010) находит пробелы в переменной S$, она продолжает
вызывать саму себя. При каждом обращении к подпрограмме исклю­
чается один пробел: после удаления всех пробелов управление пере­
дается последовательно по всем адресам возврата, которые заноси­
лись в стек при каждом вызове до тех пор, пока не произойдет пере­
дача управления по адресу, соответствующему первому вызову, т. е.
пока не будет осуществлен возврат в основную программу (строка
1010).

Существует ограничение на число обращений подпрограммы
к себе самой. Оно зависит от нескольких факторов, в частности от
используемой версии Бэйсика, количества других вложенных одна
в другую подпрограмм, выполняемых в этот же момент времени, и
от размера рабочего стека. Результаты выполненения тестовых про­
грамм показывают, что при стандартном размере этого стека мак­
симальный уровень вложенности для кассетного Бэйсика и диско­
вого Бэйсика равен 44, а для расширенного Бэйсика — 33.

Оверлейная структура программы

Объем программ колеблется от единиц до сотен строк, и в них
могут использоваться как несколько простых переменных, так и
множество больших массивов. С некоторого момента размер про­
граммы начинает превышать объем динамической памяти. Такую
программу необходимо разбивать на сегменты. Каждый сегмент в
этом случае хранится на диске как самостоятельная программа,
но выполняет лишь часть общей задачи. Когда текущий сегмент за­
вершает работу, он инициирует загрузку очередного программного
сегмента, предназначенного для выполнения следующего шага за­
дачи, и передает управление этому новому сегменту. Описанная
структура программы называетя оверлейной, а отдельный програм­
мный сегмент — оверлеем (от английского слова overlay — перекры­
тие, наложение; каждый вновь поступающий сегмент как бы на­
кладывается на сегмент, находящийся в данный момент в памяти).

Для соединения каждого очередного сегмента со следующим луч­
ше всего использовать оператор CHAIN, имеющий вид
200 CHAIN “prog2”

Строковое значение, указанное в конце оператора CHAIN, яв­
ляется именем некоторой Бэйсик-программы. В общем случае помимо
имени самой программы оно должно содержать еще и имя файла, в
котором она хранится. Если имя файла опущено, как в приведенном
выше примере, то по умолчанию считается, что программа с задан­
ным именем находится в файле с расширением имени BAS.

Для того чтобы показать, как осуществляется сцепление програм­
мных сегментов, рассмотрим программу, которая выдает названия

Организация программы 195

чисел на разных языках. Сначала эта программа по требованию
пользователя формирует названия чисел на одном языке, а затем,
как только пользователь просит выдать название числа, большего,
чем предусмотренные в программе, происходит переключение на
другой язык.

Пример. Программа, которая позволяет получить название лю­
бого числа от нуля до девяти на испанском языке.

list
10 DIM W$(9)
20 FOR XC%=0 TO 9:READ W$ (XC°/o):NEXT 'Ввод названий

чисел
30 READ LANG$, CUE$ 'Ввод названия языка и запросного

слова
50 PRINT CUE$;LANG$; “ : ”
100 PRINT CUE$;:INPUT N% 'Запрос числа, название которого

нужно выдать
ПО IF N%>9 THEN 200 'Перейти к другому языку, если

запрошенное число больше 9
120 PRINT N%;LANG$;“ ”;W$(N%) 'Вывод названия числа
130 GOTO 100
200 CHAIN “prog 2” 'Загрузка другого языка
6990 '------ Таблица названий чисел от 0 до 9--------------
7000 DATA zero,uno,dos,tres,cuatro,cinco, seis,siete,ocho,nueve
7010 DATA en Espanol es, Numero
Ok
save “progl”
Ok

Как только пользователь программы вводит число больше 9, уп­
равление передается оператору CHAIN (строка 200), в результате
выполнения которого загружается и начинает работу другой про­
граммный сегмент. Полагая, что первый сегмент все еще находится
в памяти, второй сегмент (который будет выдавать названия чисел
по-немецки) можно создать с помощью следующих команд:

200 chain “progl”
7000 data nullpunkt, eins, zwei, drei, vier,

funf, sechs, sieben, acht, neun
7010 data auf Deutsch ist, Nummer
save “prog 2”
Ok

Выполнение всей программы начинается с первого сегмента.
Если в процессе работы программы ввести (в ответ на запрос INPUT)
число больше 9, то программа переключится на другой язык, подсое­
диняя следующий сегмент.

7*

196 Глава 9

Пример
run “progГ’
Numero en Espanol es:
Numero? 4
4 en Espanol es cuatro
Numero? 99
Nummer auf Deutsch:
Nummer? 7
7 auf Deutsch ist sieben
Nummer? 99
Numero en Espanol es:
Numero?__

Оверлейная структура программы позволяет очень эффективно
использовать имеющийся объем динамической памяти.

Общие переменные
В простейшем случае использования команды CHAIN каждый раз

перед загрузкой следующего сегмента из динамической памяти
удаляются все программные строки и переменные предыдущего сег­
мента. Пример такого выполнения программы рассматривался выше.
Однако может оказаться, что в очередном сегменте требуется ис­
пользовать значения переменных предыдущего сегмента. В такой
ситуации следует использовать оператор COMMON. В операторе
COMMON перечисляются переменные, которые должны сохраниться
при переходе к следующему сегменту. Сохранить таким образом мож­
но как простые переменные, так и целые массивы, но не отдельные
их элементы.

Пример
COMMON ITEM$(),TOTAL,OMITS,COST()

Как видно в этом примере, имена переменных отделяются друг
от друга запятыми, а после каждого имени массива ставятся скобки,
внутри которых ничего не записывается.

Хотя операторы COMMON могут стоять в любом месте програм­
мы, лучше располагать их в ее начале вместе с операторами DIM и
DEF.
+++ В пределах одного программного сегмента не следует ука­
зывать одну и ту же переменную более чем в одном операторе
COMMON.

После выполнения оператора CHAIN, т. е. после загрузки нового
сегмента, описания типов переменных, заданные в предыдущем сег­
менте операторами DEFINT, DEFSNG, DEFDBL и DEFSTR, теряют
силу, но сохраняются значения общих переменных (указанных в
COMMON), попадающих в область действия перечисленных опера­

Организация программы 197

торов. Поэтому при необходимости следует повторить описания ти­
пов в новом сегменте.

Пример. Использование оператора COMMON в случае двух свя­
занных программных сегментов.
10 defstr urdefint d
20 common units,dist
30 input “Расстояние”;dist
40 input “Миль или километров”;ипИз
100 chain “ovlyl”
save “mainpgm”
Ok
new
Ok
10 defstr u
20 print dist;units
save “ovlyl”
Ok
run “mainpgm”
Расстояние? 1342
Миль или километров? Миль
0 МильОк

Переменные DIST и UNITS в первой программе объявлены
общими (строка 20), и поэтому их значения, присвоенные в первой
программе (строки 30 и 40), должны сохраниться и после загрузки
второго сегмента (строка 100). Но, поскольку во второй программе
(сегменте) определение целых переменных с помощью оператора
DEFINT не повторяется (сравните строки 10 различных сегментов),
переменная DIST во втором сегменте воспринимается как переменная
с обычной точностью, и, несмотря на оператор COMMON, значение
этой переменной теряется.

Сохранить значения всех переменных при переходе от одного сег­
мента к другому можно и без помощи оператора COMMON, исполь­
зуя лишь возможности оператора CHAIN. В этом случае последний
выглядит следующим образом:
CHAIN “pgmnam”, ,ALL

Здесь перед словом ALL стоят две запятые, поскольку помимо
ALL у оператора CHAIN есть еще одна опция (необязательный атри­
бут), которая в данном случае для простоты опущена. Описанный
метод сохранения переменных с помощью оператора CHAIN связан
с теми же проблемами переопределения типов переменных, что и в
случае оператора COMMON.

Ни оператор COMMON, ни опция ALL оператора CHAIN не
позволяют сохранить функции, определенные оператором DEF FN

198 Глава 9

(задаваемые пользователем функции). Это означает, что при необхо­
димости все функции, определяемые пользователем, должны пов­
торно описываться в каждом сегменте, где это требуется. Кроме то­
го, если имя такой функции попадает в область действия какого-
либо оператора типа DEFSTR или DEFINT, то соответствующие
описания типов должны также повторяться в каждом сегменте.

Совместное выполнение оверлейных сегментов

До сих пор речь шла об использовании оператора CHAIN, когда
каждый раз перед загрузкой нового сегмента из памяти полностью
удалялся весь предыдущий сегмент. Рассмотрим еще одну допол­
нительную возможность (опцию) оператора CHAIN, позволяющую
присоединять к находящемуся в памяти сегменту строки другого
сегмента. В этом случае строки нового сегмента не замещают пол­
ностью прежний сегмент, а как бы вставляются в него. Если при
этом номер некоторой загружаемой строки нового сегмента совпада­
ет с номером одной из строк сегмента, уже находящегося в памяти,
то старая строка полностью заменяется на новую.

Пример. Сегмент программы, в которой совместно используются
несколько оверлеев. (В программе подсчитываются затраты на тран­
спортировку грузов. Каждый сегмент вычисляет эти затраты для оп­
ределенных транспортных средств: 1-й сегмент с именем “truck”
(грузовики) для наземного транспорта, 2-й сегмент с именем “mail”
(почта) для почтовых отправлений, 3-й сегмент с именем “air” (авиа­
ция) для воздушных транспортных средств.)

list 1600—1800
1600 '------ Подсчет стоимости транспортировки
1610 IF SHIP$=“T” THEN CHAIN MERGE

“truck” ALL
1620 IF SHIP$=“M” THEN CHAIN MERGE

“mail”,,ALL
1630 IF SHIP$=“A” THEN CHAIN MERGE “air”„ALL
1700 TOTAL=TOTAL+SHIP
1800 GOSUB 3000 'Печать общей стоимости
Ok
load “mail”
list
0 GOTO 1640 'Переход на начало сегмента
1640 READ RATE(1),RATE(2) 'ввод коэффициентов
1650 ' вычисление платы за вес груза
1660 SHIP=RATE(1)+CINT((LBS—1/16)/16)

«RATE (2)
7000 DATA .30,.25
Ok

Организация программы 199

В основной программе приведенного примера управление пере­
дается одному из трех сегментов, предназначенных для вычисления
стоимости перевозки грузов (строки 1610—1630). В каждом случае
в операторе CHAIN используется атрибут ALL и тем самым при пере­
ходе к очередному сегменту сохраняются все значения переменных.
Строки загружаемого сегмента вставляются в предусмотренное ме­
сто между строками основной программы (незанятые номера строк
с 1631 по 1699). Во избежание многократного выполнения одних
и тех же операторов основной программы каждый сегмент содержит
в строке с номером 0 оператор GOTO, который передает управление
сразу же первому оператору непосредственно самого сегмента (стро­
ка 1640). С этого оператора выполнение сегмента продолжается
обычным образом до тех пор, пока в конце концов не начнут выпол­
няться операторы основной программы (строка 1700).

Чтобы загружать сегменты с помощью оператора CHAIN
MERGE, необходимо предварительно выполнить команду SAVE с
опцией ”,А” (гл. 6), указав в ней нужные сегменты.

Включая в оператор CHAIN MERGE команду DELETE, мож­
но исключить строки, номера которых лежат в заданном после слова
DELETE диапазоне. При этом после слова DELETE разрешается
указывать только один диапазон изменения номеров удаляемых
строк. Оператор CHAIN в случае использования опции DELETE
имеет следующий вид:
1600 CHAIN MERGE “prgname”„DELETE 100—900

Дополнительная запятая перед опцией DELETE соответствует
неиспользуемой другой опции оператора CHAIN.

Номера, определяющие границы диапазона удаляемых строк в
опции DELETE, должны быть такими, чтобы в программе сущест­
вовали строки с обоими граничными номерами, в противном случае
будет выдано сообщение об ошибке. Если в опции DELETE не задан
последний номер диапазона, то удаляется ровно одна строка про­
граммы с номером, указанным после слова DELETE. При перену­
мерации строк программы, содержащей оператор CHAIN с опцией
DELETE, автоматически изменяются соответствующим образом и
номера, указанные в DELETE в качестве границ диапазона удаляе­
мых строк.

Если в операторе CHAIN наряду с DELETE используется од­
новременно и опция ALL, то такой оператор имеет следующий вид:
1700 CHAIN MERGE “ovly 2”,,ALL,DELETE 1000

Задание начальной строки

Оператор CHAIN имеет еще одну опцию, о которой уже упо­
миналось ранее в этой главе в связи с появлением дополнительных
запятых в предыдущих примерах оператора CHAIN. Эта опция поз­

200 Глава 9

воляет задать номер строки, с которой начнется выполнение сле­
дующего сегмента. Указанный номер строки записывается непосред­
ственно за именем файла; оператор CHAIN в этом случае выглядит
так:

1610 IF SHIP$=“T” THEN CHAIN MERGE
“ truck”, 1640,ALL

Опции ALL и DELETE в таком операторе CHAIN можно ис­
пользовать обычным образом. Строка с номером, указанным в опе­
раторе CHAIN в качестве номера начальной строки, не обязательно
должна присутствовать в исходной программе, но должна содер­
жаться в загружаемом сегменте, иначе при выполнении оператора
CHAIN будет выдано сообщение об ошибке “Undefined line number”
(«Неопределенный номер строки»). Команда RENUM не оказывает
никакого влияния на заданный в операторе CHAIN номер началь­
ной строки.

Трассировка программ

Чем длиннее и сложнее программа, тем больше времени прихо­
дится тратить на проверку правильности ее работы в различных
ситуациях.

Одним из наиболее важных этапов при создании надежных и
работоспособных программ является тщательное тестирование. Ча­
сто, особенно для больших и сложных программ, очень трудно опре­
делить, где именно в программе возникает ошибка. Для локализа­
ции ошибок полезно использовать специальные вспомогательные
средства, одним из которых является оператор TRON, приводя­
щий в действие трассировочную программу. Последняя в процессе
работы основной программы выводит номера ее строк в той последо­
вательности, в которой они реально исполнялись. Цепочка эш
номеров составляет след (или трассу) работы программы.

Пример

list
10 TRON 'Режим трассировки
20 GOSUB 100
30 END
90 ' ==Рекурсивная подпрограмма^^ = = == = = = = =;
100 IF К>5 THEN K=K+1:GOSUB 100
НО RETURN
Ok
run
[10] [20] [100] [100] [100] [100] [100] [110] [1
10] [110] [1101 [НО] [НО] [ПО] [30]
Ok

Организация программы 201

Отображенный след программы показывает, что первой выполня­
лась строка 10, затем —строка 20, в результате выполнения которой
была вызвана рекурсивная подпрограмма, начинающаяся строкой
100. После этого подпрограмма еще пять раз обращалась к самой се­
бе, передавая каждый раз управление на строку 100. Затем значе­
ние переменной К стало равным 6, и управление было передано на
строку ПО. Начиная с этого момента управление стало передаваться
последовательно по адресам возврата, соответствующим вызовам
подпрограммы. Первые пять раз возврат осуществлялся на строку
НО, поскольку соответствующие обращения к подпрограмме были
рекурсивными вызовами ее самой. При шестом возврате управление
оказалось переданным в основную программу на строку 30, где и
закончилось ее выполнение.

Для отмены режима трассировки используется оператор TROFF.
Команда RUN в ее простейшем виде не отменяет этого режима, так
что использование команды TRON в режиме немедленной обработки
приведет к выполнению трассировки всех последующих программ
до тех пор, пока не встретится оператор TROFF. Любая команда,
удаляющая текущую программу из памяти (например, команда NEW
или LOAD), отменяет также и режим трассировки.

Глава 10

УПРАВЛЕНИЕ ВЫВОДОМ ДАННЫХ НА ЭКРАН ДИСПЛЕЯ
И НА УСТРОЙСТВО ПЕЧАТИ

В данной главе описываются дополнительные возможности оператора PRINT,
а также другие операторы, позволяющие управлять выводом данных на экран
дисплея, и рассматриваются средства вывода данных на печатающее устройство.

Управление выводом данных на экран дисплея

Для очистки экрана, выравнивания выводимых числовых дан­
ных и управления курсором в Бэйсике ПВМ предусмотрен целый
ряд средств, в том числе оператор PRINT, используемый в совокуп­
ности с различными стандартными функциями, и несколько других
независимых операторов.

Очистка экрана
Существуют три способа очистки экрана дисплея, причем в лю­

бом случае курсор, после того как экран очистится, занимает ис­
ходное положение. В режиме немедленной обработки очистку можно
произвести путем одновременного нажатия клавиш Ctrl |Ноте, с
помощью команды CLS (которая применима и в программируемом
режиме) и путем вывода на экран символа ASCII с кодом 12. Такой
символ формируется функцией CHR$, и для очистки экрана доста­
точно выполнить оператор PRINT CHR$(12).

Установка ширины экрана

Большинство видеомониторов позволяет выводить на экран стро­
ки длиной 40 или 80 символов; при этом, однако, следует иметь в
виду, что для бытовых телевизоров и некоторых типов мониторов
использование 80-символьных строк приводит, как правило, к очень
нечеткому изображению (особенно при выводе строчных букв). Если
предполагается использовать программу при любой ширине экрана,
то она должна быть ориентирована на вывод только 40-символьных
строк.

В Бэйсике ПВМ предусмотрены средства, позволяющие в яв­
ном виде задавать максимально возможную длину строки при выводе
на экран дисплея. Для установки длины строки надо последователь­
но выполнить два оператора: SCREEN и WIDTH.

Пример
1010 SCREEN 0.WIDTH 40

Управление выводом данных 203

При выполнении оператора SCREEN 0 отменяется максимальное
значение длины строки экрана, установленное при запуске Бэйсик-
интерпретатора, и устанавливается длина строки, указанная в сле­
дующем за SCREEN 0 операторе WIDTH. Оператор SCREEN 0 дол­
жен предшествовать лишь самому первому выполняемому после за­
пуска интерпретатора оператору WIDTH.

Выравнивание выводимых данных по столбцам
В большинстве случае при работе с большими объемами инфор­

мации гораздо удобнее представлять ее в табличной форме (или вы­
равнивать по столбцам). В гл. 8 было показано, как с помощью за­
пятых, разделяющих перечисленные в операторе PRINT значения,
можно расположить выводимые значения строго по столбцам, каж­
дый их которых начинается с одной из стандартных зон. Ширина
стандартных зон фиксирована, и в распоряжении программиста
имеются три зоны на 40-символьном экране или шесть зон на 80-
символьном экране. Однако это не всегда удобно: часто выводимые
значения не помещаются в одной зоне или, напротив, зона для них
слишком велика. В подобных ситуациях целесообразнее было бы
по своему усмотрению определять зоны нужного размера.

Количество используемых зон и ширину каждой из них можно
задать с помощью оператора PRINT и функции ТАВ. При этом все
символьные позиции в строке экрана, называемые колонками (столб­
цами), считаются пронумерованными слева направо от 1 до 40 или
до 80 в зависимости от ширины экрана дисплея, а функция ТАВ пе­
ремещает курсор на указанную позицию в строке.

Пример. Выполнение оператора PRINT с включенной в него
функцией ТАВ.

list
4000 CLS.-SCREEN 0:WIDTH 40
4010 PRINT “Наименование”;ТАВ(20);

“Получено” ;ТАВ(30); “Стоимость”
4030 READ NR %, DSCR$,SN$,AQ$, COST#, VALUE#
4040 PRINT DSCR$;TAB(20);AQ$;TAB(30);“$”;

COST#
10001 DATA I,Письменный стол,9/11/78,875,1500
Ok
run
Наименование Получено Стоимость
Письменный стол 9/11/78 $875
Ok

Как видно из приведенного примера, в функции ТАВ указывается
номер колонки, куда должен выводиться следующий символ: пере­
мещение курсора осуществляется функцией ТАВ за счет печати про­

204 Глава 10

белов, и потому при перемещении курсора на указанную позицию
встречающиеся на пути символы стираются.

Если курсор находится правее заданной колонки, то функция
ТАВ переводит его на одну строку ниже, а затем — в указанную
позицию.

Пример
list
4010 PRINT “Наименование” ;ТАВ(20);

“Получено” :ТАВ(30); “Стоимость”
4030 READ NR%,DSCR$,SN$,AQ$,COST#,VALUE#
4040 PRINT DSCR$;TAB (20);AQ$;TAB (30);“$”;

COST#
10012 DATA 12,Диван с кожаной обивкой,

12/2/79,1377,1377
Ok
run
Наименование Получено Стоимость
Диван с кожаной обивкой

12/2/79 $137Ок
В качестве номера колонки в функции ТАВ может быть указано

любое значение от —32768 до 32767. Если значение меньше единицы,
то считается, что оно соответствует первой колонке; если оно пре­
вышает ширину экрана, то выполняется операция вычитания по мо­
дулю: заданное значение делится на значение ширины экрана, при
этом целая часть частного отбрасывается, а остаток интерпретиру­
ется как номер колонки, в которую должен выводиться следующий
символ. Например, оператор PRINT ТАВ (241) для 40-символьного
экрана выполняется точно так же, как оператор PRINT ТАВ(1),
поскольку 240 MOD 40 = 1.

Функция ТАВ используется только совместно с оператором
PRINT или с операторами PRINT# и LPRINT. При необходимо­
сти сгенерировать несколько стоящих рядом пробелов в виде неко­
торого строкового значения используют функцию SPACES.

Управление курсором
Описанные выше средства позволяют перемещать курсор в лю­

бое место на экране дисплея: для этого достаточно с помощью коман­
ды CLS установить курсор в исходное положение и затем с помощью
простого оператора PRINT перемещать его по вертикали, а с по­
мощью функции ТАВ — еще и по горизонтали. Такой метод, одна­
ко, не очень удобен, не говоря уже о том, что при его использовании
изображение на экране каждый раз стирается.

В Бэйсике ПВМ имеется оператор LOCATE, предназначенный
для перемещения курсора в любое заданное место на экране непо-

Управление выводом данных 205

Рис. 10.1. Разбиение экрана на строки и столбцы.

средственно, т. е. без разрушения ранее выведенной на экран
информации. При использовании оператора LOCATE экран надо
представить разграфленным на строки и столбцы (рис. 10.1).Символ
может быть выведен в любую точку пересечения строки со столбцом.
В простейшем случае в операторе LOCATE указываются номер
строки и номер столбца, в точку пересечения которых должен быть
переведен курсор. Такой оператор LOCATE выглядит следующим
образом:
LOCATE 13,29

Первое число, заданное в операторе LOCATE, указывает номер
строки, а второе — номер столбца. Номера строк и столбцов в
LOCATE можно также задавать с помощью любых числовых выра­
жений. Обычно на экране имеется 24 строки, пронумерованные
от 1 до 24 сверху вниз, и 40 или 80 столбцов (в зависимости от ши­
рины экрана), пронумерованных от 1 до 40 или 80 слева направо.
Значения номеров, задаваемые в операторе LOCATE, должны заклю­
чаться в этих пределах, в противном случае появится сообщение
об ошибке “Illegal function call...” («Недопустимый вызов функ­
ции...»).

Как и обычно, вывод какого-либо символа в крайней правой по­
зиции строки приводит к автоматическому возврату каретки (т. е.

206 Глава 10

к переводу курсора в начало следующей строки). Если это проис­
ходит после заполнения последней позиции 24-й строки, все изобра­
жение экрана сдвигается на одну строку вверх, в результате чего
самая верхняя строка исчезает с экрана.

Поскольку нет способа предотвратить такой автоматиче­
ский возврат каретки, следует соблюдать осторожность при запол­
нении последних позиций строки, а лучше вообще избегать вывода
символа в крайний правый столбец последней, 24-й строки экрана.
Как уже отмечалось (гл. 8), если выводимое значение не помещает­
ся в оставшихся позициях строки, то оно целиком выводится на
следующей строке.

Пример. Использование двух операторов LOCATE: первого для
установки нужного положения курсора при вводе данных с клавиа­
туры, а второго для выполнения тех же действий при выводе данных
с помощью оператора PRINT.

list
10 CLS
100 LOCATE l,20:INPUT “Строка, столбец” R,C
110 LOCATE R,C:PRINT
120 GOTO 100
Ok
run

Строка, столбец? 2,20

Использование последней строки экрана дисплея
Обычно при работе с экраном программист имеет в своем распо­

ряжении 24 строки для вывода данных. В действительности на эк­
ране имеется еще одна, 25-я строка, но она зарезервирована для вы­
свечивания определений функциональных клавиш (гл. 6) и обычно
недоступна для Бэйсик-программ. Такое специальное назначение
25-й строки можно отменить с помощью команды KEY OFF и ис­
пользовать ее так же, как и остальные, но со следующим ограниче­
нием. Вывести данные на 25-ю строку можно, только выполнив пред­
варительно оператор LOCATE. Возврат каретки после 24-й строки
всегда приводит к сдвигу всего изображения (точнее, 24 первых
строк) на одну строку вверх, и курсор не сдвигается вниз на 25-ю
строку. Если возврат каретки произошел по каким-либо причинам
после заполнения 25-й строки, то и в этом случае все строки, кроме
25-й, сдвинутся на строку вверх, т. е. результат будет тот же, что и
при возврате каретки после заполнения 24-й строки. Всякий раз при
описанном сдвиге изображения курсор перемещается на начало
новой свободной строки, т. е. на начало 24-й строки.

Управление выводом данных 207

Определение положения курсора

Получить значение номера столбца, в котором в данный момент
находится курсор, можно с помощью функции POS. Результатом
выполнения этой функции является число, заключенное в пределах
от 1 до 40 (при 40-символьной ширине экрана дисплея) или от 1 до 80
(при 80-символьной ширине экрана дисплея).

Пример
PRINT POS(O)

Значение, стоящее в скобках после слова POS фиктивно, т. е.
при вычислении функции POS оно никак не используется. Однако
какое-то значение (все равно какое) в скобках должно быть записа­
но (в данном примере это значение равно 0).

Функция CSRLIN позволяет определить, в какой строке находит­
ся в данный момент курсор. Результатом вычисления этой функции
является число между 1 и 25, соответствующее номеру строки экрана.

Пример
PRINT CSRLIN

Функция CSRLIN не совсем обычна, так как при ее задании не
йспользуются скобки. В связи с этим она выглядит так же, как пере­
менная, но тем не менее ей нельзя присваивать никаких значений.

Формат выводимых данных

С помощью оператора LOCATE, функции ТАВ и определенной
расстановки запятых в операторе PRINT можно управлять выбором
места на экране дисплея, куда выводится то или иное значение. Одна­
ко ни одно из перечисленных средств не позволяет влиять на форму
представления информации. Так, при выполнении оператора PRINT
и строковые, и числовые данные выводятся в соответствии со строго
установленными правилами, определяющими для каждого типа дан­
ных свой единственно возможный формат вывода. Вообще говоря,
можно было бы изменять формат выводимых с помощью оператора
PRINT данных, но для этого пришлось бы производить целый ряд
сложных манипуляций, комбинируя функции STR$, RIGHTS,
LEFTS, MID$ и т. п. Такой способ вывода данных в нужном фор­
мате очень неудобен, и в Бэйсике предусмотрен специальный опера­
тор форматированного вывода PRINT USING.

Как и оператор PRINT, оператор PRINT USING содержит
список значений, предназначенных для вывода. Значения в этом
списке отделяются друг от друга точкой с запятой: использовать в
качестве разделителей запятые в этом операторе не разрешается.
Если точка с запятой стоит и после самого последнего значения
списка, то возврат каретки не производится, хотя в любом другом

208 Глава 10

случае он происходит автоматически сразу же после вывода всех
значений списка.

Первым в списке значений оператора PRINT USING обязательно
должно стоять строковое значение. Это первое значение играет осо­
бую роль — оно задает вид, в котором будут выводиться все осталь­
ные значения, указанные в списке. Каждый символ этого выделен­
ного строкового значения имеет определенную интерпретацию, так
что в целом значение определяет некоторый шаблон, устанавливаю­
щий, на какие числовые и строковые зоны разбиваются выводимые
значения, какова длина и другие характеристики каждой зоны и т. п.
При необходимости каждое выводимое значение списка преобразу­
ется в соответствии с заданным шаблоном. В табл. 10.1 дана рас­
шифровка действия каждого символа, который может встречаться
в шаблоне.

Оператор PRINT USING является одним из самых сложных
операторов Бэйсика ИВМ, и обычно для полного его освоения тре­
буется определенный опыт.

Задание формата для вывода строковых значений
С помощью оператора PRINT USING можно выводить строковые

значения в их непосредственном виде (полностью) либо только за­
данное число символов строковой переменной, отсчитываемое слева.

Пример
list
10 А$ = “Время летит”
20 PRINT USING “!”;А$ '1
30 PRINT USING “\\”;А$ '2
40 PRINT USING “\ \”;A$ '3
50 PRINT USING “\ \”;A$'4
60 PRINT USING “&”;A$
Ok

символ
символа
символа
символа
'все символы

run
В
Вр
Вре
Врем
Время летитОк

Как видно из этого примера, символ !, входящий в шаблон,
определяет строковую зону длиной в один символ, а символ & —
зону переменной длины для вывода целиком всего строкового зна­
чения.

Пара перевернутых косых черточек (\), возможно разделенных
некоторым числом пробелов, задает строковую зону фиксированной

Управление выводом данных 209

Таблица 10.1. Интерпретация символов, входящих в шаблон оператора
PRINT USINGСимволы ИнтерпретацияЧисловые форматы Ч

+
**SS
>

АЛАА

Вывод в явном виде знака + или знака —
Заполнение оставшихся слева незанятых позиций зоны звездоч­

ками
Вывод перед самим значением знака доллара
Заполнение левых позиций звездочками и вывод непосредст­

венно перед самим значением знака доллара
Выдача одного разряда выводимого значения
Вывод запятых через каждые три разряда
Вывод в заданной позиции зоны десятичной точки
Вывод пробела, если значение положительно, и знака —, если

оно отрицательно
Вывод значения в экспоненциальном представлении

Строковые форматы
!

&
Вывод одного символа
Вывод фиксированного количества символов: двух или более

в зависимости от числа пробелов, стоящих между косыми
чертами

Вывод строки переменной длины (вывод целиком всего строко­
вого значения)

Символьные константы
Любой сим­
вол

Любой символ (кроме —), который не входит в число симво­
лов, определяющих числовые и строковые зоны, выводится
непосредственно так, как он записан

Вывод следующего символа в непосредственном виде, даже
если он является одним из специальных символов, опреде­
ляющих зоны

>) Расположение символов в шаблоне в самом общем случае? г»*'!+\ **$ >#,#"•#.#•••#/ + 1 АЛАА1 SS J 1“ '
длины. Длина этой зоны определяется как общее количество сим­
волов шаблона, считая обе косые черты и все заключенные между
ними пробелы. Строковое значение при таком шаблоне выводится
в зону, начиная с ее крайней левой позиции. Если длина строко­
вого значения слишком велика и оно не помещается в задаваемое
шаблоном поле, то «избыточные» правые символы этого значения

210 Глава 10

отбрасываются. Если длина строкового значения меньше длины
зоны, то оставшиеся свободные места справа в зоне заполняются
пробелами.

Пример, Шаблон определяет зону длиной в семь символов, а
выводимое значение состоит только из четырех символов.
print using ‘‘Стол’’;:print.

;875
Стол $ 875

Форматирование числовых значений

Обычно числа, записанные в столбик, легче воспринимаются,
если они выровнены относительно десятичной запятой, т. е. если
десятичные запятые всех чисел столбца расположены точно друг
под другом. Выровненные таким образом числа можно выводить
с помощью оператора PRINT USING: для этого в операторе зада­
ется числовая зона фиксированной длины и числовые значения при
выводе преобразуются в соответствии с зоной. Зная, сколько раз­
рядов занимает числовое значение, можно вывести его на экран с
большей точностью, чем при выполнении обычного оператора PRINT.

Числовая зона задается с помощью символов #• каждый такой
символ соответствует одному выводимому разряду числового зна­
чения. Если выводимое значение отрицательно, то одна позиция
в зоне отводится под знак минус. Числовые значения всегда вы­
водятся выровненными по крайней правой позиции зоны.

Пример
print using “####” ;12

12
print using “####” 123
—123

Если количество разрядов числового значения меньше числа
позиций в зоне, то слева от первой значащей цифры это значение
дополняется пробелами так, чтобы была заполнена вся зона. Если
значение содержит слишком много цифр и не помещается в зоне,
заданной шаблоном, то оно все равно выводится полностью, а перед
самой первой его цифрой выводится знак процента.

Пример.
print using ; 123456
% 123456

Вывод десятичной запятой

Для того чтобы вывести числовое значение с десятичной за­
пятой и с дробной частью, надо после одного из символов ф в
шаблоне поставить десятичную точку. Это позволяет заранее

Управление выводом данных 211

установить, в каком месте должна стоять десятичная запятая, т. е.
сколько цифр будет в выводимом числе до запятой и сколько после.
Если числовое значение имеет больше значащих цифр после запя­
той, чем предусмотрено шаблоном, то перед выводом оно соответ­
ствующим образом округляется; если оно имеет меньше цифр после
запятой, чем указано в шаблоне, то оно дополняется нулями до за­
полнения всей зоны.

Пример. Использование десятичных точек в шаблоне.
list
10 INPUT “Введите число: ”,А
20 PRINT, USING
30 GOTO 10
Ok
run
Введите число: 1234.50
1234.50
Введите число: 12.3456

12.35
Введите число: .123456

0.12
Въедите число:_

Знаки плюс и минус в шаблонах

Как было показано, положительные числовые значения обычно
выводятся без знака, а в случае отрицательных значений одна по­
зиция зоны отводится под знак минус. Во всех рассмотренных
примерах никаких знаков в самих шаблонах не использовалось.
Однако в общем случае в шаблон можно включать знаки плюс и
минус в явном виде: допускается ставить знак “+” перед самым
первым символом # шаблона и знак “+” или знак “—” после по­
следнего символа

Пример.

list

20 PRINT А$,В$,С$
30 FOR N=—88.8 ТО 88.8 STEP 177.6
40 PRINT USING A$;N;:PRINT ,
50 PRINT USING B$;N;:PRINT ,
60 PRINT USING C$;N
70 NEXT
run

212 Глава 10

—88.8
+88.8

Ok

88.8—
88.8

88.8—
88.8+

Знак плюс, используемый в качестве первого или последнего
символа шаблона, означает, что всегда выводится знак числа: “+”
для положительных значений и “—” для отрицательных. Знак ми­
нус используется только в качестве последнего символа шаблона и
означает, что после отрицательного числа должен выводиться знак
“—”, а после положительного пробел.

Запятые в шаблонах
Для удобства большие числа часто записывают с запятыми через

каждые три цифры, например 100,000,000,000. С помощью оператора
PRINT USING можно выводить числа и в таком виде: для этого
достаточно поставить в шаблоне запятую после первого символа ф.

Пример

print using ;1е7
10,000,000.00

Ok
Запятую в шаблоне можно ставить не только после первого,

но и после любого другого символа ф, но обязательно до десятич­
ной точки. Различные местоположения запятых в шаблоне опре­
деляют различные способы расстановки запятых в выводимых зна­
чениях. Количество разрядов, занимаемых выводимым числом,
включая все встречающиеся запятые, не превышает ширины зоны,
задаваемой шаблоном.

Шаблоны экспоненциального представления числовых значений
Для вывода числовых значений „ц экспоненциальном представ­

лении надо поставить в конце обычного числового шаблона четыре
символа Д.

Пример

print using “###.## Л Л Л А” .97654
—97.65Е—02Ок

В мантиссе числа выводится максимально возможное количе-
ство значащих цифр, а идущий следом порядок настраивается соот­
ветственно мантиссе. Если шаблон задает более одной цифры до за­
пятой, то крайний левый разряд всегда будет либо пробелом, либо
знаком минус в зависимости от знака выводимого значения.

Управление выводом данных 213

Шаблоны для вывода значений денежных сумм
Для вывода знака доллара перед первой цифрой числового зна­

чения достаточно заменить в шаблоне первый символ # на два сим­
вола $. В результате этого длина зоны увеличится на единицу для
вывода знака доллара.

Пример
print using ;15.95

$15.95Ок
Когда денежная сумма принимает отрицательное значение, в

конце шаблона обычно добавляют знак и после самого зна­
чения всегда будет выводиться его знак. Если знак должен сто­
ять в начале шаблона, то его надо записать перед символами $$.
Если шаблон денежных величин не содержит в явном виде ника­
кого знака, при выводе отрицательных значений перед знаком дол­
лара будет стоять знак минус.

Если значащие цифры числового значения не полностью за­
полняют зону, то обычно такое числовое значение при выводе до­
полняется слева соответствующим количеством пробелов до за­
полнения всей зоны. Вместо пробелов можно выводить звездочки:
для этого достаточно заменить два первых символа # шаблона на
символы *.

Пример
print using “**#####.##” ;249.95
** **249.95
Ok

Для вывода звездочек перед знаком доллара в качестве первых
трех символов шаблона надо записать **$.

Использование констант в шаблонах
Шаблон, задаваемый в операторе PRINT USING, может содер­

жать любые символы. Символы, входящие в шаблон и не принимаю­
щие участия в определении числовых или строковых зон, всякий
раз при использовании этого шаблона будут выводиться в том виде,
как они записаны, без каких-либо изменений. Такими символами
могут быть пробелы, буквы алфавита, цифры и большинство зна­
ков препинания.

Пример
tot=989457.82
Ok
print using “Общая сумма #,######.##” ;tot
Общая сумма 989,457.82
Ok

214 Глава 10

Без каких-либо изменений (т. е. в точности так, как записано)
можно выводить специальные символы, которые в обычных услови­
ях определяют строковые и числовые зоны. Такими символами яв­
ляются !,#, \, , Л, $,*,.,+ и—. Заметим, что некоторые
из них (Д, и—) часто и при обычном использовании
появляются в выводимом значении в явном виде. Для того чтобы
символ, встречающийся в шаблоне, воспринимался как символьная
константа и выводился всегда без изменений, надо поставить перед
ним в шаблоне символ —

Пример
print using “Вес:####—#”;180
Вес: 180 #
Ок

Шаблоны для нескольких значений

С помощью единственного шаблона можно задавать форматы
вывода сразу для нескольких различных значений.

Пример
list
100 FMT10$=“\ \\ \ $$#####.##” '
4010 PRINT “Наименование”; ТАВ(14); “Получено”;

ТАВ(27); “Стоимость”
4030 READ NR%,DSCR$,SN$,AQ$,COST#,VALUE#
4040 PRINT USING FMT10$;DSCR$;AQ$;COST#
10101 DATA 101, Автоответчик,G395298,

6/22/81,215,215
Ok
run
Наименование Получено Стоимость
Автоответчик 6/22/81 $215.00
Ok

В строке 100 определяется шаблон, который затем используется
в строке 4010. Этот шаблон задает три зоны: две строковые и одну
числовую.

Если оператор PRINT USING содержит больше выводимых
значений, чем число зон, определенных указанным в этом опера­
торе шаблоне, то после вывода значения, соответствующего пос­
ледней зоне, шаблон начинает? использоваться повторно с самого
начала.

Пример. С помощью шаблона, определяющего всего две зоны,
выводятся шесть различных величин.
print using “##.##% &
78.11; “N” ;20.95; “0”; .95; “А”

Управление выводом данных 215

78.11% N 20.95% 0 0.95% АОк
Если в шаблоне определено больше зон, чем количество выво­

димых значений, то лишние зоны просто игнорируются. Числовым
значениям должны соответствовать числовые шаблоны, а строко­
вым — строковые, в противном случае произойдет ошибка.

Вывод данных на печать

Чтобы вывести данные па устройство печати, достаточно од­
новременно нажать клавиши | PrtSc — и все, что выведено в данный
момент на экран дисплея, воспроизведется на печатающем устрой­
стве. Эта операция выполняется даже в момент ожидания ПВМ
ввода данных с клавиатуры. При этом некоторые символьные коды
соответствуют при выводе на экран одним символам, а при выводе
на печатающее устройство — другим. Буквы, цифры и большин­
ство знаков препинания выводятся на печать в том же виде, как они
были представлены на экране дисплея. Что же касается специаль­
ных графических символов, которые могут быть выведены на эк­
ран дисплея ПВМ, то практически ни один из них не может быть
воспроизведен печатающим устройством. Интерпретация кодов,
больших 127 или меньших 32, существенно зависит от типа печатаю­
щего устройства. Например, матричное устройство 80CPS фирмы
IBM печатает составные графические символы в случае тех кодов,
которые на другом печатающем устройстве воспроизводились бы в
виде букв, выделенных курсивом.

Использование клавиши PrtSc не является единственным спо­
собом вывода данных на устройство печати: для этого можно непо­
средственно или с несущественными изменениями использовать
все операторы и функции, которые применялись до сих пор для
вывода значений на экран дисплея. В табл. 10.2 сравниваются опе­
раторы и функции, предназначенные для работы с дисплеем и с пе­
чатающим устройством.

Отметим некоторые различия между выводом информации на
экран дисплея и на печать. В программе с помощью оператора
LOCATE можно перескакивать с одной строки экрана дисплея на
другую, что совершенно исключено в случае печатающего устрой­
ства. В каждый момент на печатающее устройство выдается целост­
ная строка. Хотя большинство печатающих устройств и обладает
ограниченными возможностями возврата каретки на одну пози­
цию, эти возможности нельзя сравнить с подвижностью курсора
дисплея.

Печатающее устройство всегда воспроизводит строку целиком.
Оно имеет память емкостью в одну строку для запоминания сим­
волов, записанных в операторах LPRINT или LPRINT USING,

216 Глава 10

Таблица 10.2. Эквивалентные операторы вывода
данных на экран дисплея и на печатающее
устройство

Дисплей Печатающее устройство
PRINT
PRINT USING
POS
TAB
SPC
CSRLIN
LOCATE

LPRINT
LPRINT USING
LPOS
TAB
SPC
Эквивалент отсутствует

» »

которые оканчиваются точкой с запятой. Как только на печатаю­
щее устройство поступает символ возврата каретки, печатаются сра­
зу все накопленные к этому моменту символы. Например, в резуль­
тате выполнения приводимого ниже оператора такой символ не
поступит и ничего не напечатается:

LPRINT “Поспешишь—людей насмешишь” ;

Ничего не изменится, если добавить еще и оператор

LPRINT “(Пословица)” ;

При выполнении же какого-либо оператора LPRINT или
LPRINT USING без стоящей в конце точки с запятой на устройство
печати поступает сигнал возврата каретки, в результате чего пе­
чатаются все накопленные в памяти устройства символы. Напри­
мер, если после двух предыдущих операторов выполнить оператор
LPRINT в его простейшем виде (состоящий лишь из командного
гслова LPRINT), то мгновенно будет напечатана целая фраза:

Поспешишь — людей насмешишь (Пословица)

Если в памяти печатающего устройства накопилось доста­
точное количество символов для заполнения всей строки целиком,
то на печатающее устройство автоматически посылается сигнал
возврата каретки и печатается очередная строка. Все последую­
щие символы, поступающие в устройство печати, накапливаются
для формирования следующей строки. Стандартная длина строки
печатающего устройства равна 80 символам, так что возникающие
при выводе длинных строк эффекты совершенно аналогичны опи­
санным ранее эффектам, возникающим при выводе длинных строк
на экран 80-символьного дисплея.

Управление выводом данных 217

Когда на печатающее устройство пересылается символ возврата
каретки, одновременно с ним поступает еще и символ, интерпре­
тируемый как требование протяжки бумаги на одну строку. Без
этого символа перевода строки все печатающиеся строки наклады­
вались бы друг на друга.

Разбиение на страницы при печати

Можно так организовать работу программы, что при выводе
данных на устройство печати строки будут группироваться в стра­
ницы, т. е. в нужный момент будет фиксироваться конец очередной

10 GOTO 1000
790 ’== Подпрограмма обработки конца страницы ===================
800 LCTR/=LCTRX+1 'Увеличение счетчика числа строк
810 IF LCTRX<=56 THEN RETURN 'Завершение работы, если страница не заполнена
820 LPRINT STRING$(66-LCTR%,CHR$(10)) 'Переход к следующей странице
830 LPRINT TAB((80-LEN(TITLE$))/2);TITLE$'Печать заголовка страницы
840 LPRINT ТАВ(70);” стр. ”;PAGE%
850 LPRINT
860 LPRINT "Печать заголовков столбцов'*
870 LCTRX=5 ’Установка нач.знач. счетчика строк; учтены строки под заголовки И поля
880 PAGE%=PAGE%+1 ’Увеличение текущего номера страницы
890 RETURN
990 ’ — Демонстрационная программа -- -
1000 PAGEX=1
1010 TITLE$="titie”
1020 GOSUB 830
1030 FOR KX=1 TO 100
1040 LPRINT K%
1050 GOSUB 800
1060 NEXT К 7.

Рис. 10.2. Подпрограмма обработки конца страницы при выводе данных на
печатающее устройство.

страницы и производиться протяжка бумаги на начало следующей.
При этом можно печатать заголовок страницы, ее номер и заголовки
столбцов.

Простейший способ выполнить все это состоит в использовании
некоторой подпрограммы (рис. 10.2). В подпрограмме, приведенной
на рис. 10.2, для подсчета количества строк, уже напечатан­
ных к данному моменту на текущей странице, используется пере­
менная LCTR%, а для хранения номера текущей страницы — пере­
менная PAGE %. Каждый раз при выводе строки в подпрограмме
значение счетчика строк (т. е. переменной СТР %) увеличивается
на единицу, а затем оно сравнивается с максимально допустимым
числом строк на странице (строки 800 и 810 подпрограммы). Если
значение счетчика строк меньше максимально допустимого, то ни­
каких действий больше не производится и подпрограмма заканчи­

218 Глава 10

вает работу. Как только значение счетчика достигнет размера стра­
ницы, в подпрограмме выполняется все необходимое для заверше­
ния очередной страницы и перехода на следующую (строки 820—
890).

В основной программе перед первым обращением к подпрограм­
ме, т. е. перед первым оператором вывода данных, необходимо за­
дать начальный номер страницы (обычно его задают равным 1).
При выводе первой страницы можно обращаться не к первой, а к
некоторой промежуточной строке подпрограммы, поскольку в пер­
вый раз не требуется протяжка бумаги, и можно сразу печатать за­
головок страницы, заголовки столбцов и т. д.

Каждый раз после печати очередной строки в основной програм­
ме должно выполняться обращение к подпрограмме, чтобы увели­
чить значение счетчика строк и проверить, не достигло ли оно мак­
симального. Операторы увеличения и проверки значения счетчика
можно было включить прямо в основную программу, чтобы реже об­
ращаться к подпрограмме, однако при таком способе страницы могут
иметь неодинаковые нижние поля.

Управляющие символы

Матричное печатающее устройство IBM 80CPS, как и большин­
ство современных печатающих устройств, может производить целый
ряд специальных операций. Управление этими операциями осу­
ществляется путем засылки на печатающее устройство одного или
двух специальных символов. Сами управляющие символы при вы­
воде не печатаются, а только определяют, в каком виде в дальней­
шем будут представляться остальные данные.

Односимвольные управляющие коды предназначены для управ­
ления движением бумаги, т. е. с их помощью можно управлять ме­
стоположением последующих печатаемых данных. В табл. 10.3
перечислены некоторые наиболее распространенные односимволь­
ные коды, используемые почти в любом печатающем устройстве.
Например, при выполнении следующего оператора напечатается
текущая строка, после чего бумага продвинется на четыре строки:
LPRINT STRINGS (4,CHR$(10))

Большинство печатающих устройств обладает различными рас­
ширенными возможностями, для использования которых приме­
няются двухсимвольные управляющие коды (один символ интерпре­
тируется как начало выполнения некоторого действия, а другой —
как завершение). Интерпретация этих управляющих символов су­
щественно зависит от типа печатающего устройства, и обычно для
разных устройств управляющие символы интерпретируются по-
разному. Например, в печатающем устройстве IBM 80CPS двухсим­
вольные управляющие коды используются для изменения типа

Управление выводом данных 219

Таблица 10.3. Наиболее распространенные управляющие символы
для печатающего устройства

Выполняемая операция Протяжка бумаги Печать начатой строки Управляющий символ
Возврат каретки К следующей стро­

ке
Продолжается CHRS (13)

Перевод строки На одну строку » CHR$ (10)
Возврат (на одну пози­

цию)
Не происходит >9 CHR$ (8)

Прогон страницы К следующей стра­
нице

» CHR$ (12)

Звуковой сигнал Не происходит Не продолжается CHR$ (7)

По управляющему символу СцР$ (8) печатается текущая строка, а затем происходит возврат к последнему напечатанному символу.
шрифта. В табл. 10.4 приведено описание этих кодов, а рис. 10.3
иллюстрирует их использование. В случае какого-либо другого пе­
чатающего устройства эти же самые управляющие символы могут
вообще не применяться либо использоваться совершенно иначе.

Коммутируемый вывод данных

Используя в программе операторы PRINT и LPRINT, можно
выводить данные то на экран дисплея, то на печатающее устройство.
Однако может оказаться, что одну и ту же информацию необходимо
выводить либо сразу на оба устройства, либо на устройство, тип
которого определяется в процессе выполнения программы в зависи­
мости от сложившейся ситуации. Было бы очень неудобно в таких
Таблица 10.4. Управляющие символы для выбора шрифта (матричное
печатающее устройство IBM 80CPS)

Тип шрифта
Управляющие символы Количество симво­лов в одной строке х)первый символ (устанавливающий шрифт данного типа) второй символ (отменяющий шрифт данного типа)

Широкий
Узкий
Узкоширокий

Выделительный
Двойного удара

CHR$ (14)
CHRS (15)
CHR$(15) +
CHRS (14)
CHRS (27) + «Е»
CHR$(27) + «G»

CHR$ (148)2)
CHRS (146)3)
CHR$ (148) +
CHRS (146) з. з)
CHR$(27) + «F»
CHR$ (27) + «H»

40
132
66

Не устанавливается
»’) При стандартном типе шрифта в одной строке печатается 80 символов.2) Широкий и узкоширокий шрифты автоматически дезактивируются после печати стро­ки: таким образом, дезактивацию можно произвести и с помощью следующих управляющих символов: CHR$ (13), CHR$ (10) и CHRS (12).3) Выделительный шрифт автоматически исключает узкий.

220 Глава 10

10 CC1$=CHR$(27) ’Первый управляющий символ
20 • — Формирование управляющих символьных строк--------------- - --------
30 W.0N$=CHRS(14) :W.OFF$=CHR$(20) ’Широкий шрифт
40 C.0N$=CHR$(15):C,OFF$=CHR$(18) 'Узкий шрифт
50 D.0N$=CC1$+"G":D.0FF$=CC1$+”H” ’Шрифт ДВОЙНОГО удара
60 E.0N$=CC1$+"E":E.0FF$=CC1$+"F” ' ВыДСЛИТелЬНЫЙ ШрИфТ
90 ’— Печать примеров--- --------
100 S$="ABCDEFabcdefO123# ? ! О”
110 LPRINT C.ON$;S$+" Узкий шрифт*’; C.OFF$
120 LPRINT S$+” Обычный стандартный шрифт"
130 LPRINT С.0Н$;и.0Н$;5$+,‘ Узкий шрифт двойной ширины ”Z*C.OFF$
140 LPRINT W.ONS; SS+" Шрифт двойной ширины"
150 LPRINT
160 lprint s$+” Обычный нормальный шрифт1'
170 LPRINT В^$;5$+"ШрИфТ ДВОЙНОГО удара 1Г; P.OFFi
180 LPRINT E.ON$;S$+”Выделительный шрифт 11
190 LPRINT В.0Н$;5$+"Выделительный шрифт двойного удара”;В.OFF$;E.OFF$ *

А Программа печати, образцов Lap и ср та для 12 типов шрифтов

ABCDEFabcdef0l23r!(J COMPRESSEO TYPEABCDEFabcdefЯ123#'? 1 О NORMAL TYPE
ABCDEFabcdef0123#?!() DOUBLE WIDTH COMPRESSED TYPE

0 1^34*'? <> WXOTH TYF L

AE^CПГFabcde■f0t23#n, О NORMAL TYPE.
ABCDEFabcdef0123#?!О DOUBLE STRIKE TYPE
ABCDEFabcdefO123#?!(> EMPHASIZED TYPE
ABCDEFabcdef0123#?!() DOUBLE STRIKE EMPHASIZED TYPE

В Результаты работы программы

Рис. 10.3. Типы шрифта матричного печатающего устройства IBM 80CPS.

случаях каждый раз дублировать все операторы вывода, записывая
их один раз с командным словом PRINT, а другой раз с командным
словом LPRINT. Этого можно избежать с помощью оператора
PRINT, который позволяет определять тип устройства вывода не­
посредственно в процессе выполнения программы.

Устройства вывода задаются в операторе PRINT с помощью но­
меров. Для кассетного Бэйсика номер устройства должен заклю­
чаться в пределах от 1 до 4, а для остальных версий Бэйсика ис­
пользуются номера 1, 2 и 3 (гл. 12).

В программе прежде всего необходимо связать определенное
физическое устройство с одним из указанных номеров. Для этого
используется оператор OPEN.

Пример
1100 OPEN “LPT1:” FOR OUTPUT AS #1

В операторе OPEN после командного слова OPEN записывается
стандартное имя устройства. В приведенном выше примере исполь­
зуется имя системного печатающего устройства (LPT1:). Имена
всех устройств перечислены в табл. 10.5.

Управление выводом данных 221

Таблица 10.5. Стандартные имена устройств ввода-вывода,
используемые в Бэйсике

Имя Название устройства Ввод-вывод В каких версиях Бэй- сика используется данное имя
KYBD: Клавиатура Ввод Во всех
SCRN: Экран Вывод » »
LPT1: 1-е печатающее устройство » » »
LPT2: 2-е печатающее устройство » В дисковом и в рас­

ширенном Бэйсике
LPT3: 3-е печатающее устройство » То же
СОМ1: 1-е последовательное устройство Ввод-вывод Во всех
COM2: 2-е последовательное устройство » » В дисковом и в рас­

ширенном Бэйсике
CAS1: Устройство для записи на маг­

нитную ленту
» » Во всех

А: 1-й дисковод » » В дисковом и в рас­
ширенном Бэйсике

В:1) 2-й дисковод » То же

*) Если в системе больше двух дисководов, то кроме указанных используются имена С:, D: и т. д.
Ниже приводится текст программного сегмента, в котором вы­

бор устройства вывода (дисплея или печатающего устройства) осу­
ществляется пользователем в процессе выполнения программы:
1100 OPEN “LPT1:” FOR OUTPUT AS #1
1110 OPEN “SCRN:” FOR OUTPUT AS #2
1120 INPUT “Устройство печати или экран дисплея? (P/S) “,D$
ИЗО IF D$<>“S” AND D$<>“P” THEN 1120
1140 IF D$=“P” THEN D% = 1 ELSE D%=2
1430 PRINT#D%, ТАВ(33);“Список изделий”
1440 PRINTED %,
1450 GOSUB 5500 'Ввод значений параметров очередного изделия
1460 TMPL3$= “\\\”+SPACE$(18)+

1470 PRINT#D%', USING, TMPL3$;ITM$;DESCR$;COST#
В приведенном программном сегменте один номер устройства

присваивается печатающему устройству, а другой — дисплею (стро­
ки 1100 и 1110). Переменной D% присваивается то значение номе­
ра устройства, которое укажет пользователь в процессе работы про­
граммы (строка 1140). Для вывода данных используются операторы
PRINT#D% и PRINT#D%, USING (строки 1430, 1440 и 1470),
обеспечивающие возможность вывода на любое из двух указанных
устройств. Заметим, что оператор PRINT# даже в его простейшем
виде, т. е. не содержащий никаких выводимых значений, должен
оканчиваться запятой, стоящей после номера усройства (строка

222 Глава 10

1440); такая запятая в отличие от аналогичной запятой в обычном
операторе PRINT не отменяет возврата каретки и не обеспечивает
переход к следующей зоне вывода.

Если в программе нужно изменить номер некоторого устройства
вывода, т. е. присвоить ему новый номер с помощью нового опера­
тора OPEN, то предварительно необходимо уничтожить текущий
номер этого устройства, выполнив для этого оператор CLOSE.

Пример
1100 OPEN “SCRN:” FOR OUTPUT AS #1
1700 CLOSE #1
1710 OPEN “LPT1:” FOR OUTPUT AS #1

Длина строки при выводе данных на печатающее устройство
Обычно при программировании на Бэйсике предполагается,

что строки печатающего устройства имеют длину 80 символов.
Если в программе делается попытка напечатать в одной и той же
строке больше 80 символов, то Бэйсик-интерпретатор в нужный
момент автоматически генерирует символ возврата каретки, по­
сылает его на печатающее устройство, и в результате печатается
строка из 80 символов. Некоторые печатающие устройства могут
печатать не только 80-символьные строки. Так, матричное печата­
ющее устройство IBM 80CPS может печатать 132-символьные стро­
ки обычным плотным шрифтом; печатающие устройства с широки­
ми каретками также могут выдавать строки длиной более чем 80 сим­
волов стандартного размера.

С помощью несколько видоизмененного оператора WIDTH мож­
но изменить принятую по умолчанию длину строки при печати дан­
ных и установить ее равной любому числу от 1 до 255.

Пример
1120 WIDTH #1, 132

Первое значение, указанное в операторе WIDTH, интерпрети­
руется как номер устройства вывода, а второе как новое значение
длины строки. Для того чтобы команда установки новой длины стро­
ки воспринималась печатающим устройством, необходимо предва­
рительно с помощью оператора OPEN присвоить печатающему
устройству указанный в WIDTH номер. Новая длина строки будет
учитываться при выполнении только операторов PRINT* и
PRINT* USING (в которых указан соответствующий номер устрой­
ства); при выполнении операторов LPRINT и LPRINT USING
всегда используется 80-символьная строка.

Существует еще одна модификация оператора WIDTH, с по­
мощью которой можно лишь задать новое значение длины строки,
а фактически это новое значение установится только при выполнении
последующего оператора OPEN, содержащего имя соответствую­
щего устройства. Такой оператор WIDTH имеет вид

Управление выводом данных 223

1000 WIDTH “LPT1:”, 132
Первый выполняемый после оператора WIDTH оператор OPEN

будет не только присваивать нужный номер печатающему устрой­
ству, но и устанавливать для него новую длину строки.

Пример
1010 OPEN “LPT1:” FOR OUTPUT AS #2

Поскольку операторы LPRINT, LPRINT USING, LLIST и
LIST, “LPT1:” содержат в неявном виде оператор OPEN, при их вы­
полнении будет также устанавливаться новое значение длины стро­
ки для печатающего устройства.

Подчеркивание и забивка строк
В дисковом Бэйсике и расширенном Бэйсике предусмотрены

средства, позволяющие отменять автоматический переход к сле­
дующей строке, который обычно происходит сразу же после возврата
каретки. Благодаря этому при необходимости можно повторно пе­
чатать нужные символы в только что выведенной строке и тем са­
мым добиваться подчеркивания или забивки. Для такой отмены
автоматического перевода строки необходимо выполнить оператор
OPEN специального вида и оператор WIDTH, устанавливающий
для печатающего устройства длину строки, равную 255. Оператор
OPEN такого вида не содержит конструкции FOR OUTPUT. При­
веденная ниже программа показывает, как с помощью описанных
средств можно производить подчеркивание и забивку строк:
2309 '------- Стандартный автоматич, перевод строки
2310 OPEN “LPT1:” FOR OUTPUT AS #1
2319 '------- Отмена автоматич, перевода строки
2320 OPEN “LPT1:” AS #3:WIDTH #3, 255
2330 PRINT *3, “Человек-невидимка”
2340 PRINT #3, “---------------------------”
2350 PRINT #1,
2360 PRINT #3, “Забастовка”
2370 PRINT #3, STRING$(10,
2380 PRINT #1

В результате выполнения этой программы напечатается следую­
щее:
Человек-невидимка

•Забаетевка-
В приведенной программе номер устройства, равный #1, ис­

пользуется для печати обычных строк с автоматическим переводом
строки (строка 2310 программы), а номер устройства, равный 2,—
для печати с отменой перевода строки (строка 2320).

Глава 11

ВВОД ДАННЫХ С КЛАВИАТУРЫ

В предыдущих главах описывалось, как можно вводить данные с клавиатуры
с помощью оператора INPUT.

Кроме оператора INPUT в Бэйсике имеется целый ряд других операторов
и функций, обеспечивающих широкие возможности управления вводом данных
с клавиатуры. С помощью этих средств можно изменять форму курсора, делать
его то видимым, то невидимым на экране, а также придавать различные интер­
претации функциональным клавишам и использовать управляющие клавиши.

Форма курсора и его изображение на экране

В процессе работы программы курсор обычно не виден, но вся­
кий раз при выполнении оператора INPUT он появляется на экра­
не. Кроме оператора INPUT существуют и другие средства ввода
данных с клавиатуры, которые, однако, не предусматривают авто­
матического появления курсора. При использовании этих средств,
а также и в любых других ситуациях изображение курсора на эк­
ране можно высветить в любой момент выполнения программы с по­
мощью оператора LOCATE специального вида:

300 LOCATE „1

Если после двух запятых в операторе LOCATE стоит I, то на экра­
не появится изображение курсора, если 0, то оно исчезнет. Две за­
пятые здесь играют ту же роль, что и в операторе LOCATE, опи­
санном в гл. 10, т. е. участвуют в спецификации позиции курсора.
В данном случае перед запятыми не стоит никаких номеров строки
и столбца. Это означает, что при выполнении оператора LOCATE
текущая позиция курсора на экране не изменится.

Оператор LOCATE обладает еще одной дополнительной возмож­
ностью: с его помощью можно изменять форму курсора от тонкой
горизонтальной черточки до вытянутого вверх прямоугольника.
Форма курсора определяется тем, какая часть выделенной ему
максимальной площади действительно заполнена: когда заполнена
вся площадь, курсор имеет вид прямоугольника. Этот максималь­
ный прямоугольник немного вытянут вверх и имеет высоту чуть
больше прописной буквы, так что если и буква, и прямоугольник
находятся на одной и той же строке экрана дисплея, то верхние их
границы расположены на одном уровне, а нижняя граница прямо­
угольника — немного ниже уровня нижней границы буквы (рис.

Ввод данных с клавиатуры 225

Весь максимальный прямоугольник, отведенный под курсор,
разбивается на ряд тонких горизонтальных полосок, и в зависи­
мости от того, какие из них заполняются, курсор приобретает ту
или иную форму. Для дисплея, связанного с монохроматическим
адаптером, таких полосок 14, и они пронумерованы от 0 до 13 сверху

Заглавные буквы

MOIHU
1

Максимальная Величина курсора

Рис. 11.1. Максимальные размеры курсора.

вниз (рис. 11.2. А). Для дисплея, связанного с адаптером цветных
графических устройств, таких полосок 8, и они пронумерованы от
О до 7 (рис. 11.2. В). Чтобы в качестве курсора на экране высвечи­
валась часть максимального прямоугольника, ограниченная ука­
занными полосками, в операторе LOCATE надо задать номер верх­
ней и нижней полосок.

Пример. Оператор LOCATE.
300 LOCATE „1,12,13

В приведенном выше операторе первое число указывает на
то, что курсор должен высветиться на экране, второе означает но-

А Монохроматический экран В Цветной экран

Рис. 11.2. Разбиение отведенного под курсор прямоугольника на горизонтальные
полосы.

мер первой используемой полоски, а третье — номер последней
используемой полоски. Первые две стоящие друг за другом запятые
говорят о том, что текущая позиция курсора при выполнении опе­
ратора LOCATE не изменится. Указанный оператор LOCATE опре­
деляет стандартную форму курсора, при которой курсор представ-8 № 2275

226 Глава 11

ляет собой черточку, находящуюся немного ниже строки (подчер­
кивающий курсор).

Курсор может принимать различные формы, в том числе может
состоять из двух отдельных частей (рис. 11.3). Такая кусочная
форма курсора получается при выполнении оператора LOCATE,
в котором номер полоски, указанный первым, больше номера по­
лоски, указанного вторым. Второй номер в операторе LOCATE

Рис. 11.3. Различные формы курсора для монохроматического экрана (для цвет­
ного — аналогично).

является необязательным; если он отсутствует, то при выполнении
оператора LOCATE считается, что второй номер совпадает с пер­
вым и в результате заполнится лишь одна полоска.

Функциональные клавиши
При нажатии клавиши F1 на экране появится слово LIST, как

если бы оно набиралось на клавиатуре по буквам. Аналогичным
образом действует любая из остальных десяти функциональных
клавиш, генерируя на экране соответствующее слово. Подобные
клавиши на машинах фирмы IBM называются программируемыми,
поскольку они не связаны жестко с каким-либо определенным
символом и действуют не столь быстро, как остальные 76 клавиш
клавиатуры; генерируемые ими слова называются определениями
программируемых клавиш. Бэйсик располагает средствами, позво­
ляющими изменять эти определения так, что при нажатии соответст­
вующей клавиши генерируется заранее заданная цепочка символов
длиной до 15 знаков.

Ввод данных с клавиатуры 227

На 25-й строке экрана обычно высвечиваются первые шесть
символов каждого определения программируемых клавиш. Эти оп­
ределения с помощью оператора KEY OFF можно удалить с экра­
на1*, но при этом сами определения не отменяются. Так, если после
выполнения оператора KEY OFF нажать какую-нибудь функцио­
нальную клавишу, то она сгенерирует на экране то же слово, что
и раньше, а в результате выполнения оператора KEY ON в 25-й стро­
ке экрана вновь появятся определения программируемых клавиш.
Для того чтобы вывести на экран каждое определение полностью,
т. е. все его 15 символов, следует выполнить оператор KEY LIST.

1) Точнее, отменить специальный режим использования 25-й строки, чтобы
работать с ней так же, как с остальными строками экрана.— Прим, перев. '

8*

Существует еще один вид оператора KEY, с помощью которого
можно изменить определение программируемой клавиши. В при­
водимом ниже примере это делается применительно к клавише F7,
при нажатии которой должна генерироваться строка “EDIT”:
KEY 7,“EDIT”

Если после выполнения указанной выше команды нажать на
F7 в режиме немедленной обработки, то на экране появится команд­
ное слово EDIT. После этого можно набрать номер строки, нажать
клавишу и тогда команда EDIT выполнится.

Для задания в операторе KEY нового определения программи­
руемой клавиши разрешается использовать строковые константы,
переменные и выражения. Например, для включения в новое опре­
деление еще и символа возврата каретки можно использовать
функцию CHR$ так, как это делается в следующем операторе:
KEY 8,“FILES” + CHR$(I3)

При этом исключается необходимость нажимать отдельно кла­
вишу Так, если после выполнения приведенного выше операто­
ра нажать клавишу F8, то одновременно с появлением на экране
слова FILES начнет выполняться команда FILES.

При вводе данных с клавиатуры, например, в режиме немедлен­
ной обработки или при ответе на запрос оператора INPUT функ­
циональные клавиши обычно действуют как программируемые.
Однако если функциональной клавише поставить в соответствие
нулевое определение, то последующее нажатие этой клавиши не
будет вызывать никаких действий системы.

Использование функциональных клавиш при программировании
на расширенном Бэйсике

Расширенный Бэйсик включает в себя средства, позволяющие
использовать функциональные клавиши не только для ввода не­
которого слова, но и для прерывания выполнения программы и

228 Глава 11

вызова определенной стандартной подпрограммы. Чтобы нажатие
функциональной клавиши приводило к реализации указанных дей­
ствий, необходимо предварительно выполнить два специальных
оператора расширенного Бэйсика.

Первый из них — это оператор KEY специального вида, акти­
визирующий функциональную клавишу так, что любое ее нажатие
приведет к вызову подпрограммы.

Пример. Оператор KEY для клавиши F1:
30 KEY (1) ON

Записанное в скобках значение определяет, какая именно функ­
циональная клавиша будет активизирована. После выполнения
приведенного выше оператора нажатие клавиши F1 не будет при­
водить к генерации какой-либо строки символов.

Для того чтобы при нажатии функциональной клавиши происхо­
дил вызов некоторой подпрограммы, необходимо после активиза­
ции этой клавиши с помощью указанного выше оператора KEY
выполнить еще один оператор. Этот второй оператор устанавли­
вает номер строки подпрограммы, к которой будет происходить
обращение.

Пример. Оператор для клавиши F1:
35 ON KEY (1) GOSUB 20100

Значение в скобках указывает, для какой функциональной
клавиши выполняется данный оператор. Активизированная функ­
циональная клавиша будет действовать как вызывающая подпро­
грамму только после выполнения оператора, подобного приве­
денному выше. Если в таком операторе в качестве номера строки
подпрограммы стоит 0, то выполнение этого оператора блокирует
действие соответствующей функциональной клавиши.

Перед выполнением каждой новой строки программы интерпрета­
тор расширенного Бэйсика проверяет, не была ли нажата какая-ни­
будь активизированная функциональная клавиша: если такое на­
жатие производилось, то интерпретатор вызывает соответствующую
подпрограмму.

Для блокирования такого вызова при одновременном разрешении
действия исходного определения программируемой клавиши необ­
ходимо выполнить оператор, подобный следующему:
20170 KEY (1) OFF

Как и в предыдущих случаях, значение в скобках определяет
функциональную клавишу, для которой выполняется данный опе­
ратор.

Описанные выше операторы KEY-OFF и KEY-ON не оказывают
никакого воздействия на 25-ю строку экрана дисплея. Высвечивае­
мые в этой строке определения программируемых клавиш исчезают

Ввод данных с клавиатуры 229

с экрана или появляются вновь при выполнении только таких
операторов KEY OFF и KEY ON, которые имеют самый простой
вид, т. е. состоят всего лишь из одного командного слова.

Иногда возникает необходимость временно оградить программу
от прерываний, вызываемых функциональными клавишами, и в то
же время запомнить каждое нажатие такой клавиши с тем, чтобы
впоследствии можно было выполнить все соответствующие вызовы
подпрограмм. Все это достигается с помощью оператора, подобного
приведенному ниже, который временно дезактивизирует клавишу
F1:
1430 KEY (1) STOP

Если после выполнения указанного выше оператора произво­
дились нажатия клавиши F1, то все соответствующие вызовы под­
программ все-таки будут реализованы, но не сразу, а только после
выполнения оператора KEY (1) ON, вновь активизирующего эту
клавишу. Если же во время работы программы нажималось не­
сколько различных функциональных клавиш, временно дезактиви-
зированных операторами KEY-STOP, то соответствующие вызовы
подпрограмм будут впоследствии производиться в том порядке, в
котором будут вновь активизироваться функциональные клавиши.

Для вызова подпрограмм, кроме функциональных клавиш, мож­
но также использовать четыре клавиши малой клавиатуры, управ­
ляющие движением курсора. Для этого надо выполнить все те же
операторы, что и в случае функциональных клавиш, как описано
выше. При этом каждая из четырех управляющих клавиш задается
своим номером: клавише f соответствует номер 11, клавише +- но­
мер 12, клавише номер 13, клавише | номер 14. Эти номера ис­
пользуются в операторах KEY-ON, KEY-OFF, KEY-STOP и
ONKEY-GOSUB точно так же, как номера функциональных клавиш.

Пример. Программа, в которой вместо функциональных клавиш
для организации вызовов подпрограмм используются клавиши уп­
равления курсором; каждая подпрограмма предназначена для пе­
ремещения курсора в том или ином направлении.

list
10 FOR К% = 11 ТО 14
20 KEY (К) ON 'Активизация клавиш управления курсором
30 NEXT
40 ON KEY (11) GOSUB 1010 'вверх
50 ON KEY (12) GOSUB 1020 'влево
60 ON KEY (13) GOSUB 1030 'вправо
70 ON KEY (14) GOSUB 1040 'вниз
80 CLS:LOCATE ,,1 'Появление курсора на экране
100 GOTO 100 'Ожидание нажатия клавиши

управления курсором

230 Глава 11

1010 PRINT CHR$(30);:RETURN 'вверх
1020 PRINT CHR$(29); .-RETURN 'влево
1030 PRINT CHR $(28);.-RETURN 'вправо
1040 PRINT CHR$(3I);:RETURN 'вниз
Ok

Управление вводом данных с клавиатуры
Экран дисплея очень чувствителен к различным воздействиям

на клавиатуру. Поэтому использование редактирующих клавиш,
так необходимых при работе с дисплеем, часто приводит к целому
ряду неприятностей. Нажимая клавиши 4-1, Esc, а также клавиши
управления курсором на малой клавиатуре, можно легко испортить
все изображение на экране дисплея, и если это случается, то поль­
зователь, как правило, объясняет это ошибками в программе, а не
собственной небрежностью при работе с клавиатурой. В связи с
этим в Бэйсик ПВМ включены средства, позволяющие учитывать
в самой программе возможность нежелательных воздействий на
экран дисплея со стороны клавиатуры и принимать соответствую­
щие меры предосторожности.

Отмена возврата каретки при выполнении оператора INPUT
В дисковом и в расширенном Бейсике в оператор INPUT можно *

включить дополнительную точку с запятой:
790 INPUT; “Порядковый номер” ;SN$

При вводе с клавиатуры ответа на такой запрос оператора INPUT
пользователь, завершив запись, должен нажать клавишу При
выполнении обычного оператора INPUT такое действие вызывает
автоматический возврат каретки, а при выполнении оператора
INPUT, содержащего дополнительную точку с запятой, автомати­
ческого возврата каретки не происходит. Это особенно важно при
заполнении 24-й или 25-й строки экрана, поскольку в данном слу­
чае возврат каретки привел бы к сдвигу всего изображения на одну
строку вверх с потерей самой верхней строки.

Оператор LINE INPUT
При выполнении оператора LINE INPUT все символы, вводи­

мые с клавиатуры до первого возврата каретки, приписываются
одной и той же строковой переменной. Поскольку вводится только
одно значение, запятые в качестве разделителей не используются,
т. е. при наборе вводимых данных на клавиатуре запятые можно
ставить где угодно без заключения всей записи в кавычки. В отли­
чие от обычного оператора INPUT, при выполнении оператора

Ввод данных с клавиатуры 231

LINE INPUT вопросительный знак, как требование к пользовате­
лю ввести значение, на экран не выводится, но при необходимости
его всегда можно включить в явном виде в текст (необязательного)
наводящего сообщения оператора LINE INPUT.

Пример. Оператор LINE INPUT при выполнении которого
выводится наводящее сообщение, но без знака вопроса.
790 LINE INPUT “Наименование изделия: ” ;1ТЕМ$

Все клавиши редактирования, действующие при выполнении
обычного оператора INPUT, точно так же действуют и при выпол­
нении оператора LINE INPUT. Единственное преимущество послед­
него оператора с точки зрения пользователя состоит в возможности
свободно использовать запятые при вводе значения.

Функция INPUTS
Более мощным средством управления вводом с клавиатуры явля­

ется функция INPUTS, предназначенная для ввода строковых зна­
чений заданной длины.

Пример
310 KS=INPUT$(1)

Значение, стоящее в скобках, указывает, сколько символов
должно быть введено. При выполнении оператора, подобного при­
веденному выше, дальнейшая работа программы не начинается до-
тех пор, пока пользователь не введет столько символов, сколько
требуется (сколько указано в функции INPUTS). До этого момента
клавиша не будет действовать как завершающая ввод, но одно­
временное нажатие клавиш в комбинации CtrlIScroll Lock по-преж­
нему будет вызывать прерывание выполнения программы.

При выполнении функции INPUTS курсор на экране не появля­
ется; не появляются также и символы, соответствующие нажимае­
мым клавишам; эти символы будут просто вводиться в машину.
Если нужно, чтобы вводимая с клавиатуры запись одновременно
появлялась и на экране, то этого можно добиться с помощью опера­
тора PRINT. Однако перед выводом на экран следует проверить,
нет ли среди символов вводимой строки «опасных», т. е. таких, кото­
рые могут вызвать нежелательные воздействия на изображение.
Если такие символы обнаружатся, то их следует исключить из
числа выводимых на экран.

Пример. Использование функции INPUTS.
list
10 LOCATE ,,1 'Появление на экране курсора
20 KS = INPUT$(1) 'Ожидание нажатия клавиши
40 IF ASC(K$)>31 THEN PRINT K$; 'Вывод на экран введенного

■ символа

232 Глава 11

50 GOTO 20 'Переход к вводу следующего символа
Ок

Все опасные в указанном смысле символы имеют числовые коды,
меньшие 32. В приведенной выше программе проверяется значение
кода каждого введенного с клавиатуры символа; если это значение
меньше 32, то соответствующий символ игнорируется, т. е. не
выводится на экран дисплея (строка 40).

Как отмечалось ранее, некоторые из кодов символов, заклю­
ченных между 0 и 32, а также код, равный 127, интерпретируются
при выводе символов на экран дисплея с помощью операторов
PRINT или PRINT USING не так, как в случае, когда символы
выводятся на экран автоматически сразу же после нажатия соот­
ветствующих клавиш. В частности, при выводе на экран символов
с помощью операторов PRINT или PRINT USING «опасными»
являются не все символы с кодами, меньшими 32, а только те, коды
которых принимают значения от 8 до 13 или от 28 до 31 либо
равны 0.

Пример. Видоизмененная предыдущая программа, в которой из
числа выводимых на экран исключаются только указанные «реаль­
но опасные» символы.
list
10 LOCATE , ,1 'Появление курсора на экране
20 К$ = INPUT$(1):K% = ASC(K$) 'Вводе клавиатуры 1 символа
40 IF К%>31 OR (К%<28 AND К%>13) OR (К%<8 AND

К%>0) THEN PRINT К$; 'Вывод на экран введенного символа
50 GOTO 20 'Переход к вводу следующего символа
Ок

Функция IN KEYS

С помощью функции INKEY$ можно во время выполнения
программы узнать, какая клавиша была только что нажата. Эта
функция принимает строковое значение, которое может быть нуле­
вой строкой либо состоять из одного или двух символов. Если зна­
чение функции — нулевая строка, то это означает, что никакие
клавиши не нажимались; если длина строки равна 1, то само значе­
ние строковой переменной — это символ, только что набранный
на клавиатуре; если значение состоит из двух символов, это говорит
о том, что в результате последнего нажатия клавиши не было сге­
нерировано ни одного из 256 стандартных символов ПВМ.

Выполнение в программе функции INK.EYS не приводит к ожи­
данию системой нажатия какой-либо клавиши; точно так же не
происходит высвечивания на экране курсора или символов, соот­
ветствующих нажимаемым клавишам. Эта функция позволяет лишь
узнать, нажималась ли какая-нибудь клавиша. После выполнения

233Ввод данных с клавиатуры

оператора, содержащего функцию INKEYS, сразу же продолжают
выполняться остальные операторы программы, начиная со следую­
щего. Если нужно, чтобы программа останавливалась и не возоб­
новляла работу до момента нажатия пользователем какой-либо
клавиши, то необходимо повторять выполнение до тех пор, пока это
не произойдет.

Пример
list
10 LOCATE ,,1 'Появление на экране курсора
20 K$=INKEY$:IF LEN(K$)=0 THEN 20

ELSE K/6 ==ASC(K$) 'Ожидание нажатия клавиши
30 IF К% —13 THEN END’C-'клавиша окончания работы
40 IF К%>31 OR (К%<28 AND К%>13) OR

(К%<8 AND К%>0) THEN PRINT К$; 'Вывод символа
на экран

50 GOTO 20 'Переход к вводу следующего символаОк
Приведенная выше программа содержит цикл (строка 20), ко­

торый будет выполняться неограниченное число раз до тех пор,
пока пользователь не нажмет какую-нибудь клавишу. Если это
будет клавиша <♦, программа сразу же завершит работу (строка 30).
При нажатии любой другой клавиши оператор PRINT выведет на
экран дисплея соответствующий символ (строка 40).
♦♦^Заметим, что в операторе IF-THEN для проверки состояния
клавиатуры не используется непосредственно функция INKEYS;
вместо этого текущее значение функции предварительно присваива­
ется некоторой переменной, которая затем уже и анализируется опе­
ратором IF-THEN. Это позволяет зафиксировать в программе мгно­
венное состояние клавиатуры. Если же и в операторе IF-THEN, и в
операторе PRINT непосредственно использовалась бы функция
INKEYS, то ее вхождение в оператор IF-THEN соответствовало
бы состоянию клавиатуры в один момент времени, а в оператор
PRINT—в другой. В результате значение функции INKEY$ при
выполнении оператора IF-THEN почти наверняка отличалось бы от
ее значения при выполнении PRINT.

При нажатии некоторых клавиш генерации какого-либо стандарт­
ного символа ПВМ не происходит. Функция INKEYS позволяет
идентифицировать 97 таких клавиш. В их число входят клавиши
управления курсором, расположенные на малой клавиатуре (Ноте,

End и т. д.), и функциональные клавиши с нулевым определе­
нием программируемого назначения, т. е. имеющие в качестве оп­
ределения строковое значение нулевой длины.

При нажатии одной из таких 97 клавиш функция INKEYS при­
нимает двухсимвольное строковое значение, которое называется
расширенным кодом. Код первого символа всегда равен 0, а код вто­

234 Глава 11

рого символа определяет, какая из 97 клавиш была нажата. В при­
ложении D перечислены все 97 расширенных кодов вместе с клави­
шами, которым эти коды соответствуют.

В программе любой из 97 нестандартных символов можно исполь­
зовать для организации выполнения той или иной команды или оп­
ределенного специального действия. Для этого клавишам, генери­
рующим нестандартные символы, можно заранее поставить в соот­
ветствие различные определенные действия. Тогда, если в процессе
работы программы окажется, что функция INKEYS принимает
двухсимвольное значение, то, анализируя код второго символа
этого значения, можно установить, какое действие следует выпол­
нить.

Пример. Использование клавиш управления курсором для вы­
полнения программой действий по перемещению курсора на экра­
не влево, вправо, вверх и вниз.

list
10 LOCATE ,,1 'Появление курсора на экране
20 K$ = INKEY$:IF LEN(K$)=0 THEN 20 ELSE K%=ASC(KS)

'Ожидание нажатия клавиши
30 IF К% = 13 THEN ЕИО'<-'клавиша завершения
40 IF К%>31 OR (К%<28 AND К%>13) OR (К%<8 AND

К%>0) THEN PRINT К$; 'Вывод на экран
50 IF LEN(K$)<2 THEN 20 ELSE K%=ASC(RIGHT$(K$,1))

'Проверка, является ли код расширенным
60 IF К%=72 THEN PRINT CHR$(30); 'вверх
61 IF К%=75 THEN PRINT CHR$(29); 'влево
62 IF К % =77 THEN PRINT CHR$(28); 'вправо
63 IF K%=80 THEN PRINT CHR$(31); 'вниз
70 GOTO 10 'Переход к следующему нажатию клавиши
Ok

Приведенная выше программа почти в точности совпадает с
программой предыдущего примера, только здесь еще дополнитель­
но анализируются случаи, когда функция INKEY$ принимает
двухсимвольное значение, и в зависимости от того, равен ли соот­
ветствующий расширенный код 72, 75, 77 или 80, выполняется то
или иное действие (строки 50—63). Эти коды соответствуют значе- ?
ниям, которые функция 1NKEY$ принимает при нажатии клавиш
управления курсором (приложение D). Таким образом, если будет
нажата одна из этих клавиш, программа этот факт обнаружит, и в
результате оператором PRINT, содержащим функцию CHR$, бу­
дет произведено перемещение курсора в строку, соответствующую
нажатой клавише (строки 60—63). Коды, являющиеся аргументами
функции CHR$, приведены в Приложении D.

Ввод данных с клавиатуры 235

Представление шаблонов входных сообщений

Ни один из операторов и ни одна из функций, управляющих
вводом данных с клавиатуры, практически не предоставляет поль­
зователю никакой информации о том, какое количество вводимых
символов является допустимым, должно ли быть вводимое значение
числовым или оно может содержать любые символы. Подобные све­
дения, однако, существенно упростили бы работу пользователю,
и поэтому следует предусматривать их выдачу в процессе выполне­
ния программы. Для этого в программу можно включить дополни­
тельные операторы, которые непосредственно перед появлением на
экране запроса на ввод с клавиатуры будут выдавать на экран шаб­
лон вводимого сообщения. Таким шаблоном может служить просто
строка из звездочек или нечто подобное.

Пример. Использование шаблонов.
list
10 CLS
190 '------ Вывод шаблона
200 LOCATE 12,20,1:PRINT STRING$(10,“*”);
210 LOCATE 12,20,1 'Установка курсора для ввода записи
230 K$=INKEY$:IF LEN(K$)=0 THEN 230

ELSE K%=ASC(K$) ' Ожидание нажатия клавиши
240 IF К % = 13 THEN 1500 'О'клавиша завершения
265 ' Вывод символа на экран и добавление его к вводимому

сообщению
270 IF К%>31 OR (К%<28 AND К%>13) OR

(К%<8 AND К%>0) THEN PRINT К$;
:NTRY$=NTRY$+K$

280 GOTO 230 ' Переход к вводу следующего символа
1500 PRINT:PRINT NTRY$:END
Ok

Данный пример аналогичен предыдущему, но здесь в программу
введены некоторые усложнения. В начале программы производятся
очистка экрана и высвечивание шаблона вводимой записи; шаблон
располагается в 12-й строке, начиная с 20-й колонки (строки 10
и 200). Затем восстанавливается прежняя позиция курсора, в ре­
зультате чего курсор располагается у начала области, предназна­
ченной для ввода сообщения (строка 210). После этого в программе
не производится никаких действий до тех пор, пока не будет нажата
какая-нибудь клавиша, а как только пользователь это сделает, в
программе запоминается значение кода нажатой клавиши (стро­
ка 230). По значению этого кода определяется, не была ли нажата
клавиша и если это действительно так, то на экран выводится
все введенное с клавиатуры значение и программа завершает свою
работу (строка 240). Если же была нажата любая другая клавиша,

236 Глава 11

то на экран выводится соответствующий ей символ, который добав­
ляется к вводимому значению (строка 270). При этом, если оказа­
лось, что нажатой клавише соответствует «опасный» символ (вывод
которого на экран может испортить все изображение), то в програм­
ме такой символ игнорируется, т. е. над ним не производится ника­
ких действий (строка 270). Заметим, что в действительности эта
программа не ограничивает количество символов, которые может
ввести пользователь, а лишь указывает посредством шаблона, ка­
кое число символов считается приемлемым.

Универсальная подпрограмма ввода с клавиатуры
Программа предыдущего примера обладает рядом недостатков.

Так, при использовании ее для ввода с клавиатуры пользователь,
как и ранее, может испортить изображение на экране, продолжая

190 ’== Универсальная подпрограмма ввода======================
200 LOCATE’inrowXzincol/z'1;Print string$(inlenXzintmpls); 'Вывод шаблона на экран
210 locate inrowxzincol/z1 ’ Установка курсора для ввода записи
220 ntry$="" ' Обнуление переменной для ввода новой записи
230 K$«INKEy$:IF LEN(K$)=O THEN 230 ELSE KX=ASC(K$) 'Ожидание нажатия клавиши
240 IF К/-13 THEN *300 ' Клавиша завершает ввод записей
250 IF К/=8' then 350 ' Возврат на‘одну позицию
260 IF LEN(NTRY$)=INLEnX then 230 'Вся запись введена
.270 IF.'K%>31 OR (КХ<28 AND КХ> 13) OR <КХ<8 AND KX>0) THEN PRINT К$;

*'.;NTRY$=NTRY$+KS 'Вывод символа на экран и добавление к вводимой записи
280 GOTO. 230- 'Переход к вводу следующего символа
290 Ввод записи завершен; прверка введенного числ. значения по допустимому диапазону
300 NTRY#=VAL(NTRY$)’Преобразование введенной записи в числовое значение
310 IF NTRY#>INMAX# THEN 200 ' СЛИШКОМ В6ЛИК0

'•320 IF NTRY#<INMIN# THEN 200 ' Слишком мало
330 RETURN
340 ’ — Возврат на 1 символ-------------------------------
350 IF LEN(NTRY$)=O THEN 230 ' Переход к вводу следующего символа, если запись пустая

* 360 PRINT CHRSC29); LEFT$(INTMPL$Z1); CHR$(29);' Замена поел, символа символом шабл,
370 NTRY$=LEFT$(NTRY$,LEN(NTRY$)-1) ' Удаление последнего символа
380 GOTO 230 ' Переход к вводу следующего символа

Рис. 11.4. Универсальная подпрограмма ввода данных с клавиатуры.

ввод символов за пределами предусмотренной зоны; он не может
при этом использовать и клавишу ◄-1 для исправления ошибок. Кро­
ме того, приведенная выше программа лишь вводит некоторое стро­
ковое значение, а в ряде случаев было бы полезно преобразовывать
его в числовое и проверять, лежит ли это числовое значение в задан­
ном диапазоне. Чтобы учесть все указанные недостатки и получить
в результате универсальную подпрограмму ввода данных с клавиа­
туры, достаточно лишь немного изменить предыдущую программу
(рис. 11.4).

В этой подпрограмме используются несколько переменных, ко-
торььм должны быть присвоены определенные значения перед тем,

Ввод данных с клавиатуры 237

как подпрограмма будет вызвана. Значением переменной INLEN%
является длина вводимого сообщения; значения переменных
INROW% и INCOL% указывают позицию на экране дисплея, с ко­
торой должна начинаться вводимая строка, а в качестве значения
переменной INTMPL$ должен быть задан символ шаблона вводи­
мой записи. В результате работы подпрограммы формируется зна­
чение введенной записи (как значение переменной NTRY$) и ее
числовое представление (как значение переменной NTRY#).

В начале работы универсальной подпрограммы ввода на экран
дисплея, начиная с заданной позиции, выводится шаблон (стро­
ка 200), а затем курсор вновь подводится к началу зоны ввода
(строка 210). После этого обнуляется переменная NTRYS, в кото­
рой накапливается вводимое с клавиатуры значение (строка 220).
Далее в подпрограмме не производится никаких действий до тех
пор, пока не будет нажата какая-нибудь клавиша. Как только это
произойдет, в подпрограмме запоминается значение соответствую­
щего нажатой клавише кода (строка 230). При этом проверяется,
не была ли нажата клавиша и если это так, то подпрограмма
переходит к преобразованию введенного сообщения в числовое зна­
чение и проверке, лежит ли это числовое значение в заданных пре­
делах (строки 240, 300—320). Если клавиша 4й не нажималась, то
проверяется, не была ли это клавиша В случае отрицательного
ответа следует проверка достаточности введенных символов для
формирования полной записи (строка 260). Если оказалось, что вве­
дено уже достаточное число символов, то в дальнейшем подпрограм­
ма будет игнорировать нажатие любых клавиш, кроме клавиш
и

Когда нажатой оказывается клавиша 4», подпрограмма проверя­
ет, содержит ли вводимое сообщение хотя бы один символ (стро­
ка 350). Если нет, то произведенное нажатие клавиши игнорирует­
ся, поскольку в данном случае операция возврата на одну позицию
влево не имеет смысла, и подпрограмма переходит в режим ожида­
ния следующего нажатия какой-нибудь клавиши. В противном
случае производится перемещение курсора на одну позицию влево,
а символ, стоящий на экране в позиции, соответствующей новому
положению курсора, заменяется на символ шаблона вводимой запи­
си, но сам курсор при этом уже не меняет своего положения (стро­
ка 360). Кроме того, в этом случае из вводимого сообщения удаляет­
ся замененный символ (строка 370), после чего подпрограмма ожи­
дает очередного нажатия клавиши (строка 380).

При нажатии любой другой клавиши на экран выводится соот­
ветствующий ей символ, который добавляется к вводимому строко­
вому значению (строка 270). При этом, как и в предыдущей програм­
ме, игнорируются все символы, вывод которых на экран может
оказать нежелательные воздействия на изображение (строка 270).

После того как пользователь нажимает клавишу универсаль­

238 Глава It

ная подпрограмма ввода выполняет преобразование введенной
записи в числовое значение (строка 300). Затем проверяется соот­
ветствие этого числового значения диапазону, заданному в вызыва­
ющей программе (строки 310 и 320); значение переменной INMAX#
является наибольшим допустимым числом, а значение перемен­
ной INMIN# — наименьшим. Если оказалось, что введенное
числовое значение выходит за указанные пределы, то подпрограмма
отбрасывает его и переходит к вводу новой записи.

Многократный ввод с клавиатуры

Программы, в которых с клавиатуры должно вводиться много
сообщений, удобнее писать и использовать, если последние орга­
низованы некоторым специальным образом. Вместо того чтобы вво­
дить нужные значения последовательно одно за другим, в программе
можно предусмотреть выдачу на экран дисплея той или иной
формы представления информации, указывающей, какие именно
сообщения должны вводиться, и содержащей пустые места, запол­
няемые пользователем при вводе конкретных значений. В этом слу­
чае пользователь всегда будет знать, какие записи он уже ввел,
а какие еще предстоит ввести. Стандартная подпрограмма ввода
(рис. 11.4) обладает для этого достаточными возможностями.

Разрабатывая формы входных сообщений, выдаваемые на экран,
удобно использовать диаграммную бумагу (рис. 11.5). Каждой клет­
ке такой бумаги можно сопоставить одну символьную позицию эк­
рана. В верхней части листа указываются номера столбцов, а сбо­
ку — номера строк сверху вниз. С помощью этих номеров впослед­
ствии идентифицируются любые клетки. Затем на листе записыва­
ются названия всех входных сообщений и размечаются клетки для
заполнения вводимыми сообщениями. Предварительное конструи­
рование форм на бумаге позволяет сократить общее время, затра­
чиваемое на программирование: значительно быстрее можно пере­
группировать элементы сообщений или изменить названия некото­
рых из них на бумаге, чем каждый раз заново перепрограммировать
разрабатываемую форму.

Как только разработан окончательный вариант формы представ­
ления информации, не составляет труда написать программу, кото­
рая будет выводить эту форму на экран. Номера строк и столбцов,
записанные по краям бумажного листа, можно непосредственно
использовать в качестве номеров строк и колонок экрана в опера­
торах LOCATE и в функциях ТАВ, с помощью которых осущест­
вляется перемещение курсора в нужное положение перед выводом
на экран оператором PRINT очередного названия записи. После
того как в программе предусмотрены все необходимые операторы
LOCATE и PRINT (с включенными в них функциями ТАВ), оста­
ется лишь добавить несколько операторов вызова универсальной

Ввод данных с клавиатуры 239

подпрограммы для организации форматированного ввода сообще­
ний.

На рис. 11.6 показана программа, которая выдает на экран
форму, приведенную на рис. 11.5, и осуществляет ввод конкретных
значений в соответствии с этой формой. Для стыковки данной про­
граммы с универсальной подпрограммой ввода данных с клавиату-

1 2 3 4 5 6 7 8 9 1 0111213141516171819 20 2122232425262728 2930313233343536373839 40

Рис. 11.5. Использование диаграммной бумаги для разработки формы представ­
ления информации на экране дисплея.

ры используется оператор CHAIN MERGE (строка 200). Основная
программа начинает свою работу с подготовки экрана дисплея
к приему данных с клавиатуры (строка 1000) и с выдачи на экран
стандартной формы для ввода сообщений (строки 1300—1360).
В данной программе названия, присутствующие в форме, содер­
жатся в операторе DATA (строка 7000), хотя возможны и другие
способы их хранения в программе. После выдачи формы на экран
программа формирует запрос на ввод с клавиатуры всех требуе­
мых записей (строки 1400—1420); операторы, осуществляющие ввод
каждого элемента сообщения, оформлены в виде подпрограммы
(строки 4000—4800). Такое глубокое структурирование программы
на первый взгляд может показаться излишним, однако ниже будут

200 CHAIN MERGE "11-4", 10ОО 'Стыковка с подпрограммой ввода с клавиатуры
1000 CLS:KEY OFFiWIDTH 40
1290 ‘—Вывод на экран формы входных сообщений---------------
1300 CLS
1310 PRINT "Программа учета личных коллекций-этап ввода данных “
1320 RESTORE 7000
1330 FOR R0WX=5 ТО 14
1340 REAO COL^,LABELS
1350 LOCATE ROWXZCOLX:PRINT LABEL$;STRING$(13-LEN(LABEL$)z'f. " 5
1360 NEXT
1390 ’—Последовательный ввод всех записей-------------------
1400 FOR NX=1 TO 10
1410 GOSUB 4000
1420 NEXT
1800 REM Здесь должен быть вывод информации В дисковый файл (рис. 16-2)
1890 ’—Прдолжать ввод записей?-----—--------------------
1900 LOCATE 2Z1 :PRINT "Ввести еще одну запись? (Y/NV'jTABC40)
1910 LOCATE 3Z1:PRINT ТАВС40) ’Удаление старого текста
1920 INLEN%=1:INMAX#=O:INMIN#=O:INR0W%=3:INC0LK=1:INTMPLS= " *":GOSUB 200
1930 IF NTRYS=o"N" AND NTRY$o"n" THEN 1300
2090 Концевая часть программы————----------------
2100 CLS
2110 PRINT пПрограмма учета личных коллекций-конец"; ТАВ (39);
2120 PRINT ТАВ(5);Т1МЕ$;ТАВ(15);0АТЕ$
2130 EN&
3990 •== Ввод записи с конкретным
4000 LOCATE 2Z1ZO:PRINT "Введитезапись,заполняя шаблон";тавс40):prtnt
4010 PRINT “Наж.КЛ.1’;CHR$(17);CHR$(196);CHR$(217); "для завер. ввода ”;ТАВ(40)
4020 INMAX#=10+20:INMIN#=-INMAX#:INROW^NX+4:INC0LX=18: INTMPLS»” * •'
4050 ON NX GOTO 4100Z4200Z4300Z4300Z4300Z4400Z4500Z4600Z4700Z480Q
4090 ’—Номерпозиции---------------------------—
4100 INLENX=3:G0SUB 200:ITMNR$=NTRY$
4110 ’ — Удаление неиспользованной части шаблона
4120 PRINT SPACE$(INLENX-LEN(NTRY$));:RETURN
4190 ’—Категория--- -------- --------- ---- —----—-
4200 INLENX=10:.G0SUB 200 :CTGRY$=NTRY$: GOTO 4120
4290 1—Описание 1,2 и 3------------------------------
4300 INLEN%=20:G0SUB 200:DSCR$(NX-2)=NTRY$:G0T0 4120
4390 ’—Идентификатор------------------------------
4400 INLEN%=15:G0SUB 200:IDNBR$=NTRY$:G0T0 4120

4490 1— Местонахож ден.--
4500 INLEN%=15:GOSUB 200:LCN$=NTRY$:GOTO 4120
4590 ’ — Дата приобрет.--- -
4600 INLENX=8:G0SUB 200:ACQRD$=NTRY$:GOTO 4120
4690 ‘—Затраты--
4700 INMAX#=999999.99#:INMIN#=0:INLENX=9:G0SUB 200:COST#=NTRY#
4710 ’ — Повторный вывод числового значения введенной записи
4720 LOCATE INR0WX, INCOLX: PRINT USING ”######.##" ;NTRY# ;: RETURN
4790 ’ - Стоимость----------------------- ------------------------------------•
4800 INMAX#=999999.99#:INMIN#=0: INLENX=9:GOSUB 200: VALU#=NTRY#:GOTO 4720
6980 ' — Наименование записей и шаблоны-------------------- —-------------
6990 г для формы ввода
7000 ЪМк аномер позиц.,Ь,Кате$ор.,Ьг Описание-1,4, Описание -2Z4Z

Описание -3, 4, Иден тиф. 4, Местонах, ,Ь, дата приобрет,, ц, Затра ты, 4, Стоим.

Рис. 11.6. Программа форматированного ввода данных с клавиатуры с исполь­
зованием формы, приведенной на рис 11.5, и универсальная подпрограмма
ввода (рис. 11.4).

Ввод данных, с клавиатуры 241

приведены примеры, показывающие, что оно вполне оправдано.
Введя все требуемые сообщения, пользователь должен решить,
будет ли он заполнять еще одну форму или нет; в соответствии с этим
программа повторит или завершит свою работу (строки 1900—1930).
Полезно обратить внимание на то, как с помощью функции ТАВ в
программе удаляются с экрана старые сообщения и записи, чтобы
они не мешали выводу новых (строки 1900 и 1910).

При конструировании формы представления выводимых на эк­
ран данных следует учитывать, что в нее могут входить не только
вводимые сообщения и их названия. В ряде случаев может потре­
боваться еще и вывод некоторой вспомогательной информации или
результатов каких-либо производимых в программе вычислений.
При разработке формы рекомендуется оставлять три или четыре
строки незаполненными на случай, если потребуется вводить в
программу какую-то дополнительную информацию, выводить дан­
ные о состоянии программы или ее название.

Ошибки при вводе

Программа, в которой предполагается, что пользователь, вводя
с клавиатуры различные значения, не будет допускать ошибок,
просто нежизнеспособна. Ошибки при вводе практически неизбеж­
ны, и потому всякая программа должна включать в себя средства
для их обработки.

Процедура обработки каждой ошибки состоит из двух этапов:
выявления ошибки и оповещения о ней. Универсальная подпро­
грамма ввода предусматривает выявление ошибок, допускаемых при
вводе данных с клавиатуры, с помощью функции IN KEYS (рис. 11.4).
Однако эта подпрограмма не предоставляет пользователю почти ни­
какой информации о возникающих ошибках, что очень неудобно.
Например, если в процессе выполнения подпрограммы обнаружи­
вается, что была нажата неразрешенная клавиша, ее дальнейшие
действия аналогичны тем, которые выполняются в случае, когда
не нажимается вообще никакая клавиша. В результате, если при
нажатии некоторой клавиши не ввелся никакой символ, пользова­
тель не может различить, произошло ли это по причине использо­
вания недопустимой клавиши или из-за неисправности клавиату­
ры.

Оповещение об ошибках ввода

Один из способов оповещения об ошибке состоит в том, чтобы
каждый раз прш ее обнаружении включалось встроенное в ПВМ
звуковое сигнальное устройство. Этот способ реализуется с помощью
оператора ВЕЕР. Все, что нужно сделать для его вставления в

242 Глава 11

универсальную подпрограмму ввода,— это добавить в строку 270
подпрограммы конструкцию ELSE, как показано ниже:
270 IF К°/о>31 OR (К%<28 AND К%>13) OR

(К%<8 AND К°/о>О) THEN PRINT К$;:
NTRY$=NTRY$ + К$ ELSE ВЕЕР

При выполнении такой видоизмененной строки допустимый
символ будет по-прежнему выводиться на экран и добавляться ко
всей вводимой записи, зато нажатие на клавишу, соответствующую

270 IF КХ>31 OR (КХ<28 AND К/>13) OR (К%<8 AND KX>0) THEN PRINT К$;
:NTRY$=NTRY$+K$ ELSE ВЕЕР • Соотв. символ выводится на экран, случ. нажат, игнорируется

310 IF NTRYWNMAX# THEN ERMS=”Уменьшить":GOTO400 ‘Слишком велико
320 IF NTRY#4lNMIN# THEN ЕНМ$=”.Увеличитьп: GOTO 400’Слишком Мала
390 1 — Высвечивание на экране сообщения об ошибке ——
400 FOR XU=1 ТО 3
410 LOCATE INROWX,INCOLXZO:PRINT LEFT$(ERM$,INLENX);’Вывод сообщения
420 ВЕЕР
430 FOR X2’Z=1 ТО 500:NEXT ’Пауза
440 LOCATE InrowK,incol%zO:print SPACESCINLENX);1 Удаление сообщения С экрана
450 FOR Х2‘Х=1 ТО 500;NEXT ’Пауза
460 NEXT XU -
470 GOTO 200 f Повторение ввода

Рис. 11.7. Изменения к универсальной программе ввода данных (рис. 11.4),
позволяющие уведомлять пользователя об ошибках ввода.

недопустимому символу, будет не только игнорироваться, но и
вызывать звуковой сигнал.

Универсальную подпрограмму ввода можно было бы усовер­
шенствовать, если предусмотреть в процессе работы выдачу поль­
зователю сообщения о том, является ли введенное им значение
слишком большим или слишком малым. В том виде, в каком она пока­
зана на рис. 11.4, эта подпрограмма не обеспечивает пользователя
вообще никакой информацией о причинах отклонения ею конкрет­
ного вводимого сообщения. Для устранения этого недостатка доста­
точно добавить в подпрограмму несколько новых строк и изменить
несколько старых. Эти изменения приведены на рис. 11.7.

Поясним, как работает видоизмененная часть подпрограммы.
Если оказалось, что введенное значение слишком велико или слиш­
ком мало, то с переменной ERM$ связывается текст сообщения об
ошибке, выводимого на экран (строки 310 и 320). Затем это сообще­
ние трижды высвечивается на экране на месте введенной записи;
для этого используется цикл FOR/NEXT (строки 400—460). Снача­
ла выводится часть сообщения об ошибке, поместившаяся в зоне,
отведенной для вводимого сообщения (строка 410), затем подается
звуковой сигнал (строка 420) и с помощью цикла FOR/NEXT
(строка 430) организуется двухсекундная пауза и сообщение

Ввод данных с клавиатуры 243

удаляется с экрана (строка 440). Еще одна такая же пауза выдержи­
вается перед повторением операторов всего внешнего цикла (стро­
ка 450). После третьего повторения этого цикла управление переда­
ется на начало универсальной подпрограммы ввода для приема
повторно вводимого значения (строка 470).

Средства исправления ошибок ввода

Существует целый ряд ошибок, которые в принципе нельзя вы­
явить с помощью программы. Например, при вводе сообщений поль­
зователь может делать орфографические ошибки, указывать невер­
ные числа и допускать другие неточности, не нарушая при этом
правдоподобности сообщения, которое в результате будет воспри­
ниматься программой как правильное. Ошибки подобного рода
способен обнаружить только сам пользователь, однако программа
может облегчить ему эту задачу.

Полезно, в частности, предоставить пользователю возможность
контроля вводимых сообщений и их исправления по окончании
просмотра. Если бы, например, в программе каждой вводимой с
клавиатуры записи присваивался уникальный номер, то с помощью
этих номеров пользователь мог бы идентифицировать ту из них,
которую он хочет исправить. Приведенная выше программа форма­
тированного ввода данных (рис. 11.5 и рис. 11.6) не предусматри­
вает указанных возможностей.

1590 ' — Вывод номеров записей на экран --———--------------- ———•
1600 FOR XU=1 ТО 10
1610 LOCATE Х1Х+4/1 :PRINT USING ";Х1 X
1620 NEXT XU
1630 *— Ввод номера изменяемой записи------------------ ------———-
1640 LOCATE 2,1:PRINT 11 Введите номер записи (если иэм.нет, введите 99)”; ТАВ С 40)
1650 LOCATE 3,1:PRINT ТАВС40)
1660 INLEN%=2: INMAX#=99:1NMIN#=1: INR0WX=3; INC0L7.==l: INTMPLV*”#” ;GOSUB 20Q
1670 IF NTRY#>10 THEN 1800
1680 N7. = NTRY# ;GQSUB 4000
1690 GOTO 1640

Рис. 11.8. Дополнительные строки к программе форматированного ввода данных
(рис. 11.6), позволяющие изменять введенные записи, идентифицируемые по их
номерам.

На рис. 11.8 приведены программные строки, которые следует
добавить в программу рис. 11.6 для того, чтобы пользователь мог
изменять уже введенные им данные. При выполнении этого нового
модуля программы сначала на экран рядом с каждым указанным
в форме названием записи выводится ее идентификационный номер
(строки 1600—1620), а затем пользователь осуществляет ввод но­
мера записи, которая будет изменена (строки 1640—1660). После
этого вызывается подпрограмма ввода элементов сообщения, с по-

244 Глава 11

Программа учета личных коллекций- этап ввода дачных
Для ввода значения, отмеченного указателем, нажми­
те клавишу
Указатель перемещается с помощью клавиш t и I
Клавиша End завершает ввод изменений

► Номер позиции
Категория*»»»
Описание-1 •••
Опи сание-2 • • •
Описание-5» ••
Идентификатор
Мест онахожден
Дата приобрет

Затраты.....................
Стоимость» • • •

511Пластинка-С 1
Бах И.С.Токатто и фуга до минор
РихтерDGG 158 978

Рис. 11.9. Использование указателя для отметки изменяемой записи.(На рисунке написано «Токатто»; следует читать «Токката».)
мощью которой на место старой записи вводится новая (стро­
ки 1680). Все описанные действия повторяются неограниченное
число раз до тех пор, пока пользователь не введет в качестве номе­
ра изменяемой записи число 99, после чего ввод изменений завер­
шается (строки 1670 и 1690).

Сообщая номер изменяемой записи, пользователь вынужден вы­
полнять работу, которую можно было бы сделать в самой програм­
ме. В большинстве случаев было бы удобнее, не указывая никаких

15901600
161016201630164016501660167016801690170017101720

‘—Внесение изменений в запись------ -------------------—
NX=1' Установка начального положения указателя на первую запись
locate 2,1;PRш'Хля ввода знач.»отмеч.указат.,нажм. КЛав.';СHRSС26);
print ’’Указат.перем.с пом,клав.";СНВ$(24);"и”;CHR$(25); End заверш.ввод измен.
LOCATE N%+4,2,0:PRINT CHRSC16); ’Высвечивание указателя
K$=INKEY$:IF LEN(K$)=O THEN. 1640’Ожидание нажатия клавиши
print chr$(29);” 1 Гашение указателя
’--Игнорирование незначащих клавиш
IF LEN(K$)<>2 THEN BEEP:GOTO 1630 ELSE K*=ASC(RIGHT$(K$,1))
IF K%=77 THEN GOSUB 4Q00:G0T0 1610 > Стрелка вправо
IF K%=79 THEN 1800 ' Клавиша End
IF KX=72 ANO N7.>1 THEN N7.=N7.-1‘.GOTO 1630' Стрелка вверх
IF K%=80 ANO NX<!0 THEN NX=N7.+1 :GOTO 1630 ’ Стрелка ВНИЗ
BEEP:GOTO 1630 ’Бессмысленное нажатие клавиши

Рис. 11.10. Дополнительные строки к программе форматированного ввода
данных (рис. 11.6), позволяющие изменять введенные записи, идентифицируемые
с помощью указателя (эти строки вставляются в программу вместо приведенных
на рис. 11.8).

Ввод данных с клавиатуры 245

номеров, просто переходить от одной записи к другой, нажимая кла­
виши перемещения курсора f и |, а для идентификации изменяемых
записей вместо номеров использовать специальный указатель, кото­
рый высвечивается на экране рядом с изменяемой записью (рис.
11.9).

На рис. 11.10 приведена программа, реализующая описанный
способ внесения изменений. При выполнении этой программы снача­
ла на экран слева от первой записи выводится указатель (строки
1600—1630), а затем программа переходит в состояние ожидания
нажатия клавиши (строка 1640). Как только это произойдет, прог­
рамма удаляет с экрана указатель (строка 1650) и начинает анализи­
ровать код, соответствующий нажатой клавише (строки 1670—
1710). Дальнейшие действия программы определяются значением
этого кода: если пользователь нажал клавишу то программа
запрашивает повторный ввод записи, соответствующей текущему
положению указателя (строка 1680); если же была нажата клавиша
F.nd, программа завершает ввод изменений (строка 1690). Нажатие
клавиши f или | приводит к перемещению указателя вверх или вниз
по позициям списка (строка 1700 и 1710); любые другие клавиши
программой игнорируются (строки 1670 и 1720).

Глава 12

ФАЙЛЫ ДАННЫХ НА ДИСКАХ

В тех случаях, когда программа обрабатывает достаточно большой объем
данных, последние должны организовываться в файлы и храниться вне дина­
мической памяти персональной ЭВМ. Наиболее эффективным средством орга­
низации внешнего хранения данных являются диски, и большинство вычисли­
тельных систем, в которых используются ПВМ, имеет по меньшей мере один
дисковод.

В настоящей главе показано, как с помощью программы, написанной на язы­
ке Бэйсик, осуществляется запоминание и поиск данных в дисковых файлах;
при этом подразумевается, что читатель усвоил материал, изложенный в гл. 3.
Операторы и функции, о которых пойдет речь, относятся только к дисковому и
расширенному Бэйсику.

Структура файлов данных

Для описания файловой структуры данных требуется привлече­
ние широкого круга понятий, в том числе и понятия дисковый файл
(гл. 3). Каждый файл подразделяется на одну или более записей,
подобных карточкам в картотечном ящике. Запись обычно содержит
несколько значений данных, точно так, как карточки содержат
отдельные позиции. Значение каждого элемента информационной
записи называется полем.

Обычно файл организуется так, что все его записи имеют оди­
наковую конфигурацию. Количество полей, порядок их расположе­
ния и длина не изменяются при переходе от одной записи к другой.
Единственное, чем отличаются записи,— это значениями полей, и
потому компоновка файла определяется двумя факторами: конфи­
гурацией и количеством содержащихся в нем записей.

Таким образом, перечисление полей одной записи дает адекват­
ное описание структуры файла. Программисты часто составляют
перечень полей данных, пользуясь стандартным типографским блан­
ком, и получившийся в результате документ называют макетом
файла (рис. 12.1). Обычно в этом документе указывается имя файла,
объявляется количество содержащихся в нем записей и перечисля­
ются по порядку поля. Для каждого поля приводятся его описание
и длина, а также имя переменной, обычно используемое для зада­
ния значения поля в программе, написанной на Бэйсике.

Один дисковый накопитель обеспечивает доступ только к опре­
деленному объему данных, поэтому целесообразно заранее вычис­
лять, останется ли достаточно места на конкретном дискете для вновь
формируемого файла. Для этого суммируют длины всех полей одной

Файлы данных на дисках 247

записи и получившуюся сумму умножают на количество записей
в файле. Проделав подобную операцию для каждого файла, плани­
руемого на диске, сравнивают суммарную потребность с общей ем­
костью диска. Последнюю можно определить с помощью описанной
в гл. 3 команды CHKDSK, имеющейся в составе операционной си­
стемы ДОС ПВМ. Помимо области для файлов данных необходим

Макет файла

Имя файла Длина записи и Л «ITEM.DAT 129 Число записей

Описание
Файл, содержащий сведения о личных коллекциях,—
последовательный доступ

Имя
переменной Назначение полей Максималь­

ный размер Примечания

ITMNRS
CTGRY$
DSCRS(l)
DSCRS(2)
DSCRS(3)
IDNBR$

LCNg
ACQRD$
COST#
VALU#

Номер позиции
Категория предметов
Описание — строка 1
Описание — строка 2
Описание—строка 3
Идентификационный
номер
Местон ах ож ден не
Дата приобретения
Исходная цена (затраты)
Стоимость

3
10
20
20
20
15

15
8
9
9

Рис. 12.1. Макет файла с последовательным доступом, содержащего сведения
о личных коллекциях.

достаточный участок памяти для файлов программ, которые пред­
полагается разместить на том же диске.

) Иногда для размещения слишком большого файла в дисковой
памяти достаточно уменьшить длину одного или двух полей данных.
Если же это не помогает, то файл разделяют на несколько частей и
распределяют эти меньшие файлы между несколькими дисками.
Можно разделить дисковый файл на несколько томов, поместив
часть его записей на один диск, а часть— на другой, или даже до­
вести разбиение до отдельных записей, поместив одни поля в файл
на одном диске, а другие — в файл на другом диске.

248 Глава 12

Последовательный и произвольный доступ

В Бэйсике ПВМ реализуются два способа отыскания нужных
записей. Простейший из них называется последовательным досту­
пом, поскольку программа всегда должна начинать поиск с начала
файла и проверять по очереди каждую запись до тех пор, пока не
будет найдена требуемая. Альтернативный способ позволяет про­
грамме обращаться к записям по номеру в любом порядке. Такой
способ поиска называется произвольным доступом.

Любой файл возможно организовать так, чтобы можно было ис­
пользовать либо последовательный, либо произвольный доступ,
но не оба способа одновременно. Каждый способ имеет свои «за» и
«против». Последовательный доступ намного проще для программи­
рования, и при его реализации требуется меньше дисковой памяти,
но может понадобиться больше времени для поиска записи, находя­
щейся в конце длинного файла. Кроме того, обновление существую­
щих записей в файлах с последовательным доступом трудноосу­
ществимо, а иногда и просто невозможно. Файлы с произвольным
доступом требуют более сложного программирования и занимают
обычно больше места на диске, но очень легко поддаются обновле­
нию, и поиск любых записей может осуществляться с одинаковой
скоростью.

В последовательном файле длина записи непосредственно зави­
сит от величины каждого поля, а поскольку длины полей в каждой
записи различны, то и длины записей также различны. В отличие
от последовательного файла, длина записи в файле с произвольным
доступом постоянна. Длина записи в файле с произвольным досту­
пом определяется при его создании, и каждому полю выделяется
внутри записи строго определенное место. Возможные значения
полей должны умещаться в этом заранее отведенном объеме памяти.
Если это не продумано заблаговременно, то при выполнении про­
граммы чрезмерно большие значения подвергаются усечению, а ма­
лые дополняются пустующими ячейками. В целях минимизации
нежелательного усечения размер каждого поля обычно выбирается
достаточно большим, чтобы вместить самую большую возможную
величину.

Использование дисковых файлов данных

Для считывания конкретного поля записи программа должна
сначала открыть файл, затем найти соответствующую запись, пере­
слать эту запись с диска в динамическую память и, наконец, выде­
лить требуемое поле в виде значения переменной. Аналогично
производится запись информации в файл с той лишь разницей, что
в этом случае значения данных пересылаются программой из дина­
мической памяти в дисковый файл.

Файлы данных на дисках 249

Для уменьшения числа обращений к диску в Бэйсике ПВМ
пересылка данных с диска и на диск производится блоками, а не
по одному элементу за каждое обращение. С этой целью часть дина­
мической памяти отводится специально для размещения пересылае­
мых данных; эти участки запоминающего устройства (ЗУ) на­
зываются буферами файлов', каждый активный файл имеет свой
собственный буфер.

В Бэйсике ПВМ управление буферами осуществляется автома­
тически. Однако, если программа закончит запись в файл, а в буфе­
ре останутся некоторые не записанные на диск данные, программа
должна тем или иным способом все же завершить перепись содер­
жимого буфера. Сделать это можно с помощью команды закрытия
файла. Одновременно по этой команде в справочник диска вносятся
изменения, касающиеся размеров файла и других статистических
данных, которые в нем фиксируются. Следовательно, когда програм­
ма заканчивает работу с файлом, она должна его закрыть во избежа­
ние потери части содержимого файла.

Имена и номера файлов

Файлы данных на диске распознаются по стандартным именам
(гл. 3, рис. 3.6 и табл. 3.1). Тем не менее программы обращаются
к файлам данных главным образом по номерам. Оператор OPEN
соотносит имя файла с его номером:
1050 OPEN “B:ITEM.DAT” AS #1

Имя файла может быть указано строковой константой, перемен­
ной или выражением. Префикс, определяющий диск, требуется
тогда, когда файл не находится на диске, принимаемом по умолча­
нию.

Номер файла может быть указан числовой константой, перемен­
ной или выражением; обычно допускаются только номера 1, 2 и 3.
Каждый номер идентифицирует только один файл, поэтому програм­
ма может открыть одновременно максимум три файла.

Следует заметить, что номера файлов и номера устройств
(гл. 10) — это одно и то же, поскольку в действительности термин
«номер файла» часто относится к номеру устройства. При использо­
вании операторов PRINT# или PRINT# USING для работы с
печатающим устройством и экраном дисплея программа может от­
крывать меньше файлов, так как в таких случаях она должна «рас­
ходовать» один номер на каждое открываемое устройство или файл.
Если, например, открываются два устройства (скажем, печатаю­
щее устройство и экран дисплея), программа способна открыть од­
новременно с этим только один файл данных. В случае применения
операторов PRINT, PRINT USING, LPRINT и LPRINT USING
номера файлов и устройств не указываются, благодаря чему эти

250 Глава 12

операторы могут использоваться в программе без каких-либо огра­
ничений, даже когда все три номера присвоены файлам данных.

Оператор CLOSE освобождает номер файла/устройства для по­
вторного использования, если следующим по порядку идет оператор
OPEN.

Пример
1100 OPEN “LPT1:” AS #1
7510 CLOSE #1
7520 OPEN “A:TAXRATE.DAT” AS #1

Оператор CLOSE, содержащий только один номер (строка 7510),
закрывает именно тот определенный файл или устройство, к кото­
рому этот номер относится. Чтобы закрыть сразу несколько файлов
одним оператором CLOSE, достаточно указать в нем несколько но­
меров, отделенных друг от друга запятыми, например
2140 CLOSE #1, #3

Простой оператор CLOSE, в котором нет ни одного номера фай­
ла, будет закрывать все уже открытые файлы и устройства. Несколь­
ко других операторов языка Бэйсик, включая END, CHAIN (но не
CHAIN MERGE), LOAD, NEW, RUN и SYSTEM, выполняют
ту же функцию. Однако большинство программистов предпочитают
иметь гарантированный точный результат работы оператора CLOSE
и поэтому указывают в нем номера файлов в явном виде.

Последовательные дисковые файлы
Программа на языке Бэйсик способна как создавать новые фай­

лы с последовательным доступом для запоминания в них значений
нужных данных, так и записывать данные в конец уже существую­
щего файла или извлекать данные из него. В файле с последователь­
ным доступом записи должны считываться или записываться после­
довательно. Для отыскания какой-либо величины, находящейся в
середине файла, программа должна произвести считывание всех
данных, расположенных впереди. Новые данные могут быть запи­
саны только в конец последовательного файла. Это значит, что не
существует никакого способа считать элемент данных из файла с
последовательным доступом, изменить считанное значение и снова
записать его в файл на то же самое место.

При работе с последовательными файлами буфера используют­
ся самым простым способом: пересылаемые в файл данные на­
капливаются в буфере файла, а по заполнении буфера его со­
держимое сразу целиком переписывается в дисковый файл; при
этом буфер файла очищается для следующей порции выход­
ных данных. При чтении файла соответствующие данные по­
ступают из того же самого буфера, а не считываются непосредствен­

Файлы данных на дисках 251

но с поверхности диска. Как только все необходимые данные счита­
ны из буфера, средства Бэйсика обеспечивают повторное его запол­
нение информацией из дискового файла.

Открытие и закрытие файлов с последовательным доступом
Кроме присвоения поименованному файлу определенного номера

оператор OPEN устанавливает разрешенный режим доступа к дан­
ным, хранящимся в этом файле. При использовании последователь­
ных файлов программа может записывать данные с начала нового
файла, добавлять их в конец уже существующего или считывать
данные из файла. В табл. 12.1 приведены форматы оператора OPEN,
обеспечивающие выбор того или иного режима доступа.

Таблица 12.1. Модификации оператора OPEN для файлов данных

Режим доступа Образцы форматов оператора х)
Запись в начало нового файла с по­

следовательным доступом
Запись в конец существующего файла

с последовательным доступом
Чтение с начала существующего фай­

ла с последовательным доступом
Запись или чтение файла с произ­

вольным доступом

1050 OPEN “В: ITEM.DAT” FOR
OUTPUT AS4tl

1835 OPEN “ADDRESS.DAT” FOR
APPEND AS4t3

2320 OPEN “A: ITEM.DAT” FOR
INPUT ASifc2

1040 OPEN “ITEM.DAT11 AS#1
LEN = 126

х) Указанные номера строк, номера файлов и длина записи являются произвольными и взяты только для иллюстрации.
Оператор OPEN с конструкцией FOR OUTPUT создает новый

дисковой файл с заданным именем. Если файл с таким именем
уже есть, то средства Бэйсика ПВМ автоматически уничтожают
его, создавая новый файл с тем же именем. Оператор OPEN-FOR
APPEND обеспечивает поиск названного файла среди уже сущест­
вующих, с тем чтобы добавить новые записи в его конец, но если
требуемого файла найти не удается, то автоматически создается но­
вый файл с заданным именем. Модификация оператора с конструк­
цией FOR INPUT реализует поиск файла данных с конкретным име­
нем, отсутствие которого означает ошибку.

Можно открыть файл с последовательным доступом в режиме
записи, используя один номер файла, и в режиме чтения, исполь­
зуя другой. Однако каждому номеру файла будет при этом соответ­
ствовать свой буфер, никак не связанный с другими. Поэтому для
изменения режима доступа к файлу последний необходимо закрыть,

252 Глава 12

а затем вновь открыть. Вместе с тем файлы, отличающиеся друг от
друга режимами доступа, могут открываться одновременно.

Запись и чтение файлов с последовательным доступом

Операторы PRINT# и PRINT#USING реализуют запись зна­
чений в дисковый файл, а операторы INPUT# или INPUT # LINE
— считывание этих значений и присваивание их переменным.

Пример
List
10 OPEN “SAMPLE.DAT” FOR OUTPUT AS #1
20 PRINT#1, 123 'Запись значения в дисковый файл #1
30 CLOSE #1
40 OPEN “SAMPLE.DAT” FOR INPUT AS #1
50 INPUT# 1, А 'Считывание значения из дискового файла #1
60 PRINT “Первое значение в файле: ”;А
70 CLOSE #1
Ok
run
Первое значение в файле: 123Ок

Операторы PRINT# форматируют выходные данные совершенно
одинаково независимо то того, какое устройство вывода использу­
ется, и всегда добавляют пробел после каждого числового значе­
ния. В случае нечисловых величин при наличии после оператора
PRINT точки с запятой выдаваемые соседние значения записы­
ваются слитно, а при наличии запятой между ними вставляется
дополнительный пробел. Дополнительные пробелы бесполезно рас­
ходуют пространство дисковой памяти, и поэтому предпочтитель­
нее использовать точки с запятой.

Действие шаблонов оператора PRINT#USING одинаково
при работе с дисковыми файлами, экраном дисплея и печа­
тающим устройством (табл. 10.1). Однако следует весьма осто­
рожно употреблять префиксы, обозначающие денежные едини­
цы ($$,** и **$), так как они вызывают форматирование числовых
величин как нечисловых. По этой причине числовые величины, снаб­
женные в дисковом файле такими префиксами, не могут быть счи­
таны оттуда в их исходном виде.

Пример
List
10 OPEN “SAMPLE.DAT” FOR OUTPUT AS #2
20 PRINT#2, USING “$$ ###.##” ;99.50
30 CLOSE # 2
40 OPEN “SAMPLE.DAT” FOR INPUT AS # 2
50 INPUT#2, A

Файлы данных на дисках 253

60 PRINT “Первое значение в файле: ” ;А
70 CLOSE #2Ок
run
Первое значение в файле: 0Ок
В этой программе оператор PRINT# USING (строка 20) пересы­
лает символы “$99.50” (без кавычек) в файл SAMPLE.DAT. Опера­
тор INPUT # реализует считывание этих символов как числовой
величины, однако знак $ превращает ее в нечисловую, вследствие
чего ей приписывается значение, равное нулю.

Отсутствие завершающей точки с запятой в операторе PRINT#
или PRINT # USING приводит к появлению символа возврата
каретки за последним указанным в операторе значением. За­
вершающая точка с запятой обеспечивает подавление этого сим­
вола.

Разделение значений в файлах с последовательным доступом
Для того чтобы оператором INPUT# правильно реализовыва­

лось считывание значений из дискового файла, эти значения долж­
ны быть в файле отделены друг от друга, и, следовательно, опера­
торы PRINT# и PRINT# USING при записи данных в дисковые
файлы должны добавлять к записываемым значениям разделитель­
ные знаки. При отсутствии такого разграничения оператор INPUT#
обрабатывает соседние значения как одно целостное.

Пример
List
10 OPEN “TEST.DAT” FOR OUTPUT AS #3
20 PRINT#3, “Кремний”; 14;28.0855
30 CLOSE #3
40 OPEN “TEST.DAT” FOR INPUT AS #3
50 FOR K% = 1 TO 3:INPUT#3, A$
60 PRINT “Значение номер”;К%; “:”;A$
70 NEXT K%:CLOSE #3
Ok
rim
Значение номер 1: Кремний 14 28.0855
Input past end in 50
Ok

При выполнении оператора PRINT# (строка 20) в файл за­
писываются три различных значения, но поскольку в операто­
ре они разделяются точками с запятой, в файл они будут зано­
ситься без разделителей. Когда оператор INPUT# реализует
считывание этих значений (строка 50), они все сливаются в одно.

254 Глава 12

Таким образом, в файле не будет существовать ни второго, ни треть­
его значений, поэтому при попытке чтения программой какой-либо
информации за последним значением в файле фиксируется ошибка
“Считывание за пределами последнего значения”.

Разделителем для строковых данных может быть запятая или
символ возврата каретки. Те же самые знаки или пробелы служат
для разграничения числовых величин. Существует несколько спо­
собов гарантированной расстановки разделителей между отдель­
ными значениями. Один из самых простых состоит в том, чтобы
присвоить значение «запятая» строковой переменной и записывать
ее после каждого значения в операторе PRINT#.

Пример
5 D$—

20 PRINT#3, “Кремний” ;D$;14;D$;28.0855
Оператор INPUT# интерпретирует каждую встреченную запя­

тую как признак конца значения. Единственным исключением
из этого правила является запятая, заключенная в кавычки, внут­
ри файла. Иначе говоря, строковая величина в дисковом файле,
могущая содержать запятую, должна быть записана в кавычках;
оператор INPUT# обеспечивает устранение этих кавычек при
считывании.

Пример
List
10 OPEN “TEST.DAT” FOR OUTPUT AS #1
20 PRINT#1, CHR$(34); “Манагуа, Никарагуа” ;

CHR$(34)
30 CLOSE #1
40 OPEN “TEST.DAT” FOR INPUT AS #1
50 INPUT# 1, A$
60 PRINT “Первое значение в файле: “;А$
70 CLOSE #1
Okrun
Первое значение в файле: Манагуа, НикарагуаОк

Сходная проблема возникает при использовании оператора
PRINT# USING, когда запятая присутствует в шаблоне числовых
величин. Одна числовая величина, записанная по такому шабло­
ну, будет превращаться в несколько значений в дисковом файле.

Пример
List
10 OPEN “SAMPLE.DAT” FOR OUTPUT AS #2
20 PRINT#2, USING “ #,##########

123456789

Файлы данных на дисках 255

30 CLOSE #2
40 OPEN “SAMPLE.DAT” FOR INPUT AS #2
50 INPUT#2, A
60 PRINT “Первое значение в файле: ”;А
70 CLOSE #2
Ok
run
Первое значение в файле: 123Ок

Оператор LINE INPUT#, считывающий одиночное строко­
вое значение, позволяет решить проблему запятой в шаблоне,
поскольку в данном случае в качестве разделителей распозна­
ются символы возврата каретки, азапятые представляют собой одно
из строковых значений.

Пример
List
10 OPEN “SAMPLE.DAT” FOR OUTPUT AS #3
20 PRINT#3, “Стайн, Фрэнк H.”
30 CLOSE #3
40 OPEN “SAMPLE.DAT” FOR INPUT AS #1
50 LINE INPUT# 1, A$
60 PRINT “Первое значение в файле: ”;А$
70 CLOSE #1
Ok
run
Первое значение в файле: Стайн, Фрэнк Н.Ок
Распознавание конца файла

Зафиксированная при выполнении операторов INPUT или
INPUT # LINE попытка продолжить считывание информации за
последней записью файла приводит к возникновению ошибки. Во
избежание этого программа должна каким-то образом распознавать,
что последнее значение считано, и прекратить дальнейшее считыва­
ние. Проще всего это реализуется с помощью >ператоров WHILE
или IF-THEN, содержащих функцию EOF (конец файла):
1850 IF NOT EOF(l) THEN 1700 ELSE CLOSE #2

Число в круглых скобках указывает номер файла. Функция
EOF принимает значение «Ложь» (число 0) до тех пор, пока в файле
остаются какие-то значения, но как только последнее значение
считано, она приобретает значение «Истина» (число —1).

Использование файлов данных с последовательным доступом
Последовательный доступ пригоден для большинства файлов

данных, хотя для периодически обновляемых файлов он менее

256 Глава 12

99Q ’ — Открытие файла --------------*-----------------------------------
1000 CLS:KEY OFF:WIDTH 40
1020 print " Программа учета личные коллекций - этап ввода"
юзо print "Стереть существующий файл ? (Y/N)”
1040 INPUT; "",NTRY$
1050 1Г NTRY$=''Y" OR NTRY$=lry" THEN OPEN "ITEM.DAT" fOR OUTPUT

AS # 1 ELSE OPEN "ITEM.DAT" FOR APPEND AS #1
1060 d$=" ' Разграничивающая запятая при вводе данных
1390 •— Последовательный ввод всех позиций----------------------- -
1400 CLS
1410 print " Программа учета личных коллекций-этап ввода11
1420 LOCATE 5,1
1430 input " Номер позиц’’; ITMNRS
1440 INPUT’’Категория" ;CTGRY$
1450 INPUT " Описание -1";DSCR$(1)
1460 INPUT " Описание -2";DSCR$(2)
1470 INPUT " Описание -3";DSCR$(3)
1.480 INPUT “ Идентификатор";IDNBR$
1490 input "Местонахожден.”; LCNS
1500 INPUT "Дата приобрет.";ACORDS
1510 input "Затраты'^ COST#
1520 INPUT " Стоимости VALU#
1790 '— Занесение одиночной записи в файл данных-----------------
1800 PRINT#1,ITMNR$;D$;CTGRY$;D$;DSCR$(1);D$;DSCRSC2);D$;DSCR$(3);D$;
1810 PRINT#1,IDNBR$;D$;LCN$;D$;ACQRD$;D$;C0ST#;D$;VALU#
1890 Продолжать ли ввод сообщений ?-------------------------------- -
1900 LOCATE 2,1
1910 PRINT "Вводить ли следующие позиции ? (Y/N)'1
1920 INPUT;"",NTRYS
1930 IF NTRY$o"N" OR NTRYSo"n" THEN 1400
1940 CLOSE #1 'Наданный момент сообщений больше нет
1990 Нужен ли просмотр файла ?-------------------------------------
2000 CLS
2010 PRINT " Программа учета личных коллекций — этап просмотра файла”
2020 PRINT " Нужен ли просмотр файла? (Y/N)”
2030 INPUT;"",NTRYS
2040 IF NTRYS="y" OR NTRYS="Y" THEN CHA IN"12-3" ,1000,DELETE 100Q-7000
2090 '--Конец программы--
2100 CLS
2110 print Программа учета личных коллекций— раьота окончена"; TAB(39)
2120 PRINT ТАВ(5);ТIMES;ТАВ(15);DATES ' 1
2130 END
7000 REM Конец блока (см. строку 2040)

Рис. 12.2. Программа создания файла, содержащего сведения о личных коллек­
циях: запись данных в файл с последовательным доступом (может быть объеди­
нена с программой рис. 11.6; пояснения см. в тексте).

удобен, чем прямой доступ. Последовательный доступ хорош там,
где содержимое файлов не меняется или новые записи заносятся
в них от случая к случаю. Например, маловероятно, чтобы часто
изменялся файл простой программы, формирующей сведения об
основных предметах личной коллекции (рис. 12.1 и 12.2). На рис.
12.3 приведена программа, считывающая записи, созданные прог­
раммой, которая организует хранение соответствующих записей в
дисковом файле с последовательным доступом (рис. 12.2) и выводит
их по очереди на экран дисплея.

Файлы данных на дисках %>7

1000 CLS:KEY OFFiWIDTH 40 ц
1010 PRINT "Программа учета личных коллекций —этап просмотра файла
1030 OPEN "ITEM.DAT” FOR INPUT AS #1
1190 « — Ввод очередной записи файла--------------------------------- -
1200 WHILE NOT E0F(1)
1210 INPUT#1zITMNR$,CTGRY$,DSCR$C1)ZDSCR$(2)ZDSCR$(3)
1220 INPUT#1,IDNBRS,LCN$,ACQRDS,COST#,VALU#
1290 ’—Выдача на экран формы представления информации-----
1300 CLS
1310 PRINT "Программа учета личных коллекций-этап просмотра файла’1
1320 RESTORE 7000
1330 FOR R0WX=5 TO 14
1340 READ COLX,LABELS
1350 LOCATE ROW%ZCOL%:PRINT LABELS;STRINGS*13-LEN*LABELS)
1360 NEXT
1390 1 — Вывод на экран всех значений------------------------------ —-
1400 LOCATE 5Z18:PRINT ITMNRS
1410 LOCATE 6,18;PRINT CTGRYS
1420 LOCATE 7,18:PRINT DSCRSC1)
1430 LOCATE 8Z18;PRINT DSCR$(2)
1440 LOCATE 9,18:PRINT DSCR$(3)
1450 LOCATE 10z'l8:PRINT IDNBRS
1460 LOCATE 11Z18:PRINT LCNS
1470 LOCATE 12Z18:PRINT ACQRDS
1480 LOCATE 13,18:PRINT USING •’######.## ";COST*
1490 LOCATE 14Z18:PRINT USING ”######.##”;VALU#
1890 ’—Продолжать ввод сообщений ИЛИ закончить работу?------ -
1900 LOCATE 2Z1:PRINT "Продолжать просмотр? (y/n)”;TAB*40>
1910 LOCATE 3,1 ’.print IАВ(40)’ Стереть устаревший текст?
1920 LOCATE 3,1: INPUT; " "ZNTRY$
1930 IF NTRY$-',N’' OR NTRY$="n’’ THEN 2100
1940 VEND
2090 •— Конец программы--
2100 CLS /t
2110 PRINT "Программа учета личных коллекций - работа закончена
2120 PRINT TAB(5);TIME$;TAB(15);DATE$
2130 CLOSE #1
2140 END
6980 •—* Графы и строки —---
6990 ’для формы ввода
7000 вата 4,Номер позиц-,^,Категор- ,ь,Описанием ,4 , Описание - 2,4,

Описание-3,4 г Идентиф, ,4,местонах.,ь.Дата праоБр.,^, Затратыf 4, Стоим,

Рис. 12.3. Программа просмотра файла, содержащего сведения о личных кол­
лекциях: выдача информации из файла с последовательным доступом.

Анализ программы создания файла, содержащего сведения о личных
коллекциях

Работа этой программы (рис. 12.2) начинается с вопроса к поль­
зователю, желает ли он продолжить занесение записей в уже су­
ществующий файл или хочет создать новый (строки 1030 и 1040).
В зависимости от ответа пользователя программа открывает после­
довательный файл ITEM.DAT с режимом доступа FOR OUTPUT
или FOR APPEND (строка 1050). Значение переменной D$ — запятая
для разделения значений, записываемых в дисковый файл (строка 9 № 2275

258 Глава 12

1060). Для занесения каждой записи в программе используются два
оператора PRINT # (строки 1800 и 1810). После того как пользо­
ватель закончит ввод позиций, он может либо просмотреть весь
файл, либо завершить работу программы (строки 2000—2040).

Для простоты ввод данных с клавиатуры в иллюстративной
программе реализован довольно примитивно (строки с 1400 по
1520), однако эту процедуру можно сделать более изящной, исполь­
зуя программу, приведенную на рис. 11.6. Для слияния двух прог­
рамм вычеркивают (рис. 12.2) строки с 1390 по 1520, с 1900 по 1940,
с 2090 по 2130 и то, что осталось, объединяют с текстом (рис. 11.6).
Полученная таким образом результирующая программа все же со­
держит два оператора INPUT (строки 1040 и 2030), которые можно
заменить по желанию обращениями к универсальной подпрограмме
ввода (как показано в строке 1920 на рис. 11.6).

Анализ программы просмотра файла, содержащего сведения о личных
коллекциях

Данная программа (рис. 12.3) поочередно выводит записи на
экран дисплея в форме, аналогичной той, что была разработана
в гл. 11 (рис. 11.5). Работа программы начинается с открытия фай­
ла ITEM.DAT для считывания (строка 1030). Затем до тех пор,
пока программа не дойдет до конца файла (строка 1200), она счи­
тывает значения из очередной записи (строки] 1210 и 1220). Прог­
рамма выдает на экран определенную форму (строки 1300—1360)
и помещает в нее только что считанные значения (строки 1400—
1490). После этого формируется запрос, требуется ли считывать
следующую запись (строки 1900—1930). При положительном от­
вете программа продолжает считывание записей, в противном слу­
чае ее работа заканчивается.

Файлы с произвольным доступом
В Бэйсике ПВМ имеется ряд операторов, специально предназ­

наченных для чтения и записи информации в файлы с произвольным
доступом. Единственные уже знакомые нам операторы такого ти­
па — это OPEN и CLOSE. Есть, однако, и другие операторы, которые
используются взамен оператора PRINT # для вывода и INPUT ф
для ввода. Еще один специальный оператор указывает, какие пере­
менные будут определять значения полей, и даже существуют спе­
циальные операторы и функции для присваивания этим переменным
новых значений.

Для минимизации числа обращений к диску файлы с произволь­
ным доступом снабжаются буферами. Размер буфера таков, что в
нем всегда может поместиться одна запись, а иногда и больше.
Когда программе нужна какая-то определенная запись, средства

Файлы данных на дисках 259

Бэйсика ПВМ вначале реализуют ее поиск в буфере файла. Если
запись удается найти, то обращения к диску не происходит, в про­
тивном случае содержимое буфера пересылается обратно в соответст­
вующую область дисковой памяти, а затем уже нужная запись за­
носится в буфер файла.

Открытие файлов с произвольным доступом
При открытии файла для работы в режиме произвольного доступа

ему присваивается номер и устанавливается длина каждой его за­
писи. Все записи одного файла должны быть одинаковой длины.

Пример
1010 OPEN “ITEM.DAT” AS #1 LEN-128

Отсутствие какого-либо предложения между именем файла
и описателем AS в операторе OPEN означает, что файл будет открыт
для режима произвольного доступа, при котором разрешаются и
чтение, и запись. Такой оператор OPEN должен содержать предло­
жение LEN, указывающее длину записи.

Все записи в файле с произвольным доступом имеют одинако­
вую фиксированную длину. Важно правильно указать эту длину,
чтобы избежать искажения содержимого файла. Обычно максималь­
ная длина записи составляет 128 байт.

Для вычисления необходимой длины записи суммируют длины
входящих в нее полей. При этом следует предусмотреть два знака
для поля целых чисел, четыре для поля чисел одинарной точности
и восемь для поля чисел удвоенной точности. Для поля строковой
переменной отводят столько знаков, сколько может потребовать
ее возможное значение. Полученные числа заносятся в макет фай­
ла (рис. 12.4).

Объявление структуры записи
После открытия файла с произвольным доступом в программе

должна быть объявлена структура записей файла. Это реализуется
с помощью оператора FIELD.

Пример
1020 FIELD #2, 3 AS 1$, 10 AS С$, 10 AS D$(l)

В операторе FIELD файл, к которому он относится, как обычно,
идентифицируется по номеру. Затем перечисляются поля в том по­
рядке, в котором они встречаются в записях файла. Для каждого
поля оператор устанавливает длину и имя переменной, которая
будет использоваться в программе для идентификации данного по
ля. Все поля файла должны быть перечислены в одном операторе
FIELD и разделены запятыми.
9*

260 Глава 12

Макет файла

Имя файла
ITEM. DAT

Длина записи
126

Число записей
10

Описание
Файл, содержащий сведения
произвольный доступ

о личных коллекциях,—

Имя
переменной Назначение полей Максималь­

ная длина Примечания

ITMNR$
CTGRY$
DSCR$(1)
DSCR$(2)
DSCR$(3)
IDNBR$

LCN$
ACQRD$
COSTS
VALU$

Номер позиции
Категория предметов
Описание—строка 1
Описание—строка 2
Описание—строка 3
Идентификационный
номер
Местонахождение
Дата приобретения
Исходная цена (затраты)
Стоимость

2
10
20
20
20
15

15
8
8
8

ITMNR%

COST#
VALU#

Рис. 12.4. Макет файла с произвольным доступом, содержащего сведения о лич­
ных коллекциях.

ф^^Общая длина всех объявляемых в операторе FIELD полей
не должна превосходить длины записи, установленной оператором
OPEN. Нарушение этого, правила приводит к ошибке.

Все значения пересылаются в файл или из файла с произвольным
доступом при помощи переменных, указанных в операторе FIELD;
все эти переменные должны быть строковыми. Оператор FIELD
удобно задает фиксированную длину каждой указанной в нем пе­
ременной. При этом числовые величины должны преобразовывать­
ся в строковые с использованием специальных функций, как описа­
но ниже.

Использование переменных оператора FIELD
Присваивание значений переменным, определенным в операторе

FIELD, реализуется двумя специальными операторами LSET и
RSET.

Пример
5340 RSET DAT$=NTRY$
5550 LSET LCN$=BLDG$+ROOM$

Файлы данных на дисках 261

♦♦♦Ни одну из переменных оператора FIELD нельзя использо­
вать ни в каких модификациях оператора INPUT, и ни одной из
них нельзя присваивать значение в операторе LET (с команднььм
словом LET или без него). Нарушение любого из этих правил при­
водит к утрате соответствия, установленного оператором FIELD,
вследствие чего программа не может больше использовать такую
переменную для занесения нужных значений в записи файла с про­
извольным доступом или для их извлечения.

Операторы LSET и RSET гарантируют, что длина значения пере­
менной будет приведена в соответствие с длиной, указанной в опера­
торе FIELD. Если присваиваемое значение содержит слишком мало
знаков, оно дополняется пробелами. Оператор LSET выравнивает
это значение по левым разрядам, дополняя пробелы справа, а опе­
ратор RSET наоборот. Если присваиваемое значение имеет слишком
большую длину, то оба оператора отсекают символы справа.

Пример
list
10 OPEN “SAMPLE.DAT” AS #1 LEN-20
20 FIELD #1, 10 AS A$
30 RSET A$ = “DISK”
40 PRINT A$
run

DISK
Ok

Числовые величины в дисковом файле
Для хранения в файле с произвольным доступом числовых ве­

личин последние необходимо преобразовать в цифровые строки. Для
выполнения указанной операции в Бэйсике ПВМ имеются три функ­
ции: MKI$, MKS$ и MKD$, которые переводят числовые величины
соответственно в строковые переменные в виде целых чисел и чисел с
обычной и двойной точностью. Результатом преобразования всегда яв­
ляется строка цифр, содержащая соответственно два, четыре и восемь
символов. В случае преобразования больших числовых значений при­
менение указанных функций дает значительно большее сокращение
длины строки по сравнению с другими преобразующими функциями.

Функции MKI$, MKS$ и MKD$ не переводят числовые величи­
ны в эквивалентные им знаки кода ASCII, как это делается при ис­
пользовании других функций. Они просто упаковывают соответст­
вующие значения в два, четыре или восемь знаков по той же схеме,
которая реализуется в ПВМ для представления числовых величин
в динамической памяти. Именно поэтому с помощью оператора
PRINT невозможно выдать на печать или экран дисплея результаты
работы функций. MKI$, MKS$ и MKD$.

262 Глава 12

Преобразованные числовые величины должны быть затем при­
своены переменным файла с помощью операторов LSET или RSET.

Пример
4700 LSET COST$=MKD$(NTRY*)

Численные значения строковых переменных, полученные с по­
мощью функций МКД$, MKS$ и MKD$, могут быть снова преобра­
зованы в числовые величины соответственно функциями CVI, CVS
и CVD.

Запись в файлы с произвольным доступом
Когда программа готова к занесению целиком всей записи в файл

с произвольным доступом, для выполнения этой операции должен
использоваться оператор PUT*, подобный следующему:
1550 PUT *1,ITMNR%

Первая величина в операторе PUT* указывает номер файла,
а вторая — номер записи; последний указывать не обязательно, и
если номер записи опущен, то средства Бэйсика ПВМ присваивают
ей номер на единицу больше последнего использованного в данном
файле.

Считывание записей из файлов с произвольным доступом
Оператор GET* реализует считывание из файла с произволь­

ным доступом сразу всей записи целиком. Далее для получения
значений конкретных полей в программе могут использоваться име­
на переменных, перечисленные в операторе FIELD.

Пример
4020 GET*1, ITMNR%

Первая величина в операторе GET* — номер файла, а вто­
рая — номер записи; если он отсутствует, то автоматически исполь­
зуется номер записи, на единицу больший, чем последний номер
записи, использованной с тем же номером файла.

Признак конца файла

Программы могут производить считывание или запись за преде­
лами обычного признака конца файла с произвольным доступом,
и это не будет приводить к прямым ошибкам. Если в операторе
GET* указан номер записи, больший любого использонанного
ранее в том же файле оператором PUT*, то в Бэйсике ПВМ каждо­
му символу переменной любого поля присваивается кодовый номер,
равный нулю. (Функции CVI, CVS и CVD преобразуют такой код

Файлы данных на дисках 263

в число 0.) Оператор PUT#, в котором указан номер записи,
больший, чем любой другой в файле, увеличивает размер фай­
ла настолько, чтобы можно было поместить указанную запись.
Любые не используемые записи между новой и прежней записью,
имеющей самый большой номер, будут содержать ненужную инфор­
мацию. Поэтому оператор GET#, отыскивающий одну из таких
промежуточных записей, произведет считывание «мусора», который
в дальнейшем может явиться причиной ошибки где-нибудь в другом
месте программы. Во избежание таких косвенных ошибок в програм­
мах должны накладываться ограничения на номера записей, к ко­
торым разрешается обращение.

Файл с произвольным доступом не имеет ограничений на длину,
за исключением ограничения по объему свободной дисковой памя­
ти. Функция LOF указывает, сколько места в памяти занимает кон­
кретный файл — с точностью до ближайших 128 байт. С помощью
функции LOC определяется текущий номер записи, т. е. номер пос­
ледней записи, использованной в операторах GET# или PUT#
применительно к данному файлу.

Пример

1650 IF LOC(I) = 150 THEN CLOSE:END

Величина, стоящая в круглых скобках, указывает номер файла.

Сигнализация об ошибках

Использование дисковых файлов данных делает программы
чувствительными к различным ошибкам, вызывающим преждевре­
менные остановы. Например, когда дискет заполняется до конца,
появляется сообщение «Disk full...» («Диск заполнен...»), файлы
автоматически закрываются и программа прекращает работу. Дру­
гой пример — ошибочная установка защитной этикетки против
записи на тот дискет, на который программа все же должна записы­
вать данные. В этом случае появляется сообщение “Disk Write Pro­
tected...” («Диск защищен от записи...») и программа прекращает
работу.

Бэйсик-программа способна управлять обработкой более 70 ти­
пов ошибок (не все они, конечно, связаны с использованием дисков),
в противном случае эти ошибки могли бы приводить к срыву выпол­
нения программы. Возможность не прерывать работу программ
обеспечивается оператором ON ERROR GOTO; оператор указы­
вает номер строки, к которой должен осуществляться переход, если
будет обнаружена ошибка.

Пример

ON ERROR GOTO 30000

264 Глава 12

Большинство программистов помещают подобный оператор в
первую часть программы и располагают специальную стандартную
программу обработки встречающихся ошибок в строке с указан­
ным номером. Действие этой программы определяется характером
ошибки. Если, например, произошла ошибка, связанная с блоки­
ровкой по защите диска от записи, программа обработки ошибок
может предоставить пользователю выбор: закончить выполнение
программы или зафиксировать сбойную ситуацию и повторить опе­
рацию.

Программа обработки ошибок может проверять значение функ­
ции ERR для определения характера возникшей ошибки. Ошибки
идентифицируются кодовыми номерами (перечень кодов ошибок и их
описание приведены в Приложении С). Иногда одного только номе­
ра ошибки бывает недостаточно для однозначной ее идентификации.
Например, в случае открытия программой более одного файла есть
риск, что при выполнении каждого оператора OPEN произойдет
ошибка, связанная с защитой от записи, и может оказаться необхо­
димым обрабатывать каждую такую ошибку по-разному. Функция
ERL сообщает поэтому номер строки, в которой произошла послед­
няя ошибка, что может быть использовано программой для диффе­
ренцирования ошибок, имеющих одинаковый код.

Программа обработки ошибок должна заканчиваться операто­
ром RESUME. Если в какой-то программе первым выполняется
оператор STOP, END или RETURN, это тоже приводит к ошибке.
Оператор RESUME имеет три формы. Простейшей формой явля­
ется отдельное командное слово; оно завершает программу обра­
ботки ошибок возвратом к тому оператору, при выполнении которого
была обнаружена ошибка. Вторая форма — это оператор RESUME
NEXT, обеспечивающий обратный переход к оператору, следую­
щему за тем, при выполнении которого была обнаружена ошибка.
Третья разновидность позволяет указать номер строки, к которой
следует перейти.

Пример

RESUME 30100

Пользователь, безусловно, не захочет писать индивидуальную
программу для обработки каждого из более чем 70 типов ошибок.
Поэтому в Бэйсике ПВМ предусмотрена возможность передачи
управления стандартной подпрограмме с помощью оператора ON
ERROR GOTO 0. В этом случае работа программы прекраща­
ется, и выдается стандартное сообщение об ошибке.

Бэйсик ПВМ обеспечивает одновременную обработку только
одной ошибки. Если оператор ON ERROR GOTO отсылает какую-

Файлы данных на дисках 265

10 chain merge " 11 -4 ",20 ’Слияние с универсальной подпрограммой ввода
20 CHAIN MERGE " 11-7" ,1000'и изменениями к ней
890 ‘ — Программа обработки ошибок-----------------------
900 IF ERR=61 AND ERL=1120 THEN 950
910 on error goto о ’Обработка произвольных ошибок
920 STOP; GOTO 910
940 1 Диск заполнен; повторное открытие файла
950 OPEN "ITEM.DAT" AS #1 LEN=126
960 FILSIZX=FIX(LOF(1)/126)
970 PUT #1,FILSIZX
980 RESUME 1140
990 ’++ Начало основной программЫ-f + + + + + + + + + -Ы- + + +
1000 CLS:KEY OFF:WIDTH 40
1010 print “Программа учета личных коллекций-изменение файла4
1020 fiLsizX=iо'Задание макс, числа записей для нового файла
юзо retkey$=chr$(17)+chr$(196)+chr$(217) ’Образ клавиши<—1
1040 OPEN "ITEM.DAT” AS #1 LEN=126
1050 FIELD #1, 2 AS ITMNRS, 10 AS CTGRYS/ 20 AS DSCR$(1), 20 AS

DSCR$(2), 20 AS DSCR$(3), 15 AS IDNBRS, 15 AS LCN$, 8 AS ACQRD$>
8 AS COSTS, 8 AS VALUS

1060 IF L0F(1)>0 THEN 1200
1070 ’— Инициализация пустого файла----------- -----------------------
1080 print " Пожалуйста, приготовьтесь к инициализации файла”
1090 on error goto 900 Выявление ошибки из-за переполнения диска
1Ю0 lset itmnr$=mki$(-i) Инициализ. всех записей для позиции с номером-1
1110 WHILE LOC(1)<FILSIZX
1120 PUT #1
1130 LOCATE 5,10:PRINT"ri03HUW?’;L0C(1 ^’’инициализирована”;
1140 WEND
1150 »~ Пауза для чтения пользователем информации на экране - -
1160 locate 7,1:print "Максимально допустимый номер позиции”
1170 locate 9,6,1 -.print “для продолжения нажмите клавишу провела";
1180 KS=INKEY$:IF К$<>" ” THEN 1180
1190 • — Задание номера записи, подлежащей изменению или вводу
1200 CLS
12Ю print"Программа учета личных коллекций-изменение файла" п
1220 locate 2,1: print "Введите номер позиции (.или END,если это конец')
1230 locate 3,4:print •• (дЛя след.позиции нажмите только;Retkey$;".)
1240 INLENX=3:INMAX#=FILSIZX:INMIN#=O:INROWX=3:INCOLX=1: intmpls-

”*'':GOSUB 200
1250 IF MTRY$="end” OR NTRY$="end” THEN 2100 ’ Конец программы

Рис. 12.5. Программа учета личных коллекций, работающая с файлами
с произвольным доступом.

либо программу к подпрограмме обработки ошибок, в которой воз­
никает еще одна ошибка, эта ошибка не будет обработана, но она
вызовет появление сообщения об ошибке и останов.

Использование файлов с произвольным доступом
Описанные в данной главе две программы учета личных коллек­

ций можно улучшить путем использования файлов с произвольным
доступом, что позволит незамедлительно обновлять такие быстро-
меняющиеся данные, как местоположение и стоимость. Макет, при-

266 Глава 12

1260 IF NTRY#>0 THEN ITMNR/=NTRY#:GOTO 1280
1270 IF NTRY#=Q ANO LOC(1)<fIL$I# THEN ITMNRX=L0C(1)+1 ELSE BEEP;

GOTO 1240
1280 GET #1,ITMNR%r Поиск нужной записи •
1290 • — Выдача на экран формы ввода —
1300 RESTORE 7000
1310 FOR R0W/=5 ТО 14
1320 READ COL/,LABELS
1330 LOCATE.ROWX,COLX:PRINT LABEL$;STRING$C13-LEN(LABEL$),”.n)
1340 NEXT
1370 •—Ввод знач, (Эля новых записей) или показ тек. знач. (Эля суцесп1вуЮ1Цих записей)
1380 IF CVICITMNR$)>O THEN 14601 Сравнение с пробелом?
4'390 Последовательный ввоЭ всех записей.”——*—
1400 LOCATE 5Z22:PRINT’’(Новая Позиция}”
1410 FOR N/-1 ТО 1Q
1420 GOSUB 4000
1430 NEXT
1440 goto 16001 ОбхоЗ повторной выЗачи значений на экран
1450 •—ВывоЗ на экран текущих значений—————*-•
1460 LOCATE 5,18:PRIN NI(ITMNR$)
1470 LOCATE 6,18:PRINT CTGRYS
1480 LOCATE 7,18:PRINT DSCRSCD
1490 LOCATE 8,18:PRINT DSCR$(2>
1500 LOCATE 9,18:PRINT DSCR$(3)
1510 LOCATE 10,18:PRINT IDNBRS
1520 LOCATE 11,18:PRINT LCN$ ’
1530 LOCATE 12,18:PRINT ACQRDS
1540 LOCATE 13,18:PRINT USING "######.## H;CVD(COST$)
1550 LOCATE 14,18:PRINT USING "######.##•'; CVD(VALUS)
1590 ■— Разрешение изменений вхоЭных сообщений----------------*
1600 N^=2 • Начальная установка указателя против позииии Z
1610 locate 2,1:PRINT”Для ввоЭа отмеченного сообьц.нажмите клавишу"; CHR^(26);H
1620 print CHRSC24);” и ”;CHR$(25);”nepedeUHbme указатель. Оконч. считыв.клав .”
1630 locate NX+4,2,0:PRINT chr$C 16); ’ Высвечивание указателя
1640 k$=inkey$:if len(k$)=o then 1640 ■ ОжцЗание нажатия клавиши
1650 print chr$C29);” Гашение указателя
1660 •— Игнорирование бессмысленных нажатий клавиш.
1670 IF LENCK$)<>2 THEN BEEP.-GOTO 1630 ELSE K/f=ASC(RIGHTCKz1))
1680 IF K%=77 THEN GOSUB 4000:G0T0 1610 ’ Стрелка ВПравО
1690 IF K/=79 THEN 1800 ' Отпускание клавиши
1700 IF K/=72 AND N/>2 THEN N%=NX-1:GOTO 1630* Стрелка вверх

Рис. 12.5. (Продолжение.)

веденный на рис. 12.4, показывает структуру подобного файла, а
программа, представленная на рис. 12.5, предназначена для созда­
ния новых записей, просмотра существующих и внесения в записи
необходимых изменений.

Анализ усовершенствованной программы учета личных коллекций

Для работы улучшенной программы учета личных коллекций
(рис. 12.5) необходима универсальная подпрограмма ввода (см. рис.
1,1.4). Слияние обеих программ и добавление изменений (рис. 11.7)

Файлы данных на дисках 267

1710 1F кХ=80 and N%<w then n2=n%+1:6oto 163o’ Стрелка вниз
1720 ВЕЕР:goto 1630' Бессмысленное нажатие клавиша
1790 ‘—Занесение одиночной записи 8 файл данных---------------- -
1800 PUT#1,ITMNR%
1810 GOTO 1200
2090 ’—Конец программы.......... —- ----------------------*
2100 CLS
211Q яимт’’Программа учета личных коллекций-Кэнеи,"; ТАВ(ЗЭ);
2120 PRINT ТА8<5);Т1МЕ$;ТЛВ(15);0АТЕ$
2130 CLOSE <1
2140 ENO
3990 ‘«Ввод сообщения с номером —==========’
4000 LOCATE 2,1,0: PR I NT "Вводите ПО шаблону “;TAB(40)rf
4010 LOCATE 3,1 :PRINT Нажмите; RETKEY$; для ввода сообщений GO)
4020 INMAX#=1D+20:INMIN#=-INMAX#:INR0W%=N%+4: INCOL.^18: INTMPL$=” **
4050 ON N% GOTO 4100,4200,4300,4300,4300,4400,4500,4600,4700,4800
4090 ’—Номер позиции-- •—
4100 LOCATE INROWX,INCOLX:PRINT ITMNRX
4110 LSET ITMNR|=MKI$CITMNRX):RETURN
4120 PRINT SPACER INLENX-LEN(NTRYf)); .’RETURN
4190 ‘—Категория--———«
4200 tNLENJMO:GOSUB 200:LSET CTGRY$=NTRY$:GOTO 4120
4290 ’—Описание 1,2,i 3--—
4300 JNLEN£=20:G0SU8 20Q:l*SET DSCR$CN%-2>=NTRY$;G0T0 4120
4390 •—Идентификатор-—--—
4400 INLENX=15:G0SUB 200:LSET IDNBR$=NTRY$:GOTO 4120
4490 •—Местонахождение----------------- -------- ---------------—-
4500 INLENZ=15:GOSUB 200:LSET LCN$=NTRYS:GOTO 4120
4590 ‘—Дата приобретения-- ———-
4600 INLENX=3:G0SUB 200.-LSET ACQRD$=NTRY$:GOTO 4120
4690 ’—Затраты ———-—--------—•-------------- - --------——
4700 INMAX#=999999.99#:INMIN#=0:INLEN^=9:G0SUB 200:LSET COST$=MKD$CNTRY#)
4710 •—Воспроизведение введенных чисел на экране ------------------ -
4720 LOCATE INROW#,INCOLX:PRINT USING •######.##”; NTRY#;:RETURN
4790 ’—Стоимость ————————------------------------------
4800 JNMAX#j=999999.99#:INMIN#=0:INLEnX=.9:G0SUB 200:LSET VALUf=MKD|(NTRY#)
4810 GOTO 4720
6980 - Графы и строки ——
6990 ’ for entry “form
7000 data 4,Ном. позиции., 4,Категория, < Описание И,4, Описание -2,4,

Списание-3*, 4, Идентиф., 4,Местонах./,Дата приобрети Датралы, 4, Стоим.

Рис. 12.5. (Продолжение.)

осуществляются с помощью операторов CHAIN MERGE (строки
10 и 20 на рис. 12.5).

Работа основной программы начинается с задания режима ра­
боты экрана (строки 1000 и 1010) и присвоения значений паре пе­
ременных (строки 1020 и 1030). Переменная FILSIZ% устанавли­
вает максимальный номер записи в файле ITEM.DAT. Переменная
RETKEY$ содержит символы, необходимые для воспроизведения
на экране изображения, соответствующего клавише

Затем программа открывает файл ITEM.DAT, содержащий ин­
формацию о коллекциях, для произвольного доступа и определяет
переменные полей (строки с 1040 по 1050). Если файл пуст, то про­

268 Глаш 12

грамма инициализирует ввод каждой записи, присваивая соответ­
ствующей позиции номер —1 (строки с 1060 по 1140). В случае
переполнения диска в процессе ввода записей фиксируется ошибка
(строка 1090). Программа обработки ошибок (строки с 900 по 960)
снова открывает файл и блокирует дальнейшую инициализацию.
По окончании инициализации всех записей программа останавлива­
ется, чтобы дать возможность пользователю считать с экрана дис­
плея самый последний задействованный номер позиции (строки с
1160 по 1180).

Когда файл, содержащий информацию о коллекциях, готов,
программа запрашивает у пользователя первый номер позиции
(строки 1200—1240) и отыскивает соответствующую запись в файле
(строки 1260—1280). Если пользователь нажимает клавишу 4^,
программа автоматически находит следующую запись (строки 1270
и 1280). При вводе пользователем слова “END” или “end” работа
программы завершается (строка 1250).

Если данная запись никогда прежде не использовалась, она бу­
дет иметь номер позиции —1 (благодаря установленной процедуре
инициализации новых файлов в соответствии со строками 1060—
1140). В этом случае пользователь должен ввести все необходимые
значения переменных до того как у него будут запрошены измене­
ния (строки 1400—1440). В противном случае программа выводит
на экран значения, считанные ею из дискового файла (строки 1460—
1550).

При выводе на экран дисплея текущих значений величин в запи­
си программа разрешает пользователю изменять любое значение,
кроме номера позиции (строки 1610—1720), во избежание наруше­
ния целостности файла. Пользователь выбирает определенное зна­
чение и вносит соответствующие изменения с помощью клавиш уп­
равления курсором (гл. 11; рис. 11.9 и 11.10). Когда пользователь
заканчивает внесение изменений в запись, программа заносит ее в
файл и совершает возврат на прежнюю ветвь для взятия очередного
номера позиции.

Отметим, что в рассмотренной программе переменные полей
нигде не вводятся с помощью оператора INPUT и им нигде не при­
сваиваются значения с использованием оператора LET.

Изменение ограничений для дисковых файлов

Обычно средства Бэйсика ПВМ налагают ограничения на число
одновременно открываемых файлов и устройств (три) и на макси­
мальную длину записи файла с произвольным доступом (128 зна­
ков). Эти ограничения можно изменить, когда ДОС ПВМ передает
управление вычислительным процессом интерпретатору дискового
или расширенного Бэйсика.

Чтобы изменить максимальное число одновременно открываемых

Файлы данных на дисках 269

файлов и устройств, нужно добавить справа в команду BASIC или
BASICA операционной системы ДОС ПВМ пробел, символы “/F:”
и указать желаемое число открытых файлов и устройств.

Пример. Команда
A>basica /f:5
инициирует работу со средствами расширенного Бэйсика и разре­
шает одновременное открытие пяти файлов и устройств (максималь­
но возможное их число — 15).

Обычно размер буфера определяется максимальной длиной за­
писи файла с произвольным доступом. Это соглашение можно из­
менить, добавив справа в команду BASIC или BASICA операцион­
ной системы ДОС ПВМ пробел, символы “/S:” и величину желаемо­
го размера буфера.

Пример. По команде
B>a:basic /s:512

запускаются средства дискового Бэйсика, который теперь будет
работать с буфером объемом 512 байт (символов). Максимально
допустимый размер буфера файла — 32767 байт 1}.

Можно реализовать и совместное действие сразу обоих вариантов
изменения ограничений, описанных выше, добавив их в любом
порядке в конец команды BASIC или BASICA, например так:
A>basic /f:5 /s:5I2

Использование дополнительно открываемых файлов или буферов
увеличенной емкости связано с перерасходом машинных ресурсов,
поскольку для каждой позиции требуется 190 байт динамической
памяти плюс еще 128 байт под буфер файла, если только не реали­
зованы описанные выше изменения. Таким образом, увеличение
числа одновременно открываемых файлов или расширение буфера
файла (либо то и другое вместе) приводит к уменьшению полезного
объема динамической памяти для размещения операторов и пере­
менных программы.

Для получения наилучших результатов при работе с накопителями на
дискетах, выпускаемыми фирмой IBM, рекомендуется использовать буфера ем­
костью 512 байт.

Глава 13

ГРАФИЧЕСКИЕ СРЕДСТВА

Используя любую из трех предназначенных для ПВМ версий Бэйсика, можно
легко перейти от текстового вывода данных к их графическому выводу. Кассет­
ный, а также дисковый и расширенный Бэйсик включают в себя средства вывода
на экран отдельных точек, построения линий, прямоугольников. Последний,
кроме того, располагает некоторыми дополнительными возможностями графиче­
ского вывода: он позволяет проводить окружности, дуги, эллипсы, заполнять
любую заданную область экрана однотонным цветом. Единственным требованием
к оборудованию для реализации графического вывода является наличие цвет­
ного графического адаптера и цветного экрана дисплея любого типа. Именно
вычислительные системы, в состав которых входит указанное оборудование, яв­
ляются предметом рассмотрения данной главы.

Передний план, фон и окантовка

На экране дисплея можно выделить три отдельные области:
передний план, фон и окантовку.

Передний план — область, где располагаются текстовые данные
и графические изображения, которые накладываются на фон.

Фон, как это следует из самого названия,— область экрана, в
которой воспроизводится все, что выводится на экран; фон можно
видеть сразу после включения ПВМ.

Окантовка окружает фон, но, как правило, она бывает того же
цвета, что и сам фон, и потому неразличима. Благодаря наличию
окантовки сглаживаются различия между экранами разнотипных
телевизионных установок и мониторов.

Обычно в телевизионных устройствах на экране воспроизводится
только часть принимаемого сигнала, а какая-то его часть оказыва­
ется за кадром. Подобное явление называется разверткой за пре­
делами рабочей области экрана, В одних бытовых телевизорах ока­
зывается невидимой почти вся окантовка, в других — только не­
которая ее часть, в мониторах же потери еще менее существенны.
Чтобы изображение умещалось в поле экрана дисплея, окантовку
можно сдвинуть вправо или влево с помощью команды ДОС ПВМ
MODE.

Режимы работы дисплея при текстовом и графическом выводе

Тексты и специальные символы из числа 256 стандартных зна­
ков, допустимых для ПВМ (Приложение D), выводятся на экран
дисплея с помощью операторов PRINT и PRINT USING. Соответ­

Графические средства 271

ствующий режим работы дисплея называется текстовым. Наличие
цветного графического адаптера позволяет использовать дисплей еще
в двух режимах графического вывода (применительно к Бэйсику).
Работая в этих режимах, можно выводить на экран отдельные точ­
ки, вычерчивать на нем линии и прямоугольники, окружности и
дуги, а также закрашивать внутренние области очерченных конту­
ров.

Графические режимы при работе с Бэйсиком ПВМ отличаются
один от другого числом и размером выводимых точек, а также коли­
чеством допустимых цветов. В режиме высокого разрешения экран
разбивается на большее число точек, чем в режиме среднего разре­
шения. Вследствие этого в первом случае точки оказываются вдвое
меньшего размера, благодаря чему изображение может содержать
существенно большее число деталей. В режиме высокого разрешения
изображение всегда черно-белое; при работе же со средней разре­
шающей способностью возможно появление на экране одновременно
до четырех различных цветов.

Переключение режимов работы экрана

Переход от режима текстового вывода к любому режиму графи­
ческого вывода и наоборот осуществляется с помощью оператора
SCREEN. Например, переключение в режим графического вывода
со средней разрешающей способностью осуществляется оператором
200 SCREEN 1

Значение, стоящее после командного слова, идентифицирует
конкретный режим работы экрана: 1 определяет режим графическо­
го вывода со средней разрешающей способностью, 2 — работу с
высоким разрешением, а 0 — режим текстового вывода. В соответ­
ствии с этим в результате выполнения приводимого ниже оператора
происходит обратный переход в режим текстового вывода!
800 SCREEN 0

Если указанный в операторе SCREEN режим совпадает с теку­
щим, никаких действий не производится. В противном случае при
выполнении SCREEN происходит очистка экрана дисплея, устанав­
ливается белый цвет для переднего плана и черный для фона.

Оператор COLOR в текстовом режиме. Данный оператор позво­
ляет задавать различные цвета для выводимого на переднем плане
текста, фона и окантовки. Точный оттенок каждого цвета меняется
в зависимости от используемого монитора — его марки, модели и
настройки.

Цвета идентифицируются номерами (табл. 13.1), например
210 COLOR 5,1,7

272 Глава 13

Таблица 13.1. Цвета для текстового режимаНомер цвета *) Цвет Номер цвета 2) Цвет
0 Черный 8 Темно-серый
1 Синий 9 Светло-синий
2 Зеленый 10 Светло-зеленый
3 Голубой 11 Светло-голубой
4 Красный 12 Розовый
5 Пурпурный 13 Светло-пурпурный
6 Золотистый (коричневый) 14 Желтый
7 Белый (серый) 15 Ярко-белый

О Если к номеру цвета переднего плана прибавить 16, то выводимые символы будут мерцать.2) При задании цвета фона номера с 8 по 15 определяют те же цвета, что и номера с О по 7.
Первое стоящее после командного слова значение определяет

цвет для переднего плана, второе — для фона, а третье — для окан­
товки. В приведенном выше примере для переднего плана задан
пурпурный цвет, для фона — синий, а для окантовки — белый.

Номера цветов от 0 до 7 допустимы как для переднего плана и
окантовки, так и для фона, тогда как номера с 8 по 15, соответст­
вующие более светлым оттенкам основных цветов 0—7, разрешается
использовать только для переднего плана и окантовки. Некоторые
цветные мониторы генерируют один и тот же цвет для номеров 8 и О,
9 и 1, 10 и 2 и т. д., несмотря на то что от вычислительной машины
поступают разные сигналы.

В текстовом режиме оператор COLOR оказывает влияние на
цвет переднего плана и фона только для тех символов, которые бу­
дут выводиться после его выполнения. Текст, уже высвеченный на
экране к моменту выполнения такого оператора COLOR, не изме­
нит своего цвета, а для всех последующих появляющихся на экране
символов цвет переднего плана и фона будет новым. В отличие от
этого цвет окантовки изменяется сразу.

Пример. Использование оператора COLOR в режиме немедлен­
ной обработки.
color 11,5,14
print “Графический дисплей”
Графический дисплейОк

В данном примере оператор COLOR изменяет цвет переднего
плана на светло-голубой, фона — на пурпурный, а окантовки —
на желтый. Сам оператор COLOR высвечивается на экране с преж­

Графические средства 273

ним цветом переднего плана и фона, а оператор PRINT и выведен­
ные в результате его выполнения данные появляются на экране в
светло-голубом цвете на пурпурном фоне.

Любое из трех чисел, задаваемых в операторе COLOR, можно
опустить, и тогда цвет соответствующей области экрана не изме­
нится.

Пример, При выполнении оператора
320 COLOR ,3

цвет фона изменится на голубой, а цвет окантовки и переднего пла­
на останется прежним.

Если в текстовом режиме в операторе COLOR перед первым
значением стоит запятая (как в последнем примере), то при выполне­
нии оператора это значение будет интерпретироваться как номер
нового цвета фона, а цвет переднего плана не изменится. Оператор
COLOR с двумя запятыми перед первым значением вызывает изме­
нение только цвета окантовки.

Пример, При выполнении оператора
8733 COLOR „2

цвет окантовки становится зеленым, а цвет переднего плана и фона
остается прежним.

В текстовом режиме на самой нижней строке экрана высвечива­
ются определения 10 функциональных клавиш (гл. 10), причем эти
определения всегда выводятся черным цветом на белом фоне. С
помощью оператора KEY OFF их можно удалить с экрана и сделать
цвет 25-й строки таким же, как и у остальных.

Оператор COLOR в графическом режиме. Данный оператор как
бы объединяет в себе три различных оператора: в текстовом режиме
его действие одно, в графическом режиме со средней разрешающей
способностью — другое, а в графическом режиме с высоким разре7
шением, когда цвет переднего плана всегда белый, а фона и окан­
товки черный, этот оператор вообще недопустим.

В режиме графического вывода со средней разрешающей спо­
собностью номер цвета фона определяет также и цвет окантовки.
При этом разрешается использовать любой из 16 цветов, допусти­
мых для переднего плана в текстовом режиме вывода. Номер цвета
фона определяет, кроме того, оттенок цвета переднего плана —
светлый или темный. Номера цветов от 0 до 7 соответствуют темной
окраске фона и переднего плана, а от 8 до 15 — светлым тонам этих
областей. Номера же цветов от 16 до 23 определяют темный оттенок
для фона и светлый для переднего плана. Соответствие между
номерами, цветами и оттенками описано в табл. 13.2.

Возможности задания цвета переднего плана в режиме со сред­
ней разрешающей способностью довольно ограниченны, а способ
задания конкретного цвета в этом случае существенно отличается

274 Глава 13

Таблица 13.2. Цвета фона в графическом режиме со средней
разрешающей способностью

Цвет Номер цвета фона *)Темный передний план, темный фон Светлый передний план, светлый фон Светлый передний план, темный фон
Черный
Синий
Зеленый
Г олубой
Красный
Пурпурный
Золотистый
Белый

О
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

*) Номер цвета фона определяет его цвет и оттенок, а также оттенок переднего плана.
от того, как это делается в текстовом режиме. В режиме среднего
разрешения имеются два набора цветов для переднего плана, на­
зываемые палитрами. Каждая палитра состоит из четырех цветов.
Оператор COLOR определяет только, какая из двух палитр будет
активной, а конкретный цвет из четырех имеющихся задается в самих
операторах, выполняющих графические построения. Как уже ука­
зывалось выше, оттенок цвета переднего плана задается цветом
фона.

Палитры, что вполне естественно, идентифицируются номерами
0 и 1, а цвета каждой из них — номерами от 0 до 3 (табл. 13.3). За­
метим, что для каждой палитры цвета с номерами 1, 2 и 3 фиксиро­
ваны, а 0 определяет цвет, совпадающий с цветом фона. Цвет текста,

Таблица 13.3. Цвета переднего плана в графическом режиме вывода
со средней разрешающей способностью т)

Номер палитры Номер цвета палитры
0 1 2 3

0 Цвет фона Зеленый Красный Золотистый
1 Цвет фона Г олубой Пурпурный Белый

Ч Палитра цветов переднего плана выбирается с помощью оператора COLOR; конкрет­ные цвета выбранной палитры задаются в самих операторах, выполняющих графические построения. Оттенок цвета переднего плана определяется номером цвета фона (табл. 13.2).

Графические средства 275

выводимого на экран в графическом режиме со средней разрешаю­
щей способностью, обычно соответствует коду 3, т. е. золотистый
или белый.

Пример. Использование оператора COLOR в режиме графи­
ческого вывода со средним разрешением.

1000 COLOR 1,0

Первое числовое значение определяет цвет фона и границы,
а второе — палитру цветов переднего плана (в текстовом режиме
задаваемые в операторе COLOR значения имеют прямо противо­
положную интерпретацию). Любое из этих двух значений, но не
сразу оба, можно опустить, и тогда цвет соответствующей области
(или областей) не изменится.

При выполнении оператора COLOR в графическом режиме со
средним разрешением сразу же изменяется цвет всего фона и всего
переднего плана, включая и то, что было выведено на экран ранее.
Например, если на экран были выведены рисунки, окрашенные
в цвета палитры 0, т. е. в зеленый, красный или золотистый, то пе­
реключение на палитру 1 немедленно вызовет изменение этих цветов
на голубой, пурпурный и белый.

Координаты точек экрана в графических режимах

Чтобы выводить точки, строить линии, прямоугольники и т. д.,
нужно иметь возможность задавать то место на экране, где они долж­
ны располагаться. Для этого необходимо уметь однозначно иденти­
фицировать любую точку экрана. Представим себе лист бумаги,
разграфленный в клетку и наложенный на экран так, что каждая
клетка соответствует отдельной точке экрана. Теперь предположим,
что строки и столбцы разграфленной бумаги пронумерованы. Тогда
любую клетку можно идентифицировать соответствующими ей но­
мером строки и номером столбца, которые называются ее коорди­
натами', именно в этом и состоит способ задания местоположения
точек на экране графического дисплея.

Столбцы нумеруются, начиная с крайнего левого, которому при­
сваивается номер 0, и кончая крайним правым, которому соответст­
вует номер 319 в графическом режиме со средним разрешением или
номер 639 в режиме высокого разрешения. И в том и в другом случае
самая верхняя строка имеет номер 0, а самая нижняя — 199. Преж­
де чем использовать строки со 192-й по 199-ю, необходимо убедиться
в том, что высвеченные в нижней части экрана определения функ­
циональных клавиш предварительно были удалены с экрана с по­
мощью оператора KEY OFF.

276 Глава 13

Оператор PSET
Ни оператор COLOR, ни SCREEN сами по себе не выполняют

на экране никаких графических построений; они только подготав­
ливают экран к работе в графическом режиме со средним или высо­
ким разрешением.

Оператор PSET предназначен для отображения на экране, ра­
ботающем в одном из графических режимов, отдельной точки с за­
данными координатами; этот оператор имеет один и тот же вид в
обоих допустимых режимах. Например, при выполнении оператора
1010 PSET (45,10)

на экране появится точка на пересечении 45-го столбца и 10-й
строки.

Номер цвета в операторе PSET задавать не обязательно. Если
этого номера нет, то в графическом режиме со средним разрешени­
ем выводится золотистая или белая точка (цвет, соответствующий
номеру 3), а в режиме с высокой разрешающей способностью —
белая.

Для того чтобы задать в операторе PSET цвет выводимой точки,
после скобок с координатами следует поставить запятую и номер
требуемого цвета. В режиме со средней разрешающей способностью
для задания одного из четырех цветов активной палитры исполь­
зуются номера от 0 до 3 (табл. 13.3). В режиме с высокой разрешаю­
щей способностью нечетные числа определяют единственный допу­
стимый в этом режиме цвет переднего плана (белый), а четные —
единственный цвет фона (черный).

Пример
1020 PSET (180,150), 1

При выполнении данной команды в режиме среднего разреше­
ния на экране появится зеленая или голубая точка — в зависимос­
ти от того, какая палитра является активной; в режиме с высокой
разрешающей способностью на экран будет выведена белая (цвета
переднего плана) точка.

Оператор LINE
Во все версии Бэйсика ПВМ входит достаточно мощное средст­

во организации графического вывода — оператор LINE. С его по­
мощью можно чертить на экране отрезки прямых линий, контуры
прямоугольников, закрашивать одним цветом внутренние области
четырехугольников.

Поскольку любая прямая линия определяется двумя точками,
вполне естественно, что в операторе LINE для выводимого отрезка
прямой должны быть заданы две точки — начальная и конечная.
Для этого можно в явном виде указать координаты обеих точек.

Графические средства 277

Пример

1030 LINE (50,150)—(1,10)
При выполнении данного оператора на экране будет построен

отрезок прямой, начало которого лежит на пересечении 50-го столб­
ца и 150-й строки, а конец — в точке пересечения 1-го столбца и
10-й строки.

В операторе LINE можно также задавать и цвет выводимой
линии. Для этого достаточно после координат конечной точки запи­
сать номер требуемого цвета. В графическом режиме со средней раз­
решающей способностью такой номер определяет один из четырех
цветов активной палитры (табл. 13.3); в режиме с высоким разре­
шением нечетные номера соответствуют цвету переднего плана, а
четные — цвету фона. Если номер цвета в операторе LINE не за­
дан, как в приведенном выше примере, то в режиме среднего разре­
шения используется цвет с номером 3, а в режиме с высокой разре­
шающей способностью — цвет переднего плана.

Построение ломаных линий

С помощью нескольких операторов LINE можно вычертить на
экране несколько отрезков прямой так, чтобы каждый последую­
щий отрезок начинался в той точке, где закончился предыдущий.

Пример

1000 SCREEN 1 'Средняя разрешающая способность
1010 COLOR 0,0 'Черный фон, палитра 0
1040 LINE (60,140)—(100,90), 1
1050 LINE (100,90)—(140,140),2
1060 LINE (140,140)—(100,190),1
1070 LINE (100,190)—(60,140),2

При выполнении четырех приведенных выше операторов LINE
на экране строится ромб, противоположные стороны которого оди­
накового цвета, а смежные — разного.

Для выполнения подобных построений существует более удоб­
ный способ, который основан на том, что всякий раз при выводе
на экран какой-либо линии в памяти ПВМ запоминаются координа­
ты последней выведенной точки, которыми можно воспользоваться
при выполнении очередного оператора LINE. Если в операторе
LINE опустить координаты начальной точки отрезка, то вычерчивае­
мый с помощью такого оператора отрезок будет начинаться в послед­
ней участвующей в предыдущих построениях точке и кончаться в
точке, заданной в данном операторе.

Пример. Четыре оператора LINE, строящие тот же ромб, что
и четыре оператора LINE предыдущего примера.

278 Глава 13

1000 SCREEN 1, 'Средняя разрешающая способность
1010 COLOR 0,0 'Черный фон, палитра 0
1040 LINE (60,140)—(100,90), 1
1050 LINE —(140,140),2
1060 LINE —(100,190),1
1070 LINE —(60,140),2

В первом из приведенных операторов LINE начальная точка
задана, поскольку координаты последней выведенной перед этим
на экран точки неизвестны. Начальную точку можно было бы также
установить, отобразив ее с помощью оператора PSET. В любом слу­
чае во всех последующих операторах LINE достаточно задать толь­
ко конечную точку.

Вообще говоря, если на экране предварительно не производи­
лось никаких графических построений, то по умолчанию предпо­
лагается, что начальная точка совпадает с центром экрана, т. е.
в качестве начальной будет использоваться точка с координатами
(160,100) в режиме среднего разрешения или с координатами (320,
100) в режиме с высокой разрешающей способностью.

Построение прямоугольников
С помощью оператора LINE специального вида на экране мож­

но построить прямоугольник. Все, что нужно для этого сделать,—
дописать в конце обычного оператора LINE после номера цвета
запятую и букву В.

Пример
1100 LINE (50,70)—(70,90),2,В

При выполнении данного оператора в режиме со средней разре­
шающей способностью на экране появится красный или ярко­
пурпурный квадрат в зависимости от того, какая палитра является
активной. Одна из вершин этого квадрата будет располагаться в точ­
ке с координатами (50,70), а диагонально противоположная ей вер­
шина — в точке с координатами (70, 90). Поскольку в качестве но­
мера цвета в операторе указано четное число, в режиме с высокой
разрешающей способностью цвет квадрата будет совпадать с цветом
фона, т. е. квадрат будет невидимым.

Если буква В в операторе LINE присутствует, а номер цвета не
задан, то по умолчанию будет использоваться цвет с кодом 3. Заме­
тим, что, хотя сам номер цвета может быть опущен, запятая, кото­
рая стояла бы после него, должна оставаться на месте, указывая на
неявное задание цвета.

Пример. Оператор LINE, выполняющий построение узкого
вытянутого вверх прямоугольника, окрашенного в цвет с номером 3.
1110 LINE (150,10)—(155,190)„В

Графические средства 279

Оператор LINE с буквой В в конце позволяет вычерчивать на
экране только квадраты и прямоугольники, стороны которых па­
раллельны сторонам экрана. Чтобы построить четырехугольник
произвольной формы, необходимо в общем случае выполнить четыре
отдельных оператора LINE.

Закрашивание прямоугольника одним цветом
С помощью оператора LINE можно построить не только контуры

прямоугольника, но и прямоугольник, закрашенный одним цветом.
Для этого достаточно добавить в оператор LINE непосредственно
после буквы В букву F.

Пример
1120 LINE (0,195)—(319,199), 1,BF

При выполнении данного оператора на экране появится длин­
ная узкая сплошная полоса, проходящая вдоль нижнего края экра­
на и закрашенная в цвет с номером 1.

Относительные координаты
Существуют два способа идентификации точки, отображаемой

на экране графического дисплея. Во всех приведенных до сих пор
примерах точка всегда задавалась соответствующими ей номерами
столбца и строки. Такой способ задания точки называется абсолют­
ной координатной идентификацией. Альтернативой такому способу
является так называемая относительная координатная идентифи­
кация, при которой координаты задаются относительно последней
выведенной на экран точки. Если в операторах PSET или LINE
собственно координатам точки предшествует слово “STEP”, то эти
координаты интерпретируются как смещение относительно коорди­
нат последней выведенной на экран точки.

Пример
1200 PSET (40,23)
1210 PSET STEP (10,-3)

В первом из приведенных операторов (строка 1200) для вывода
точки на пересечении 40-го столбца и 23-й строки используются
абсолютные координаты, а во втором операторе (строка 1210) —
относительные. В последнем случае на экран будет выведена точка
на пересечении 50-го столбца и 20-й строки, т. е. на 10 столбцов
правее и на 3 строки выше предыдущей.

В операторах графического вывода точку можно идентифици­
ровать любым способом — как с помощью абсолютных координат,
так и с помощью относительных. Если относительными координа­
тами задается самая первая выводимая точка, то интерпретатор бу­
дет использовать в качестве предыдущей точки центр экрана.

280 Глава 13

Смешанное использование текста и графики
С помощью операторов PRINT и PRINT USING можно выводить

любые из 256 допустимых для ПВМ символов во всех режимах ра­
боты экрана. Обычно выводимые символы окрашены в цвет с номе­
ром 3, т. е. в режиме со средней разрешающей способностью они
белые или золотистые в зависимости от того, какая палитра актив­
на, и в режиме с высокой разрешающей способностью белые. При
средней разрешающей способности выводимые символы имеют та­
кую же величину, как и в текстовом режиме при 40-символьной
строке экрана. В режиме высокого разрешения символы вдвое уже,
т. е. такие же, как в случае текстового вывода при 80-символьной
строке.

Местоположение символов на экране задается в операторах
LOCATE, PRINT и PRINT USING (и только в них) одинаково во
всех трех режимах работы экрана. Операторы графического выво­
да, подобные PSET и LINE, на размещение символов никакого влия­
ния не оказывают (гл. 10).

Координаты текстового режима, задаваемые в операторе LOCATE,
по существу аналогичны координатам, используемым в графиче­
ском режиме, хотя некоторые различия все же имеются. Так, при
текстовом режиме строки и столбцы нумеруются, начиная с 1, а не
с 0, как при графическом. Кроме того, в операторе LOCATE номер
строки должен стоять перед номером столбца, а в координатах,
задаваемых операторами графического режима, наоборот.

При выводе символов предполагается, что экран содержит всег­
да 25 строк с номерами от 1 (для самой верхней строки) до 25 (для
нижней строки) и 40 (средняя разрешающая способность) либо
80 столбцов (высокая разрешающая способность). Таким образом,
одна строка текстового режима соответствует восьми строкам гра­
фического, а символ в ширину занимает восемь графических столб­
цов.

Если текст накладывается на уже выполненные графические
построения, то элементы изображения будут частично стираться:
вокруг каждого символа стирается окружающая его прямоуголь­
ная область шириной 8 столбцов и высотой 8 строк. В то же время
точки, отрезки прямых линий и прямоугольники, вычерчиваемые
поверх уже выведенных символов, могут лишь немного изменить
контуры тех символов, с которыми они пересекаются.

В режиме немедленной обработки при выводе на экран команд
поверх уже существующих графических построений неожиданно
может появиться сообщение “Syntax error” («Синтаксическая ошиб­
ка»). Это может произойти потому, что в текущую заполняемую
экранную строку могут случайно попадать фрагменты графических
построений, окрашенные в тот же цвет, что и текст выводимой на
экран команды, и тогда интерпретатор Бэйсика ПВМ будет пытать­

Графические средства 281

ся интерпретировать их как обычные символы. Во избежание таких
ошибок перед вводом с клавиатуры команд в режиме немедленной
обработки следует всегда предварительно очистить весь экран или
по крайней мере отдельную его строку (с помощью клавиши Esc).

Использование графических средств построения точек,
линий и прямоугольников

Многие программы, в результате работы которых выдается лишь
некоторый список значений (рис. 13.1.А), можно сделать более удоб­
ными для использования, если включить в них средства графи­
ческого вывода. Вычерчиваемые графики могут состоять из
отдельных точек (рис. 13.1В), представлять собой ломаные линии
(рис. 13.1С) или гистограммы (рис. 13.1D). График можно строить
с использованием нескольких цветов, делая его тем самым более на­
глядным и одновременно более информативным.

Номер 1
Номер °
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер
Номер

12

14
15
16

18
19
20
21
22
23
24

в Точечный графикд Выведенный на экран список числовых значений

С Кусочно-линейный график D Гистограмма

Рис. 13.1. Текстовый и графический вывод результатов выполнения программы.

з
5

282 Глава 13

Программа построения графика средних темпов роста
Программа определения средних темпов роста (рис. 13.2) вы­

числяет средний темп роста по заданному набору показателей и вы­
дает прогноз изменения этих показателей в будущем. По результа­
там прогнозирования формируется список точных значений, после
этого — точечный график, затем — обычный график в виде лома-

50 DIM АМТС24)
1010 CLS:KEY OFF:WIDTH 40
1100 PRINT
1110 print "В Эанной программе используется*
1120 PRINT "Эля анализа прошедшего этапа а прогнозов11
1130 PRINT "метод экспоненциальной регрессии."
1140 PRINT ” Вам необходимо задать значения прошедшегоГ1
1150 PRINT ” Этапа и общее количество всех значении "
1160 print ” в прошлом и будущем/ всего не более 24/
1170 PRINT
1200 input "Сколько значений в прошлом?*'; разп
1210 INPUT" Сколько значений нужно предсказать? ••; FdTR/T
1220 IF PAST%+FUTR^24 THEN PRINT.’PRINT ”He ИСПОЛЬЗуше бОЛЬШе24

значений“:сото 1170
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1390
1400
1410
1420
1490
1500
1510
1520
1590
1600
1610
1630
1640
1650

PRINT .
print "Введите значения прошедшего этапа:"
print
FOR NBRX=1 to pastx
PRINT* Значение ”;NBR%;
INPUT AMT(NBRX)
•Вычисление вспомогат. величин для использ. методаэкспоненц.регрессии
X=NBR%-1 :Y=LOG(AMT(NBR/»))
I1 = I1+X:I2 = I2 + Y
I3=I3+XA2;I4= I4+YA2
I5 = I5 + X*Y
NEXT NBRX
•— Вычисление коэффициентов экспоненциальной регрессии
B»CPASTX*I5-I2*I1)ZCPASTX*I3“I1 А2>
A«(I2-B*I1)/PAST%
RfJE =CINTC(EXP(B)-1)*10000!)?100
’--Прогнозирование будущих значений
FOR NBRX=PASTX+1 TO PASTX+FUTRZ
AMT(NBRX)sINT(EXPCA)*EXPCB*(NBR7.-1)) + .5)
NEXT NBR2
•—Бывод на экран точных числовых значений ———
CLS
FOR NBRX=1 ТО PASTX + FUTRK
PRINT
PR I NT "Значение *;NBRX;TAB(11); AMTCNBR/O;
NEXT NBR/i

Рис. 13.2. Программа определения средних темпов роста..

Графические средства 283

ной линии и, наконец, гистограмма. В программе используется ме­
тод статистической обработки, называемый методом экспоненциаль­
ной регрессии, который позволяет предсказывать будущее поведе­
ние значений, экспоненциально увеличивающихся или уменьшаю­
щихся во времени. Типичными приложениями этого метода являются
проблема оценки рождаемости и похожие задачи прогнозирования
сбыта, доходов и клиентуры.

1660 PRINT ТДВС18); "(Темп роста:11; RATE;"7o)";
1690 locate 25/6:РК1ЫТ"Дляпродолж.нажмителюБуюклавишу";:А$=

INPUTSC1)
1990 • —Вычисление масштавн. коэфф.для вертикальной шкалы—
2000 MIN = AMT(1>
2010 НАХ = АМТ(П
2020 • Поиск максимального и минимального значений
2030 FOR NBRX=1 ТО PASTX+FUTRX
2040 IF AMT(NBRX)>MAX THEN MAX®AMTCNBRX)
2050 IF AMT(NBRX)<MIN THEN MIN=AMTCNBRX)
2060 NEXT NBRX
2070 ’Вывор масштаба, при котором в отведенной овласти помест.весь график
2080 SCALE«168/(MAX+MIN)
219Q «—Разметка экрана для вывода графика
2200 CLS:SCREEN 1 ’Установка графим, режима со средн.разреш.способностью
2210 color 23,0 ’ьь.Светло-серый(Белый) фон, палитра: зеп./красный/желтый
2220 print tab (6); "Средний темп роста равен"; RATE;11 %11
2230 PRINT ,lAmount";TAB(22>; "Номер"
2240 PRINT ТАВ(8>;”1 3 6 9 12 15 18 21 24";
2250 • Вывод на экран вертикальной шкалы
2260 FOR CTRX=O ТО 4
2270 LOCATE 24-CTRX*5,1 ’В CTpOK3x4, 9, 14, 19, 8 24
2280 PRINT USING ”###### ";(40*CTRX44)/SCALE;’ ВЫВОД Значения
2290 NEXT CTRX
2300 • окаймление шкал
2310 LINE (51,7)-C319,23),3,B
2320 LINE (0,7>-(51,191),3,B
2390 •—Постр.точечного графика ------- ——
2400 FOR NBR%=1 TO PASTZ+FUTRX
2410 IF NBRX<FUTRX THEN HUE=2 ELSE HUE=1 ’ВЫБОр Цвета ВЫВОДИМОЙ ТОЧКИ
2420 PSET (NBRX*11+45,191-CINT(SCALE*AMT(NBRX»),HUE
2430 NEXT NBRX
2490 Постр. кусочно-лин.графика——————-----——
2500 a$=inputS(1) • Ожидание нажатия клавиши
2510 hue=2 ’ Цвет для значений прошедшего этапа
2520 PSET (56,191-CINT(SCALE*AMTC1»>,HUE
2530 FOR NBR%=2 ТО PASTX+FUTRX
2540 if nbr%>pastx then ноЕ=г Изменение цвета для прогноза
2550 LINE -(NBRX*11+45,191-CINT(SCALE*AMT(NBRX))>,HUE

Рис. 13.2. (Продолжение.)

284 Глава 13

2560 NEXT NBRX
2590 ’ —Построение гистограммы--—— --------—-------------------------------
2600 a$=iNput$(1/Ожидание нажатия клавиши
2610 hue=2 'Цвет для значений прошедшего этапа
2620 line (52,24)-(319,191),О,вр'Очистка области'экрана,отведенной под график
2630 FOR N3R^=1 ТО PASTX+FUTRZ
2640 if nbr%>past% then hue=1 ’ Изменение цвета для прогноза
2650 LINE (NBRK*11+45,1 91)-(NBR%*11+54,191 -CINTCSCALE*ANT(NBRX))),HUE,BF
2660 NEXT NBRX
2690 ’—Конец программы--- --
2700 A$=INPUT$(1)’Ожидание нажатия клавиши
2710 SCREEN О
2720 END

Рис. 13.2. (Продолжение.)

В начальной части программы определяется массив числовых
значений с обычной точностью (строка 50) и производится подготов­
ка экрана дисплея к последующему вводу данных с клавиатуры
(строки 1010—1250).

Для краткости и простоты в программе используются самые
элементарные средства ввода с клавиатуры без применения более
сложной техники ввода, описанной в гл. 11. Пользователь про­
граммы должен разбить весь анализируемый период на два этапа —
прошедший и будущий (строки 1200 и 1210), при этом общее коли­
чество значений, относящихся к прошлому и будущему, не должно
превышать 24 (строка 1220). Затем пользователь должен ввести
известные значения, т. е. числа, соответствующие прошедшему
этапу (строки с 1260 по 1340).

По мере ввода данных в программе происходит накопление
вспомогательных числовых величин, которые потребуются в даль­
нейшем для применения метода экспоненциальной регрессии (стро­
ки 1300—1340). Сразу же после окончания стадии ввода исходных
данных выполняются заключительные этапы метода экспоненциаль­
ной регрессии — вычисление коэффициентов экспоненциальных
уравнений (строки 1400—1420). Затем в программе решается задача
прогнозирования: подсчитываются значения, относящиеся к бу­
дущему этапу (строки с 1500 по 1520).

При выполнении операторов строк 1600—1690 на экран выводит­
ся полный набор численных значений, соответствующих прошедше­
му и будущему этапам. После этого программа переходит в состоя­
ние ожидания и находится в нем до тех пор, пока пользователь не
ознакомится со всей выведенной на экран информацией и не нажмет
какую-нибудь клавишу для возобновления выполнения программы
(строка 1690).

Поскольку нет каких-либо ограничений на диапазон изменения
вводимых и прогнозируемых значений, в программе должен опре­
деляться нужный масштаб графиков, с тем чтобы они полностью

Графические средства 285

умещались на экране (это делается в строках программы с 2000 по
2080). При масштабировании сначала определяются наибольшее
и наименьшее значения (строки 2000—2060), а затем максимально
допустимая высота графика, равная 168 строкам, делится на сумму
наибольшего и наименьшего значений (строка 2080). В результате
такого деления получается масштабный коэффициент вертикальной
шкалы.

На этапе подготовки к построению графиков в программе уста­
навливается графический режим вывода со средним разрешением,
выбираются цвет фона и палитра цветов переднего плана (стро­
ки 2200 и 2210). Затем на экран выводится информация, относящая­
ся к заголовку и координатным осям графика (строки с 2220 по
2320). Полезно обратить внимание на то, как используются опера­
торы LINE для построения прямоугольников, обрамляющих гори­
зонтальную и вертикальную шкалы (строки 2310 и 2320).

Если горизонтальная шкала выводится на экран с помощью
одного простого оператора PRINT (строка 2240), то для вывода
вертикальной шкалы приходится выполнять более сложные дейст­
вия. Прежде всего в программе вычисляются пять опорных точек,
перекрывающих весь диапазон известных и вычисленных значений;
эти точки получаются путем деления номеров строк 4, 44, 84, 124
и 164 на выбранный масштабный коэффициент по вертикали (прог­
раммные строки 2260—2290). Перечисленные строки вертикальной
шкалы соответствуют серединам обычных экранных строк текстово­
го режима, имеющих номера 4, 9, 14, 19 и 24; именно в эти строки
экрана помещаются полученные опорные значения. (Отметим для
ясности, что график занимает на экране 168 строк, с 24-й по 191-ю.)

Точечный график строится в программе с помощью оператора
PSET (строки 2400—2430). Переменная HUE обеспечивает изме­
нение цвета выводимых точек, с тем чтобы все известные заранее
точки делались красными, а все прогнозируемые — зелеными.
Для каждой точки ее координата по столбцам вычисляется путем
умножения номера этой точки, изменяющегося от 1 до 24, на коэф­
фициент растяжения горизонтальной шкалы, равный 11, и прибав­
ления к полученному произведению 45, т. е. номера крайнего лево­
го столбца отведенной под график области. Для вычисления коор­
динаты по строкам масштабный коэффициент вертикальной шкалы
умножается на известное или прогнозируемое значение, и из полу­
ченного произведения вычитается 191 — номер самой нижней стро­
ки занимаемой графиком области.

После того как пользователь нажмет какую-нибудь клавишу,
точечный график сменяется ломаной линией (строки 2500—2560).
Первая точка строится с помощью оператора PSET (строка 2520),
а отрезки прямой, соединяющие остальные точки, проводятся с по­
мощью оператора LINE (строка 2550). Координаты по строкам и
столбцам вычисляются здесь, как и в предыдущем случае, и, так же

286 Глава 13

как и ранее, переменная HUE определяет цвет выводимой точки.
В заключение на экран выводится гистограмма (строки 2600—

2660). На этом этапе сначала производится очистка занимаемой гра­
фиком области экрана путем вывода на экран прямоугольника, за­
крашенного в цвет фона (строка 2620). Затем для каждого значения,
соответствующего прошлому или будущему, строится вытянутый
вверх прямоугольник, закрашенный одним цветом (строки с 2630
по 2660). По ширине все эти прямоугольники одинаковы, а высота
каждого из них определяется величиной соответствующего значе­
ния. Цвет прямоугольника задается переменной HUE.

Построение окружностей и закрашивание замкнутых областей

Бэйсик позволяет легко оперировать прямыми линиями, поэто­
му обычно почти все выполняемые машиной графические построения
сводятся к выводу отдельных точек, вычерчиванию линий и пост­
роению прямоугольников. Однако в расширенный Бэйсик допол­
нительно входит специальный оператор CIRCLE, позволяющий точ­
но так же легко и быстро строить окружности, дуги, эллипсы.

Расширенный Бэйсик располагает еще одним оператором графи­
ческого вывода PAINT, который особенно удобно использовать
вместе с оператором CIRCLE. Оператор PAINT предназначен для
заполнения одним цветом заданной области экрана и тем самым поз­
воляет рисовать на экране закрашенный круг так же легко, как и
чертить окружность.

Оператор CIRCLE
Для того чтобы с помощью оператора расширенного Бэйсика

CIRCLE построить на экране окружность, необходимо указать,
в каком месте экрана она должна располагаться, какого она долж­
на быть размера и цвета. Кроме того, поскольку CIRCLE является
оператором общего назначения, позволяющим строить как целые
окружности, так и отдельные их части, необходимо также задать,
какая именно часть окружности должна изображаться на экране.

Пример. Оператор, выполняющий построение полной окруж­
ности в середине экрана, работающего в режиме графического вы­
вода со средней разрешающей способностью.

CIRCLE (160,100),50,1,0,6.2831

Первые два числа определяют координаты центра окружности;
в данном случае центр будет находиться на пересечении 160-го
столбца и 100-й строки. Третье число, равное здесь 50, задает размер
окружности. Четвертое число указывает, каким цветом должна
изображаться окружность, а последние два числа определяют, ка­
кая часть окружности должна быть построена.

Графические средства 287

Координаты центра окружности задаются обычным способом,
т. е. с помощью стандартных номеров столбцов и строк. Размер
окружности определяется ее радиусом, причем единицей измере­
ния радиуса является ширина одного столбца экрана. Таким обра­
зом, окружность с радиусом, равным 6, занимает по диаметру 12
столбцов. Вообще говоря, ширина одного столбца не совпадает с
шириной строки, т. е. клетка экрана не является квадратной —
в ширину она больше, чем в высоту. Однако при выполнении опера­
тора CIRCLE это различие может оказаться незаметным, посколь­
ку в режиме со средней разрешающей способностью шесть столбцов в
ширину занимают столько же места, сколько пять строк, а в режиме
высокого разрешения 12 столбцов по ширине соответствуют пяти
строкам. Так, если в режиме со средней разрешающей способностью
диаметр окружности равен 12 столбцам, то он одновременно равен
10 строкам.

При вычерчивании окружности в режиме среднего разрешения
можно использовать любой цвет активной палитры; при этом отте­
нок выбранного цвета будет определяться номером текущего цвета
фона (табл. 13.2 и 13.3). В режиме с высокой разрешающей способ­
ностью нечетные номера определяют белый цвет окружности, а чет­
ные — цвет, совпадающий с цветом фона. Номер цвета, равный 0,
всегда определяет цвет, совпадающий с цветом фона; этот номер
удобно использовать для стирания с экрана заданной области.

Пример
10 SCREEN 1 ’режим графического вывода со средней разрешаю­

щей способностью
20 CLS
30 CIRCLE (200,120),25,1,0,6.2831 ’голубая
40 CIRCLE (ПО,140),25,3,0,6.2831 ’белая
50 A$ = INPUT$(1) 'Ожидание нажатия клавиши
60 CIRCLE (НО, 140),25,0,0,6.2831 ’цвет фона

При выполнении этой программы сначала на экране будут построе­
ны две окружности, одна голубая, другая белая, а затем прог­
рамма перейдет в состояние ожидания и будет находиться в нем до
тех пор, пока пользователь не нажмет какую-нибудь клавишу.
Тогда программа сотрет белую окружность путем вывода на экран
точно такой же окружности, но не белого цвета, а цвета фона. За­
давать цвет в операторе CIRCLE не обязательно.

Пример. Оператор CIRCLE в режиме высокого разрешения
с опущенным номером цвета.
10 CIRCLE (320,100), 100, ,0,6.2831

♦фф Заметим, что можно опускать номер цвета, но не следующую
за ним запятую. При выполнении оператора CIRCLE без указания
цвета на экран выводится окружность стандартного (принятого по

288 Глава 13

Рис. 13.3. Измерение дуг окружностей (360° равны 6;283186' рад).

умолчанию) цвета переднего плана. В режиме со средней разре­
шающей способностью стандартным является цвет с номером 3
(белый или золотистый), а в режиме с высокой разрешающей спо­
собностью — цвет с номером 1 (белый).

Построение дуг окружности. С помощью оператора CIRCLE
можно строить отдельные части окружности, но для этого необхо­
дим некоторый способ задания произвольной части окружности.
Как известно из геометрии, любая полная окружность содержит
360°. Именно поэтому, например, шкала компаса разделена на
360 равных частей. Однако нумерация градусов в компасе не такая,
как принято в геометрии. Поясним принятый в геометрии способ
нумерации градусов, используя циферблат часов. Нумерация на­
чинается с 0°, что соответствует положению часовой стрелки на
3-часовой отметке, и продолжается против часовой стрелки так, что
90° соответствуют 12 ч, 180° — 9 ч, 270° — 6 ч и, наконец, 360°
(как и 0°) соответствуют 3 ч (рис. 13.3. А).

Графические средства 289

Дальнейшее осложенние связано с тем, что в расширенном
Бэйсике дуги окружности измеряются не в градусах, а в радианах
(рис. 13.3. В). Понятие радиан связано с математической констан­
той л, которая приближенно равна 3,14159. Половина окружности,
т. е. дуга в 180°, содержит л радиан, а полная окружность, состав­
ляющая 360°, 2л радиан, что приближенно равно 6,2831. Таким об­
разом, для перехода от градусов к радианам достаточно умножить
выраженное в градусах значение на 0,0174532.

Чтобы идентифицировать в операторе CIRCLE дугу, необхо­
димо задать точку на окружности, в которой эта дуга начинается,
и точку, где она кончается. Обе точки должны задаваться в радиа­
нах. Во всех приведенных до сих пор примерах оператора CIRCLE
использовалась дуга, начинающаяся при 0 и кончающаяся при
6.2831 радианах, т. е. полная окружность.

Пример. Оператор, в котором задается ровно половина окруж­
ности.
10 CIRCLE (160,100),50,1,0,3.1416

В указанном способе задания дуг остается некоторая неодно­
значность — две точки, задающие дугу, в действительности опре­
деляют две дуги: одна дуга получается, если от начальной точки
двигаться к конечной против часовой стрелки, а другая — если
двигаться по часовой стрелке. Для устранения этой неоднозначнос­
ти в расширенном Бэйсике принято следующее соглашение:

если значение, определяющее начальную точку, меньше значе­
ния для конечной точки, то дуга проводится против часовой стрел­
ки, а если первое значение больше второго, то — по часовой стрел­
ке (рис. 13.4).

Построение радиусов. Кроме дуг с помощью оператора CIRCLE
можно изображать на экране радиус, соединяющий центр заданной
дуги с одной из ее концевых точек. Если концевая точка дуги за­
дается в операторе CIRCLE отрицательным значением, то при вы­
полнении такого оператора будет проведен радиус в эту концевую
точку. Знак минус при задании концевой точки не оказывает ника­
кого влияния на саму дугу.

Пример. Оператор, при выполнении которого на экране появится
радиус, соединяющий точку с координатами (40,100) со второй
концевой точкой дуги.
1230 CIRCLE (40,100),30, ,3.1416,-4.7124

Значение —0 не интерпретируется так, как любое другое отри­
цательное значение, используемое при задании концевой точки.
Для того чтобы обойти это ограничение, можно вместо —0 указы­
вать —0.001.

Если обе концевые точки заданы отрицательными значениями,
то проводятся оба радиуса, образуя сектор.

10 № 2275

290 Глава 13

Рис. 13.4. Примеры дуг, которые определяются своими концевыми точками.

Пример
1350 CIRCLE (240,100),30,2,—3.1416,—4.7124

Построение эллипсов. С помощью оператора CIRCLE можно
также изображать на экране эллипсы. Для этого в операторе не­
обходимо задать характеристическое отношение изображаемого
эллипса, которое является отношением высоты эллипса к его ши­
рине, например
1410 CIRCLE (270,100),50,1,0,6.2831,5/3

Дополнительное дробное значение в конце оператора CIRCLE
определяет характеристическое отношение. Удобнее и проще всего
рассматривать характеристическое отношение эллипса как некото­
рую дробь с заданными числителем и знаменателем. Числитель
указывает, какое количество строк при выполнении оператора
CIRCLE следует считать эквивалентным числу столбцов, задавае­
мому знаменателем. В режиме со средней разрешающей способ­
ностью характеристическое отношение 5/6 определяет окружность;
отношение 1/3 (или 2/6) — эллипс, вытянутый по горизонтали;
отношение 5/3 (или 10/6) — эллипс, вытянутый по вертикали
(рис. 13.5). В режиме с высокой разрешающей способностью ха­
рактеристическое отношение 5/12 соответствует окружности.

Графические средства 291

Рис. 13.5. Характеристические отношения эллипсов, изображенных в режиме
графического вывода со средней разрешающей способностью.

Характеристические отношения в операторе CIRCLE могут за­
даваться также и десятичными дробями. Например, отношение
5/6 задает тот же эллипс, что и десятичная дробь .8333333. Интер­
претатор расширенного Бэйсика устроен таким образом, что при
выполнении операторов CIRCLE с характеристическим отношени­
ем, меньшим I, на экране строятся эллипсы одинаковой ширины
и различной высоты, а если характеристическое отношение боль­
ше 1, то все соответствующие эллипсы будут иметь одну и ту же
высоту и разную ширину (рис. 13.6).

Оператор PAINT
Оператор графического вывода PAINT, входящий в состав рас­

ширенного Бэйсика, позволяет заполнять заданную область экрана
любым допустимым в режимах графического вывода цветом.

Пример
20 PAINT (150,100),1,3

При выполнении данного оператора экран начнет закрашивать­
ся цветом с номером 1, начиная с точки (150,100), равномерно по
всем направлениям; по каждому направлению это будет продол­
жаться до тех пор, пока не встретится точка, окрашенная в цвет

ю*

292 Глава 13

с номером 3. Это значит, что предварительно на экране должна
быть проведена замкнутая кривая цвета 3, охватывающая точку
(150,100).

Заполняющий цвет и ограничивающий цвет обычно бывают раз­
ными, но могут и совпадать. Если нужно закрасить некоторую
область, то вся она должна быть ограничена одним и тем же цветом,
иначе выполнение оператора PAINT не приведет к ожидаемым ре­
зультатам. Для вычерчивания границы можно использовать любое
сочетание точек, отрезков, прямоугольников, окружностей, дуг
и эллипсов. Если линия ограничивающего цвета в некоторых ме­
стах прерывается, то заполняющий цвет выходит за пределы об­
ласти и окрашивает всю оставшуюся часть экрана. Это свойство
оператора PAINT дает возможность перекрашивать целиком весь
фон в цвет переднего плана.

Пример. Программа, в которой производится перекрашивание
фона в цвет переднего плана с номером 1, а затем из новой окраски
как бы вырезается круг (т. е. проводится окружность, которая
окрашивается в прежний цвет фона).

10 SCREEN I 'режим графического вывода со средней разрешаю­
щей способностью

20 CLS

Графические средства 293

30 PAINT (0,0), 1,1 'закрашивание всего фона
40 CIRCLE (50,150),20,0,0,6.2831 'построение окружности
50 PAINT (50,150),0,0 'заполнение цветом фона

Поскольку при выполнении оператора PAINT используется
рабочий стек, понятно, что в процессе закрашивания некоторой
области на экране может появиться сообщение об ошибке “Out of
memory...” («Нехватка памяти...»). Вероятность появления такой
ошибки повышается, если оператор PAINT является частью глубоко
вложенных друг в друга циклов FOR/NEXT или подпрограмм или
же если контур, ограничивающий закрашиваемую область, имеет
достаточно сложную форму.

Использование средств построения окружностей
и закрашивания замкнутых областей

Существует много примеров практического использования опе­
раторов CIRCLE и PAINT. Так, с помощью окружностей удобно
изображать пропорциональные соотношения: если некоторому зна­
чению, например 20, поставить в соответствие окружность опре­
деленного размера, то окружность вдвое большего диаметра будет
соответствовать значению 40, а вдвое меньшего — значению 10
(рис. 13.7). Традиционным способом изображения пропорциональ­
ных соотношений между частями одного целого, безусловно, яв­
ляется представление частей в виде секторов одной и той же окруж­
ности, что также требует использования средств построения окруж­
ностей и закрашивания областей (рис. 13.8).

Программа построения пропорциональных окружностей

Такая программа (рис. 13.9) выполняет деление некоторого
общего количества на части (допускается использовать до 6 ч.) и
выводит на экран окружности, каждая из которых по размеру про­
порциональна одной из частей. На рис. 13.8 приводится результат
работы программы для исходных значений, равных 20, 40, 3, 7, 10
и 8. В программе используются самые элементарные средства Бэй-
сика, вследствие чего она может выполняться не для любых наборов
исходных значений.

В программных строках 20 и 30 задаются координаты (номера
столбцов и строк) для всех шести окружностей, которые могут
впоследствии изображаться на экране. Первая окружность будет
при этом иметь центр в точке (85,60), вторая — в точке (175,95)
и т. д.

В начале программы производится подготовка экрана к вводу
данных с клавиатуры (строки 40 и 50). После этого пользователь
программы должен ввести значения, соответствующие распределе-

Рис. 13.7. Использование окружностей для изображения пропорциональных
соотношений.

Рис. 13.8. Круговая диаграмма.

Графические средства 295

10 »— Координаты по столбцам а строкам для центров окружностей,--
20 DATA 85,60,175,95,245,35
30 DATA 60,150,165,170,260,145
40 KEY OFF
50 CLS
60 '--Ввод шеста численных значений.--------------------------- ------------ ----------
70 FOR J=1 ТО 6
80 print "Значение отдельной части. ";J; ■
90 INPUT PART(J)
100 total=total+part< j > ’ Подсчет нарастающего итога
110 NEXT J
12Q •— Установка режима работы экрана----------------------------—------------
130 SCREEN 1 'Режим среднего разрешения
140 CLS
150 LOCATE 1,15
160 PRINT TOTALИтого"
170 • — Построение на экране окружностей--
180 FOR J=1 ТО 6
190 IF PART(J)=Q THEN GOTO 260 ’Игнорир/значения, равного О
200 READ C,R 'Получение координат центра окружности
210 RAD=100*PART(J J/TOTAL ’ Вычисление радиуса окружности
220 LOCATE (R+RAD)/8+2,(C-RAD)/8 ' Опр. позиции для вывода
230 print PART(j); ' Вывод значения
240 CIRCLE (C,R),RAD,2,0,6.2831 'Построение окружноста
250 paint (C,R),1,2 ' Закрашивание круга
260 NEXT J
270 LOCATE 22
280 END

Рис. 13.9. Программа построения пропорциональных окружностей.

нию общего количества по частям (строки с 70 по 110). Среди вводи­
мых могут встречаться значения, равные 0. В процессе ввода в про­
грамме постепенно накапливается общая сумма всех значений (стро­
ка 100). После завершения ввода программа переводит экран в ре­
жим графического вывода со средней разрешающей способностью
и выводит на экран заголовок (строки с 130 по 160).

После этого программа переходит к выводу на экран окруж­
ностей, пропорциональных по размеру исходным значениям (стро­
ки с 180 по 260). Если какое-либо из шести исходных значений рав­
но 0, то оно игнорируется, т. е. окружность для него не строится
(строка 190). Для каждого ненулевого значения сначала из списка
операторов DATA выбираются координаты точки, которая будет
центром соответствующей окружности (строка 200). Затем на осно­
ве отношения рассматриваемого исходного значения к общей сумме
всех значений вычисляется радиус окружности (строка 210). После
этого на экране вблизи будущей окружности выводится исходное

296 Глава 13

значение (строки 220 и 230), и, наконец, на экране строится окруж­
ность (строка 240), которая затем закрашивается (строка 250).

По окончании построения всех окружностей программа переме­
щает курсор в нижнюю часть экрана (строка 270), подготавливая
его к выводу сообщения “Ок”, которое появится после завершения
работы программы.

Программа построения круговой диаграммы
Данная программа (рис. 13.10) вычерчивает на экране круговую

диаграмму, содержащую до 25 секторов. Пользователь программы
должен ввести количество исходных значений и сами эти значения.
На рис. 13.9 изображены результаты работы программы для шести
исходных значений: 30, 40, 3, 7, 8 и 12. В результате работы програм­
мы на экране изображается круговая диаграмма, в которой около
дуги каждого сектора проставлено соответствующее этому сектору
значение.

В начальной части программы отводится память под массив,
состоящий из 25 элементов — для ввода до 25 исходных значений
(строка 10). Затем выполняются действия по подготовке экрана
к вводу данных с клавиатуры в режиме среднего разрешения (стро­
ки с 20 по 40). Далее производится ввод числа, характеризующего
количество исходных значений (строки 60 и 70), и самих значений
(строки с 80 по 120). В процессе ввода исходных значений в програм­
ме накапливается их общая сумма (строка ПО).

После завершения ввода программа очищает экран дисплея и
выводит заголовок (строки с 140 по 160). Затем выбирается началь­
ная точка для первого сектора так, что ей соответствует 0 радиан
(строка 170), и устанавливается значение радиуса окружности,
равное 90 (строка 180).

В строках с 200 по 280 производится построение секторов круго­
вой диаграммы. Для каждого сектора в программе вычисляются
его концевая и средняя точки (строки 210 и 220). Затем на экран
вблизи средней точки выводится соответствующее этому сектору
исходное значение (строки 230 и 240), после чего строится сам сек­
тор (строка 250). В используемом для этого операторе CIRCLE на­
чальная и конечная точки задаются отрицательными значениями,
вследствие чего на экране кроме дуги проводятся еще и оба радиуса.
Для того чтобы значение, определяющее начальную точку, всегда
было отрицательным (оно может оказаться равным нулю для самого
первого сектора), из него вычитается .001. При выполнении строки
260 текущий сектор закрашивается, начиная с точки, расположен­
ной приблизительно в центре сектора. В программной строке 270
устанавливается начальная точка для следующего сектора. Каж­
дый последующий сектор начинается там, где кончается предыду­
щий.

Графические средства 297

10 DIM PART(25>
20 KEY OFF
30 SCREEN 1
40 CLS
50 1 — Ввод всех значений. ------------------------- .—-
60 print ’’Сколько отдельных частей";
70 input N
80 FOR J=1 TO N
90 print ’’Значение отдельной часта-j;
100 INPUT PART(J) } *'

no total=total+part(J) 1 Подсчет общего количества
120 NEXT J
130 ’Подготовка к построению круговой диаграммы •
140 CLS
150 LOCATE 1,15
160 PRINT TOTAL;”Итого"-;
170 startpt=O ’ Начальная точка для первого сектора
180 rad=90 1 Радиус окружности
190 ’--Построение на экране всех секторов-------------------------------------
200 FOR J=1 ТО N*
210 endpt=6.283185*part(J)/TOTAL+ST artpt’Вь14асленае координат конечн. точка
220 midpt=(startpt+endpt)/2 ’Вычисление координат средней точки дуга сектора
230 LOCATE (100-SIN(MIDPT)*(RAD-8))/8,(160+C0S(MIDPT)*(RAD+16))/8
240 print part(J); ’Вывод значения, соответст. данному сектору
250 circle (160,100),rad,3,-startpt-.001,-endpt * Построение сектора
260 PAINT (160+C0S(MIDPT)*RAD*.75,100-SIN(MIDPT)*RAD*.75)z

J mod 4,3 * Закрашивание сектора
270 startpt=endpt ’Нач. точка след, сектора совпадает с конечн. точкой текущего
280 next j
290 LOCATE 22
300 END

Рис. 13.10. Программа построения круговой диаграммы.

После построения круговой диаграммы программа перемещает
курсор в нижнюю часть экрана (строка 290), подготавливая его
к выдаче сообщения «Ок», которое будет выводиться после заверше­
ния выполнения программы.

Язык графического вывода для расширенного Бэйсика
В расширенный Бэйсик входит оператор DRAW, который с

помощью специального языка графического вывода позволяет изоб­
ражать на экране рисунки, составленные из различных комбинаций
точек и прямых линий. Начиная с последней высвеченной на экране
точки, с помощью оператора DRAW можно провести линию любой
длины и в любом из восьми заданных направлений. После этого
можно провести еще одну линию, снова любой длины и в любом
из восьми направлений. Подобный процесс можно продолжать

298 Глава 13

почти неограниченно. Каждая проводимая линия может быть окра­
шена в любой из четырех цветов активной палитры или делаться не­
видимой. Кроме того, можно проводить отрезок, соединяющий те­
кущую точку с любой заданной абсолютными или относительными
координатами точкой экрана. Можно также увеличивать или умень­
шать весь выводимый рисунок, а также поворачивать его на 90,
180 или 270°.

Подкоманды графического вывода

Язык графического вывода, позволяющий проводить все указан­
ные выше графические построения, состоит из 15 однобуквенных
подкоманд. Составляя строки из этих подкоманд, можно определять
различные строковые значения и тем самым задавать нужный рису­
нок. Для большинства подкоманд кроме идентифицирующих их
букв необходимо также указывать некоторое число, означающее,
например, какой длины проводить линию, какой использовать но­
мер цвета, насколько увеличить весь рисунок и т. п.

Пример, Подкоманда R, проводящая линию вправо от данной
точки.

10 SCREEN 1
20 DRAW “RI 59”

При выполнении этой программы на экране со средней разрешаю­
щей способностью будет проведена линия из центра экрана к право­
му его краю.

Здесь в операторе DRAW подкоманда R159 означает: «Начиная
с текущей позиции провести линию на 159 столбцов вправо». По­
скольку до выполнения каких-либо графических построений (в ча­
стности, сразу после выполнения оператора SCREEN) для интер­
претатора Бэйсика ПВМ роль последней выведенной точки играет
центр экрана, в данном примере на экране будет проведен отрезок,
соединяющий точки (160,100) и (319,100).

Девять однобуквенных подкоманд обеспечивают вычерчивание
линий на экране, одновременно осуществляя управление движени­
ем курсора, а остальные шесть реализуют специальные операции
управления. В табл. 13.4 перечислены все 15 подкоманд графиче­
ского вывода, а на рис. 13.11 показано, в каких направлениях про­
водятся линии при выполнении первых девяти подкоманд.

Комбинирование подкоманд графического вывода. Выполняя
всего один оператор DRAW, можно получить на экране достаточно
сложный рисунок, если командная строка в этом операторе состоит
из нескольких подкоманд графического вывода, записанных в пра­
вильном порядке.

Графические средства 299

Таблица 13.4. Подкоманды оператора DRAW

Подкоманда Действие Значение параметров
п 1), Л, ц, k 9, sgПодкоманды перемещения по экрану и вычерчивания линий * 2)

UnDn Rn Ln En FnGn Hn M/z,uM 4-/i, -J-y

Вверх
Вниз
Вправо
Влево
По диагонали вверх и вправо
По диагонали вниз и вправо
По диагонали вниз и влево
По диагонали вверх и влево
В заданную точку
То же

n — количество строк3)
То же
п — количество столбцов3)
То же
п —расстояние по диагонали4)
То же

» »
» »

h,v—абсолютные координаты
-\~h, —относительные коор­

динаты

Управляющие подкоманды
ВN
kk

Sk

Ck

Xs$

При последующем перемещении
не проводить линию

После последующего перемеще­
ния возвратиться в текущую
точку

Поворот против часовой стрелки
всех последующих перемеще­
ний и проводимых линий 5 б)

Уменьшить или увеличить дли­
ны линий, которые будут про­
водиться в дальнейшем 5)

Выбор цвета

Выполнить подкоманды другой
строки

Не задаются

То же

k—\тол поворота:
0 = 0° 2=180°
1=90° 3 = 270°

k — масштабный коэффициент:
1 = 1/4х 4=1х
8 = 2х 36 = 9х

и т. д.
k — номер цвета: 0 или 1 в ре­

жиме высокого разрешения;
0, 1, 2, 3 — в режиме среднего

разрешения (цвета палитры)
s$—строковая переменная, со­

держащая дополнительные
подкоманды

*) Для всех подкоманд, кроме М и X, значения параметров могут задаваться как це­
лыми константами, так и числовыми переменными с целыми значениями. Для использова­
ния в .подкоманде переменной необходимо поставить перед ее именем знак =, а после имени точку с запятой, например R =COL (R — подкоманда, a COL —имя переменной).2) Если в подкоманде относительного перемещения объекта значение параметра выво­дит его за пределы экрана, то выполнение такой подкоманды завершается при достижении края экрана.3) Расстояние в 5 ед. по вертикали равно расстоянию в 6 ед. по горизонтали. Напри­мер, для того чтобы изобразить на экране квадрат с вертикальной стороной в пять строк, его горизонтальную сторону необходимо проводить длиной в шесть столбцов. Заметим, однако, что при выполнении подкоманды диагонального перемещения диагонально проти­воположные углы такого квадрата соединяться не будут.4) Единица измерения расстояния по диагонали по величине совпадает с 1,4142135 ед.расстояния по вертикали (количество строк). Например, диагональ, соединяющая два про­тивоположных утла прямоугольника со сторонами 100 строк в высоту на 100 столбцов в ширину, имеет длину, равную 100 ед. по диагонали.б) Действие подкоманд поворота и изменения масштаба не распространяется на подко­манду М, в которой используются абсолютные координаты.

300 Глава 13

Пример. Построение квадрата в центре экрана в режиме средне­
го разрешения.
40 DRAW “BM130,125U50R60D50L60” 'квадрат

В приведенном операторе DRAW подкоманде М130,125 пред­
шествует подкоманда В, вследствие чего М130,125 становится ко­
мандой только перемещения текущей точки, а никаких линий при

Рис. 13.11. Направление движения при выполнении различных подкоманд
перемещения и проведения линий (подкоманды оператора DRAW).

ее выполнении не проводится. В соответствии с этим при выполне­
нии следующей подкоманды U50 вертикальная линия на 50 строк
вверх проводится из точки с координатами (130,125). После этого
по подкоманде R60 проводится горизонтальная линия на 60 столб­
цов вправо, затем по подкоманде D50 — вертикальная линия на
50 строк вниз и, наконец, по L60 — горизонтальная линия на 60
столбцов влево, возвращающая нас в исходную точку с координата­
ми (130,125). Несоответствие между количеством строк и количест­
вом столбцов при построении квадрата связано с тем, что на экране,
работающем в режиме средней разрешающей способности, шесть
строк в высоту занимают столько же, сколько пять столбцов в ши­
рину.

Задание числовых значений в подкомандах. Числовые значения
подкоманд могут задаваться в виде числовых целых констант,
стоящих непосредственно за символами соответствующих подко­

Графические средства 301

манд, как это было в двух предыдущих примерах, либо в виде чис­
ловых переменных. Во втором случае допустимыми являются эле­
менты массивов, но не разрешается использовать функции и выра­
жения. Исключением из общих правил является подкоманда М,
в которой числовые значения можно задавать только с помощью
целых констант, а переменные не допускаются. Для того чтобы в
строке подкоманд вместо числовой константы использовать число­
вую переменную, необходимо перед именем этой переменной поста­
вить символ =, а после имени — точку с запятой.

Пример
100 DRAW “u—VERT;”

В приведенном примере буква и обозначает подкоманду, а
VERT — имя переменной. Заметим, что в строке подкоманд можно
одновременно использовать и прописные, и строчные буквы.

Если для какой-либо подкоманды перемещения текущей точки
и вычерчивания линии (кроме подкоманды М) задано числовое зна­
чение, выводящее за пределы экрана, то интерпретатор Бэйсика
ПВМ завершит выполнение этой подкоманды при достижении края
экрана. При этом, если значение не было отрицательным и не пре­
вышало 32767, сообщение об ошибке выдаваться не будет; для
специальных управляющих подкоманд приняты иные ограничения.
Так, целое значение, задаваемое для подкоманд А (угол поворота)
и С (номер цвета), обязательно должно заключаться между 0 и 3,
а значение, используемое в подкоманде S (масштабный коэф­
фициент),— между 0 и 255; в противном случае появится сообщение
об ошибке.

Использование специальных управляющих подкоманд. При вы­
полнении программы, приведенной на рис. 13.12, на экране строит­
ся геометрическая фигура, изображенная на рис. 13.13. В процессе
работы эта программа многократно выводит на экран один и тот же
простой шестиугольник, изменяя с помощью подкоманды А угол
его поворота^ с помощью подкоманды С его цвет, а с помощью S
размер. В программе иллюстрируется также использование под­
команды X, позволяющей в процессе выполнения некоторой строки
подкоманд выполнять другие подкомандные строки.

В начальной части программы для экрана дисплея устанавли­
вается режим работы со средней разрешающей способностью (стро­
ки с 10 по 30). Затем определяется строка подкоманд, с помощью
которой на экране строится отдельный шестиугольник (строка 40).
После этого следуют два вложенных друг в друга цикла FOR/NEXT,
в которых изменяются масштаб, цвет и угол поворота выводимого
на экран шестиугольника.

Во внешнем цикле (строки с 60 по 160) меняются масштаб и цвет
очередного выводимого шестиугольника. Поскольку масштабный
коэффициент, равный 4, соответствует воспроизведению рисунка

302 Глава 13

10 CLS:KEY OFF
20 screen 1 'Режим среднего разрешения
30 color 16,0 ' Черный фон, яркий передний план
40 НХ$="и25е1 5 r30d25g15130'* ' 1 ШбСТИуГОЛЬНИК
50 • --Вывод на экран при 10различных масштабных коэффициентах -
60 FOR SCALE=1 ТО 10
70 s$="s "+str$(sc ale) ’ Масштабный коэффициент
80 ‘--Вычисление номера для заданного масштаба---------------------------
90 c$="c"+str$(scale mod 3+1) ' Номер цвета
100 1 — Вывод шестиуг. при 4 различных углах поворота------------------
110 FOR ROTATE=O ТО 3
120 R$="a"+STRS(ROTATE) » УГОЛ поворота
130 SHAPE$="xS$;xC$;xR$;xHX$;1’ J Формир.Строки П0ДК0МЗНД
140 draw shapes * Вывод на экран отдельного шестиугольника
150 NEXT ROTATE .
160 NEXT SCALE
170 as=input$(1)1 Ожидание нажатия клавиши для оконч. работы
180 END

Рис. 13.12. ПрограхМма, использующая оператор DRAW.

без изменения его размеров, в программе используются значения
коэффициента от 1 до 3 для изображения уменьшенных шестиуголь­
ников и от 5 до 10 — для увеличенных (строка 60). Для вычисления

Рис. 13.13. Геометрическая фигура, составленная из шестиугольников (результат
работы программы рис. 13.12).

Графические средства 303

очередного номера цвета к масштабному коэффициенту применяется
операция MOD (вычитание по модулю), в результате чего при любом
масштабном коэффициенте всегда получается одно из- трех значе­
ний 0, 1 или 2 (строка 90). Для определения окончательного номера
цвета к полученному значению прибавляются единица с тем, чтобы
никогда не использовался номер, равный 0, который сответствует
цвету фона, т. е. приводит к построению невидимых линий.

Во внутреннем цикле (строки 110—150) изменяется угол пово­
рота. Для каждых зафиксированных во внешнем цикле масштабно­
го коэффициента и номера цвета во внутреннем цикле на экран вы­
водится шестиугольник при различных допустимых углах поворота.
Задаваемые в программе коэффициенты поворота, равные 0, 1, 2
и 3, соответствуют повороту против часовой стрелки на 0, 90, 180
и 270°. При повороте на 90 или на 270° интерпретатор расширенного
Бэйсика производит необходимую корректировку всех расстояний
по вертикали и горизонтали так, чтобы сохранить исходные пропор­
ции выводимого многоугольника.

Оператор DRAW, выполняющий собственно построение шести­
угольника, помещается во внутреннем цикле (строка 140). Исполь­
зуемая в нем строка подкоманд SHAPES состоит из четырех раз­
личных командных строк: строка S$ устанавливает масштабный
коэффициент для последующего вывода шестиугольника, строка
С$ — цвет, R$—угол поворота, а НХ$ содержит подкоманды,
выполняющие построение отдельного шестиугольника.

Синтез динамических изображений

«Оживление» изображения в кино (или мультипликация) в дей­
ствительности основано на использовании набора обычных «непо­
движных» картинок, каждая последующая из которых лишь очень
незначительно отличается от предыдущей. Если последовательно
просматривать эти картинки, очень быстро сменяя одну другой,
то отдельные картинки будут сливаться друг с другом, создавая
впечатление непрерывного плавного движения. При создании мульт­
фильма с помощью кинокамеры снимают все отдельные картинки,
нарисованные от руки или полученные каким-либо другим спосо­
бом. После этого с помощью кинопроектора можно показывать
фильм на экране.

Для синтеза динамического изображения на вычислительной
машине можно- также использовать кинокамеру и описанную выше
технику: с помощью операторов PSET, LINE» CIRCLE, PAINT
и DRAW можно рисовать на экране отдельные картинки и по оче­
реди фотографировать их кинокамерой. Однако для вычислитель­
ной машины возможен более удобный подход к «оживлению» изоб­
ражения, позволяющий обойтись и без кинокамеры, и без проекто­
ра, используя лишь возможности экрана дисплея.

304 Глава 13

Для того чтобы создать впечатление движущегося по экрану
объекта, следует каждый раз сначала стирать его изображение
с экрана, а затем снова выводить его на экран в новом месте. При
этом местоположение объекта при каждом последующем выводе
должно очень незначительно отличаться от его местоположения при
предыдущем выводе, иначе вместо плавного перемещения будет
лишь видно, как изображение объекта исчезает в одном месте, а за­
тем появляется в другом. Все это нетрудно реализовать с помощью
программы, организуя всего один простой цикл и используя рас­
смотренные ранее операторы графического вывода. Однако для того
чтобы движение изображения не было «дергающимся», отдельные
кадры должны очень быстро сменять друг друга. Используя только
обычные операторы графического вывода, это требование выполнить
трудно, если вообще возможно. В связи в этим в расширенный Бэй-
сик включены два дополнительных оператора графического вывода
GET и PUT, позволяющие решить указанную проблему.

«Оживление» изображения можно использовать в развлекатель­
ных целях. Даже отдельный объект может оказаться достаточно
занимательным, если перемещать его по экрану, меняя его размер
и скорость движения. Кроме того, движущееся изображение имеет
и практическое применение. Примерами являются перемещение
указателей по диаграмме или графику, а также последовательное
перемещение при показе внутренних разрезов того или иного уст­
ройства для объяснения механизмов его работы.

Операторы GET и PUT
Оператор GET позволяет запоминать цвета всех точек заданной

прямоугольной области экрана дисплея и хранить их номера в виде
числового массива; оператор PUT повторно воспроизводит все эти
цвета на экране. Можно считать, что оператор GET играет роль
кинокамеры, числовой массив является слайдом, а оператор PUT
как бы выполняет функции проектора слайдов. С помощью опера­
тора PUT изображение воспроизводится достаточно быстро для
того, чтобы можно было синтезировать движение объектов по
экрану.

Определение области экрана для оператора GET. Прямоуголь­
ная область экрана, раскраска которой должна запоминаться при
выполнении оператора GET, может быть любого размера и распо­
лагаться в любом месте экрана. В качестве примера рассмотрим
следующую программу, которая строит в середине экрана некото­
рую картину взрыва (рис. 13.14):
10 '------- Темно-синий фон и----------------
20 'светлая палитра переднего плана с цветами зеленый/красный/

золотистый
30 CLS.KEY OFF:SCREEN 1:COLOR 17,0

Графические средства 395

40 '------- Построение картины взрыва---------
50 DRAW “c2bml90,82ml78,91ml78,73ml63,91

ml48,65ml48,85mI33,79ml39,94ml 12,94
ml33,109ml06,118m 133,118m 127,124ml39,121
ml39,130ml45,124mI51,I33ml60,124ml66,139
ml72,124ml96,145ml84,121m223,133ml93,l 15
m217,109ml96,106m205,97ml87,97ml90,82”

60 '------- Закрашивание золотистым цветом
70 PAINT (160,100),3,2
80 '------- Выделение занятой области экрана
100 LINE (105,65)—(225,145),1,В

Форма, размер, местоположение прямоугольной области, ин­
формация о которой должна запоминаться в операторе GET, за­
даются координатами двух ее противоположных углов, т. е. точно
так же, как в операторе LINE с опцией В задается подлежащий
построению прямоугольник. В приведенном выше примере с помо­
щью оператора LINE область экрана, реально занятая картиной
взрыва, обводится прямоугольником. Эта прямоугольная область
с координатами противоположных углов (105,65) и (225,145) и со­
ставляет все, что нужно обработать оператору GET для запоми­
нания данной картины взрыва.

306 Глава 13

Вычисление размера массива для оператора GET. Для выполне­
ния оператора GET необходимо задать числовой массив достаточно
большой для того, чтобы вместить данные о расцветке всех точек
рассматриваемой области экрана. На рис. 13.15 приводится простая
программа, подсчитывающая минимальное количество элементов
для такого массива числовых значений,— целых, с обычной или
с двойной точностью. В начале работы программа выдает запрос на
ввод координат, которые будут задаваться в операторе GET, а так­
же просит указать, какой режим графического вывода будет исполь­
зоваться. Если, например, в качестве исходных данных задать коор­
динаты прямоугольника, который строился в предыдущем примере

10 CLS
20 input " Режим среднего разрешения (y/N)"; R$
30 IF R$="Y" OR R$="y" THEN BR=2: GOTO 60
40 input "Режим высокого разрешения (Y/N)"; R$
50 IF R$="Y" OR R$="y" THEN BR=1 ELSE GOTO 10
60 input "Координаты первой точки (столбец, строка)",H1,V1
70 INPUT "Координаты второй точки (столбец, строка)M,H2zVZ
80 BYTES=4+INT<(CABSCH1-H2)+1)*BR+7)/8)*(ABS(V1"V2)+1)
90 print -Минимальныеразмеры массива
100 PRINT "INTEGERS";CINT(BYTES/2)-1)’»
110 PRINT " SINGLE !("; C INT(BYTES/4)-1;
120 PRINT ” D0UBLE#(";CINT(BYTES/8)-1;"),‘
130 PRINT "(";BYTES;" байт требуется)11

Рис. 13.15. Программа вычисления размера массива для оператора GET.

для выделения области экрана, занятой картиной взрыва, то данная
программа определит, что задаваемый для оператора GET массив
значений с обычной точностью должен состоять не менее чем из
628 элементов.

Пример. Оператор определения массива для запоминания кар­
тины взрыва из предыдущего примера, а также использующий этот
массив оператор GET.

90 DIM XPLOD.E(628)
100 GET (105,65)—(225,145),XPLODE

Заметим, что в операторе GET указывается только имя массива
без скобок и индексов.

Воспроизведение на экране хранимого в памяти изображения.
Оператор PUT позволяет воспроизводить в любом месте на экране
все, что ранее содержалось в выделенной прямоугольной области
и запомнилось при выполнении оператора GET (в форме сведений
о раскраске области). Для этого достаточно задать в операторе
PUT координаты точки, в которой должен располагаться верхний
левый угол воспроизводимого прямоугольника, и имя числового
массива, содержащего данные о раскраске этого прямоугольника.

Графические средства 307

Пример. Оператор PUT, реализующий картину взрыва, изобра­
женную на рис. 13.14; здесь эта картина воспроизводится дважды,
каждый раз на новом месте.
ПО '------- Двукратное воспроизведение изображения--------------------
120 PUT (15,25),XPLODE
130 PUT (199,0),XPLODE

Чтобы стереть с экрана изображение, полученное с помощью
оператора PUT, подобного вышеприведенному, достаточно еще раз
повторить тот же самый оператор PUT. Для предыдущего примера
это выглядит следующим образом:
150 '-------Стирание всех трех изображений------------------------
160 PUT (105,65),XPLODE ' 1-е (исходное) изображение
170 PUT (15,25),XPLODE 'Стирание обеих
180 PUT (199,0),XPLODE 'копий

Движущиеся объекты

Для синтезирования на экране движения объекта, данные об
изображении которого хранятся в числовом массиве, необходимо
выполнить следующие действия:

• воспроизвести изображение объекта на экране с помощью
оператора PUT (подобного рассмотренному выше);

• вычислить координаты нового местоположения объекта на
экране;

е стереть с помощью оператора PUT текущее изображение
объекта на экране;

• с помощью оператора PUT повторно воспроизвести изображе­
ние объекта, но с новыми координатами (в новом месте экрана);

• повторить все шаги, начиная со второго.
Пример. «Оживление» картины взрыва путем многократного

вывода ее в различных местах экрана.
190 '-------Динамическая картина взрыва----------------------------
210 NEWCOL=0:NEWROW=119 'Начальное местоположение
220 PUT (NEWCOL, NEWROW), XPLODE ’Воспроизведение

изображения
230 FOR DUP=1 ТО 10
240 OLDCOL=NEWCOL:OLDROW=NEWROW
250 NEWCOL=RND*199:NEWROW=RND*119
260 FOR T°/o = l TO 2100/10.-NEXT 'Пауза
270 PUT (OLDCOL,OLDROW),XPLODE 'Стирание

изображения
280 PUT (NEWCOL,NEWROW),XPLODE 'Воспроизведение

изображения
300 NEXT DUP

308 Глава 13

В 260-й строке приведенного программного сегмента выполня­
ется пустой цикл FOR/NEXT, за счет чего каждый раз перед стира­
нием и повторным воспроизведением изображения выдерживается
пауза длительностью около 1/10 с. Число повторений этого цикла
выбрано на основе экспериментальных данных, которые показы­
вают, что интерпретатор Бэйсика ПВМ выполняет пустой цикл
FOR/NEXT со скоростью приблизительно 2100 раз в секунду.

Координаты каждого нового местоположения картины взрыва
в данном программном сегменте определяются с помощью функции
RND (строка 250). Результатом выполнения этой функции является
случайная десятичная дробь, заключенная между 0 и 1, так что
умножение значения функции на 199 или 119 дает случайное число,
заключенное между 0 и 199 или между 0 и 119 соответственно.
Однако при каждом прогоне программы функция RND будет гене­
рировать одну и ту же последовательность чисел. Чтобы исполь­
зовать действительно случайную последовательность при всяком
прогоне программы, можно добавить в исходный программный сег­
мент следующий оператор:
200 RANDOMIZE VAL(RIGHT$(TIME$,2))

Оператор RANDOMIZE, подобный приведенному выше, генери­
рует набор случайных чисел, из которого в дальнейшем выбирают
значения функции RND. Задаваемое в этом операторе значение оп­
ределяет, какой именно набор случайных чисел будет генериро­
ваться: каждое целое число из интервала от —32768 до 32767 опре­
деляет свой, отличный от всех других набор. Для произвольного
выбора целого значения в данном примере оно задается с помощью
функции TIMES. Эта функция, имеющаяся только в дисковом и
в расширенном Бэйсике, выдает текущее время суток в соответствии
с показаниями встроенных в ПВМ «часов». Время выдается в виде
восьмисимвольного строкового значения вида «08:30:11». В при­
веденном выше примере используются только два последних симво­
ла такой строки, т. е. значение секунд, которое всегда представля­
ет собой целое число, заключенное между 0 и 59.

Возможные параметры оператора PUT
При выполнении оператора PUT простейшего вида на экране

в общем случае появляются не те цвета, номера которых хранятся
в заданном для этого оператора числовом массиве, а цвета, пред­
ставляющие собой результат взаимодействия заданных с текущей
раскраской рассматриваемой области экрана. Это обстоятельство
уже использовалось в предыдущих примерах, когда для стирания
некоторого изображения оно еще раз в том же самом виде воспро­
изводилось на экране с помощью оператора PUT, при этом оно
накладывалось само на себя, и не затрагивало фона. В действитель­
ности существуют пять различных способов взаимодействия изоб­

Графические средства 309

ражения, воспроизводимого оператором PUT, с текущим изобра­
жением на экране дисплея. Конкретный способ выбирается путем
задания в конце оператора PUT одного из пяти ключевых слов:
PSET, PRESET, AND, OR или XOR, например так:
280 PUT (NEWCOL,NEWROW),XPLODE,XOR

Оператор PUT, подобный приведенному выше, т. е. оканчиваю­
щийся необязательным параметром XOR, выполняется точно так
же, как простой PUT без каких-либо параметров в конце. Пара­
метры AND, XOR и OR определяют три различных набора правил,
в соответствии с которыми происходит слияние заданных в опера­
торе PUT цветов с текущей расцветкой экрана. Все эти правила
представлены в табл. 13.5. Например, если в операторе PUT задан
Таблица 13.5. Параметры слияния цветов для оператора PUT1)

Заданный Цвет экрана при суф­фиксе AND Цвет экрана при суф­фиксе OR Цвет экрана при суф­фиксе XORномер цвета 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 0 0 1 2 3 0 1 2 3
1 0 1 0 1 1 1 3 3 1 0 3 2
2 0 0 2 2 2 3 2 3 2 3 0 1
3 0 1 2 3 3 3 3 3 3 2 1 0

х) Существуют еще два других оператора слияния цветов: PSET и PRESET. Первый из них всегда воспроизводит в точности заданные цвета (цвет экрана игнорируется); второй воспроизводит цвет, обратный по отношению к заданному (взаимно обратными считаются цвета с номерами 0 и 3, а также с номерами 1 и 2).
параметр AND, то при воспроизведении этим оператором голубого
цвета (с номером 1) в точке экрана, окрашенной в данный момент
в белый цвет (номер 3), получается голубая точка. Если выпол­
няется PUT с параметром OR, то при слиянии голубого и белого
образуется белый цвет, а если в PUT задан параметр XOR, то ре­
зультатом слияния этих же цветов является пурпурный цвет.

При выполнении оператора PUT с параметром PSET не проис­
ходит никакого слияния заданного цвета с текущим цветом экрана:
независимо от раскраски текущего изображения на экране после
выполнения такого PUT каждая точка окрашивается в точности в
тот цвет, который фиксировался и запоминался оператором GET.
В случае параметра PRESET, точно так же как и при PSET, игно­
рируется текущая окраска точек экрана, но при этом вместо за­
данного цвета воспроизводится «противоположный» ему: приня­
то, что противоположными друг другу являются цвета с номерами
0 и 3, а также цвета с номерами 1 и 2.

310 Глава. 13

Пример синтеза динамического изображения

В программе, приведенной на рис. 13.16, синтезируется движе­
ние по экрану дисплея десяти объектов: девяти точек и одного тре­
угольника. Происходящий на экране процесс движения иллюст­
рируется на рис. 13.17 отдельными картинками, соответствующими
изображению в различные моменты времени. Сначала по экрану

9 Опред. массивов графич. вывода для операторов GET и PUT —- -
10 DIM DOT(37),WEDG1(82),WEDG2(82),WEDG3(82),WEDG4(82),WEDG5(82)
20 DOT.HITE=21
30 dim ndp(8,25) гДля хранения очередных горизонтальных позиций точек
90 ’—Построение объектов - -- --------------- --
100 CLS:KEY OFFjSCREEN 1:COLOR 0z1
110 CIRCLE (160,100),10,1,0,6.283001
120 PAINT (160,100,1,1
130 GET (148,90)-(172,110),D0T
190 ’ — Закрытый треугольник------------------- -
200 CLS.-DRAW ”C2BM142,100М+30,-20М+0,+40М-30,ь*20п
210 PAINT (160,100),2,2
220 GET (142,80)-(172,12D),WEDG1
290 ’ — Частично раскрытый треугольник ——
300 ANGL$=’'м-30,-1 ом+30,-10" Подкоманды для оператора
310 CLSrDRAW ’,C2BM172,12O;XANGL$;XANGL$;M+O,+4O;U
320 PAINT (171,101),2,2;PAINT (171,99),2,2
330 GET (142,80)-(172,120),UEDG2
390 ’ — Полностью раскрытый треугольник —
400 CLS1DRAW ”C2BMl42,80M+30z+DM+0,+40tt-30z+0Tr
410 GET (14-2,80)-(172,120),WEDG3
490 ’— Узкий треугольник------------------------ —
500 CLSrDRAW ue28M-t42,100M+30,-10M+0,+20M-30,-10”
510 PAINT (160,100),2,2
520 GET (142,80)-(172,120),WEDG4
590 1--Треугольник вместе с точкой---------------
600 CLS:PUT (142,80) ,WEDG1: PUT' (148,90)-,DOT
610 GET (14.Z,80)-(1 72,120),WEDG5'
990 * — ПЬлучение горизонтальных координат точек при всех возм. состояниях——
1000 CLS-.FOR. FRAME=O ТО 25: FOR КХ=О ТО 8
1010 REA.D hH>P(KX,FRAME)
1020 NEXT K%ZFRAME
1190 ’— Движение точек по экрану-------------- - ——------------ —------------ -
1200 GO-SUB 4900 ’ Появление точек
1290 1 — Пятикратное поет, волнооб. движения, выстроенных в линию точек
1300 FOR DUP=1 ТО 5: FOR FRAME=1. ТО 2
131Q GO.SUB 4000 ’ Перемещение-точек
1320. NEXT FRAME,DUP
1390 ’ — Появление треугольника.--- ——-
1400 0LDC0L=285:NEWC0L=0LDC0L:ROW-3.5*D0T.HITE

Рис. 13.16. Пример программы синтеза динамического изображения.

Графические средства 311

движутся выстроенные в линию точки. Затем линия начинает со­
вершать волнообразные движения, напоминая движения ленты при
небольшом ветре. Вскоре после этого в правом конце экрана появ­
ляется треугольник, пульсирующий в результате раскрытия и бы­
строго сжатия угла при вершине. Далее он стремительно продви­
гается по направлению к линии точек и врезается в нее, но точки
при этом оказывают сопротивление. В конце концов треугольник
прорывает линию, выбивая из нее одну точку, которая быстро отле-

1410 PUT (OLDCOL,ROW)zWEDGt
1420 FOR DUP=1 TO 2
1430 gosub joooo:gosub 4600 * Колебание треугольника после средней задержки
1440 NEXT DUP
1450 gosub юооо ’ Средняя задержка
1490 — Приближение треугольника к точкам------------------------------ --
1500 FOR NEWCOL=OLDCOL-15 ТО NDP(4,2)+24 STEP -15
1510 gosub 4500’ Перемещение треугольника,
1520 NEXT
1590 • — Сопротивление точек натиску треугольника------------------ --
1600 newcol=oldcol 'Начинается с текущей позиции треугольника
1610 FOR DUP=1 ТО 2
1620 for frame=3 то ю •з тага вперед z 4 назад 1 вперед
1630 IF FRAME<6 OR FRAME=10 THEN NEWC0L=NEWC0L-5 ELSE NEWC0L=NEWC0L+5
1640 gosub 4OOO:gosub 4500' Перемещение точек, а затем-треугольника
1650 NEXT FRAME, DUP
1790 1 — Треугольник прорывается сквозь линию точек----------------
1800 FOR FRAME=11 ТО 18
1810 NEWC0L=NEWC0L-5
1820 gosub 4ooo:gosub 4500 'Линия точек разрывается и треуг. лродвиг, вперед
1830 NEXT FRAME
1840 gosub 1 оооо 1 Средняя задержка
1850 gosub 4600 г Колебания треугольника
I860 PUT(OLDCOL,ROW),WEDG1' Сокращение
1870 PUTCOLDCOL,ROW),WEDG4'треугольника
1890 ’ — Треугольник продвиг. вперед и проходит через образов, разрыв, в линии точек

1900 FOR NEWCOL=OLDCOL ТО 65 STEP -5
1910 PUT (0LDC0L,R0W),WEDG4
1920 PUT (NEWC0L,R0W),WEDG4
1930 OLDCOL=NEWCOL
1940 NEXT NEWCOL
1950 put (oldcol,row),wedg4 1 Восстановление обычного
1960 put (oldcol,row),wedg1 1 размера треугольника
1970 GOSUB 10000 • Средняя задержка
1980 put (oldcol,row)zWEDG1 • Стирание изображения треугольника
2090 ’ — Захват треуг. выбитой точки ---
2100 GOSUB 4700 1 Частичное раскрытие треугольника
2110 put (oldcol,row),wedg3 ’ Полное раскрытие треугольника
2120 for newcol=oldcol то 35 step -5 ’ Захват точки
2130 PUT (0LDC0L,R0W)zWEDG3

Рис. 13.16. (Продолжение.)

312 Глава 13

тает к противоположному концу экрана. После этого треугольник
снова сокращается, уменьшаясь до размеров, позволяющих ему
пройти через образовавшийся в линии проход, и врезается в линию
точек, прорываясь сквозь нее. Затем треугольник полностью раскры­
вается, захватывает выбитую точку и снова закрывается. Точки
опять выстраиваются в линию. Треугольник вместе с захваченной
им точкой удаляется с экрана. Выбитая точка заменяется на но­
вую, а затем вся линия также удаляется с экрана.

2140 PUT (NEWCOL,R0W),WEDG3
2150 OLDCOL=NEWCOL
2160 NEXT NEWCOL
2170 put (oldcol,row),wedg3 ’Стирание раскрытого треугольника-
2190 ‘—Закрытие треугольника---------------------- -----------------------------------
2200 gosub 4700 ’ Частичное закрытие треугольника
22Ю put (oldcol,row),wedgi'Полное закрытие треугольника
2290 Выпрямление линии точек---------- --------- --------------- *---------—•
2300 FOR FRAME=19 ТО 25
2310 gosub 4000'Перемещение точек
2320 NEXT FRAME
2390- ‘-Удаление треугольника с экрана (полностью)------- —
24'00 F0R NEWC0L=0LDC0L ТО 0 STEP -3
2410 PUT (OLDCOL,ROW),WEDG5
2420 PUT (NEWCOL,ROW),WEDG5
2430 0LDC0L=NEWC0L
2440 NEXT NEWCOL
2450 put (oldcol,row),wedgs 1 Стирание треугольника
2460 gosub ioooo:gosub юооо’Две средние задержки
2490 ’ — Замена захвач.точки на новую и удаление с экрана всей линии точек

2500 put (140,4*оот.н1ТЕ),оот'Замена захваченной точки
25Ю gosub юооо:gosub юооо ‘Две средние задержки
2520 gosub 4900' Удаление точек
3000 END
3990 •=Перемещение всех точек===================
4000 FOR КХ=О ТО 8
4010 IF NDP(KX,FRAME-1)<>NDP(Ktf,FRAME) THEN PUT (NDp(K£,FRAME-1)z

KX*DOT.HITE),DOT;PUT(NDP(KX,FRAME),K%*DOT.HITE),DOT
4020 NEXT KXrRETURN
4490 '== Перемещение треугольника=================»
4500 PUT (OLDCOL,ROW),WEDG1
4510 PUT (NEWCOL,RQH),WEDGI
4520 OLDCOL=NEWCOL
4530 RETURN ,
4590 ’==Колебания треугольника ==^~==============
4600 FOR K%=1 TO 5
4610 PUT (OLDCOL,ROW),WEDG1
4620 Cosub 4700 'Частичное раскрытие треугольника
4630 <рит (oldcol,row),wedgi 'Восстанови. обычного размера треугольника
4640 NEXT K/»:RETURN

Рис. 13.16. (Продолжение.)

Графические средства 313

Для синтеза такого небольшого фрагмента используется шесть
отдельных объектов (рис. 13.18): одна точка и пять разновидностей
треугольника, включающих в себя обычный треугольник, полу­
раскрытый и полностью раскрытый треугольник для синтеза быст­
ро открывающегося и захлопывающегося треугольника, узкий
треугольник для прохождения сквозь линию точек, а также тре­
угольник вместе с захваченной им точкой. В самом начале каждый

4690 ’«Частично раскрытый треуголЬНИК-»====-——==»
4700 PUT (OLDCOL,ROW)ZWEDG2
4710 PUT (OLDC0L,R0W),WEDG2
4720 RETURN
4890 ^Появлениеточек на экране или удаление их с экрана»
4900 FOR КХ=О ТО 8
4910 PUT (NDP(K%,O),KX*DOT.HITE),DOT
4920 gosub ююо 1 Короткая задержка
4930 NEXT КХ:RETURN
9990 ’«Временная задержка средней длительности
10000 FOR Т%=1 ТО 1250*1.5:NEXT:RETURN
10090 ’« Временная задержка короткой длительности*»»»»»
10100 FOR Т%=1 ТО <1250/8: NEXT J RETURN
10990 Горизонтальные координаты точек.™™™—-----------
20000 РАТА 140,140,140,140,140,140,140,140,140 :REM Начальные позиции
200Ю data 130,130,130,130,130,130,130,130,130 :rem Позиции при волнообразном
20020 data 140,140,140,140,140,140,140,140,140 :REM движении
20030 data 140,140,140,140,135,140,140,140,140 : REM Позиции при оказании
20040 DATA 140,140,140,135,130,135,140,140,140 СОПрОТИВЛбНИЯ Треугольнику
20050 DATA 140,140,135,130,125,130,135,140,140
20060 DATA 140,140,140,135,130,135,140,140,140
20070 DATA 140,140,140,140,135,140,140,140,140
20080 DATA 140,140,140,140,140,140,140,140,140
20090 DATA 140,140,140,140,145,140,140,140,140
20100 DATA 140,140,140,140,140,140,140,140,140..
20110 DATA 140,140,140,140,135,140,140,140,140 !REM ПОЗИЦИИ При ПрОХОЖДСНИИ
20120 DATA 140,140,140,135,130,135,140,140,140 : REM треугольника СКВОЗЬ
20130 DATA 140,140,135,130,125,130,135,140,140 ЛИНИЮ,ТОНОК
20140 DATA 140,135,130,125,110,125,130,135,140
20150 DATA 140,135,125,115,090,115,125,135,140
20160 DATA 140,135,125,105,065,105,125,135,140
20170 DATA 140,135,125,105,050,105,125,135,140
20180 DATA 140,135,125,105,041,105,125,135,140
20190 DATA 140,135,125,115,041,115,125,135,140 .‘REM ПОЗИЦИИ ПрИ ВЫпрЯМЛвНИИ
20200 DATA 140,135,130,125,041,125,130,135,140 :КЕМ ОСТЭВШИХСЯ ТОЧеК
20210 DATA 140,140,135,130,041,130,135,140,140
20220 DATA 140,140,140,135,041,135,140,140,140
20230 DATA 140>140,140,140,041,140,140,140,140
20240 DATA 140,140,140,145,041,145,140>140,140
20250 DATA 140,140,140,140,041,140,140,140,140

Рис. 13.16. (Продолжение.)

314 Глава 13

Рис. 13.17. Состояние экрана в различные моменты времени при выполнении
программы синтеза динамического изображения, приведенной на рис. 13.16.

из указанных объектов на очень короткое время «вспыхивает» на
экране; в программе при этом производится вывод соответствую­
щего объекта на экран и запоминание его изображения с помощью
оператора GET.

Работа программы поясняется имеющимися в ней комментария-

Графические средства 315

Рис. 13.18. Объекты, используемые в программе синтеза динамического изобра­
жения, приведенной на рис. 13.16 и рис. 13.17.

ми. Обратим внимание на то, как операторы DRAW строят различ­
ные виды треугольника, используя при этом относительные коорди­
наты (строки 200, 310, 400, 500), а в одном случае — подкоманду X
для включения в текущую строку новых подкоманд (строки 300 и
310). Для задания горизонтальных позиций каждой точки в различ­
ные моменты ее движения в программе используется массив, в кото­
рый заносятся значения из списка значений операторов DATA (стро­
ки с 20000 по 20250). Существуют и другие способы задания позиций
изображаемого на экране объекта; например, для треугольника
позиция вычисляется всякий раз, когда нужно изменить его поло­
жение.

Наблюдая за изображением на экране в процессе работы прог­
раммы, нетрудно заметить, что объекты в разные моменты передви­
гаются с разной скоростью. Линия точек при волнообразных движе­
ниях двигается быстрее, чем когда она прогибается под нажимом
треугольника, поскольку каждое отдельное расстояние, проходи­
мое точками в процессе волнообразного движения, вдвое больше
аналогичного расстояния при прогибании линии. Например, пятая
точка линии при волнообразных движениях перемещается между
140-м и 130-м столбцами (строки 20010 и 20020), а прогибается она,
начиная со 140-го и кончая 135-м столбцом (строки 20020 и 20030).

316 Глава 13

Скорость движения треугольника изменяется в основном по другой
причине. Он перемещается быстро, когда является единственным
движущимся объектом (например, строки с 1500 по 1520), но, если
в то же самое время на экране двигаются и точки, он заметно сни­
жает свою скорость (см., например, строки с 1610 по 1650). Если на
экране одновременно должны двигаться 10 объектов, то для отдель­
ного объекта между двумя последовательными изменениями его
положения будет проходить больший интервал времени.

Глава 14

ВОСПРОИЗВЕДЕНИЕ ЗВУКА

В персональных ЭВМ можно генерировать звуки и музыку при помощи
встроенных динамиков, используя один из двух операторов SOUND или PLAY.
Оба оператора дают возможность управлять частотой и продолжительностью
звука, но не его громкостью. Всегда генерируются только чистые тона; непосред­
ственного способа их целевого искажения для создания различных акустических
эффектов не существует.

Генерация звуков

При помощи оператора SOUND можно генерировать звук лю­
бой частоты в диапазоне 37 — 32 767 Гц длительностью от доли
секунды до получаса.

Пример
SOUND 532.25, 18.2

В данном примере генерируется звук частотой 532.25 Гц, кото­
рому на нотном стане соответствует нота «до» первой октавы (или
в буквенном обозначении С). На рис. 14.1 приведены высота зву­
ков, образующих две октавы выше и две октавы ниже первой октавы.

Второе число в операторе SOUND определяет длительность
звучания, которая измеряется числом импульсов сигнала времени
и составляет в данном примере 18,2 имп./с. В табл. 14.1 сравни­
вается ряд значений частот импульсов времени с типичными тем­
пами исполнения музыкальных произведений и эквивалентным
каждому из них числом ударов метронома в 1 мин. В Бэйсике ПВМ
не предполагается ожидание окончания работы оператора SOUND
для перехода к выполнению очередного оператора.

Пример

10 CLS:WIDTH 40
20 SOUND 440, 27.3
30 FOR К=1 ТО 40
40 LOCATE RND(1)*23+1,RND(1)*39+1
50 PRINT CHR$(14);
60 NEXT К
70 LOCATE 24,1

После очистки экрана приведенная выше программа генерирует
звук «ля» малой октавы, имеющий длительность Р/2 с- Пока ПВМ
«держит» эту ноту, выполняется оставшаяся часть программы, ко­

318 Глава 14

торая обеспечивает вывод изображения нот в произвольные места
экрана. Фактически работа программы завершается раньше, чем
отзвучит нота.

Бэйсик ПВМ не предусматривает перекрытия двух операторов
SOUND. Если выполнение второго такого оператора должно на­

чаться до окончания звука, сгенерированного предыдущим опера­
тором SOUND, ПВМ ожидает окончания этого звука. Например,
если приводимую ниже строку добавить к предыдущему примеру,
то звук, который в ней генерируется (нота «ре» первой октавы),
не должен зазвучать до тех пор, пока не закончится предыдущий
звук длительностью Р/г с-
80 SOUND 587.33, 9.1

В любой момент звук можно убрать, выполнив оператор SOUND
с нулевой длительностью.

Воспроизведение звука 319

Таблица 14.1. Темп в музыке

Числе имя. сие-
нала врем.61с Темп

t

27.30
18^20

Larghissimo

l^argo

I^arghetto
Grave
Lento

Adagio
Adagietto

Andante
Andantino

Moderato
Allegretto

Allegro
Vivace

Presto

Prestissimo

Число ударов мет­
ронома в 1 мин

i

40
t

60

66

76

108

120

168
I

208

Пример
sound 1760,32767
Ok
sound 100,0
Ok

Звуки, имеющие частоту выше 25 000 Гц, неслышимы; факти­
чески большинство людей не воспринимают звуки частотой более
15 000 Гц. Следовательно, оператор SOUND, в котором указана
частота более 15 000 Гц, будет генерировать паузы.

Звуковые эффекты

Оператор SOUND можно использовать также для создания все­
возможных звуковых эффектов. К сожалению, не существует ни
руководств, ни правил, которые можно было бы здесь применить,
и все, что можно сделать, это провести эксперимент. Для начала
можно использовать программу, несколько строк которой приве­
дены на рис. 14.2.

Музыка
Несмотря на то что с помощью оператора SOUND можно ис­

полнять музыкальные произведения, необходимый при этом пере­
вод нот в форму многоразрядных чисел оказывается в лучшем случае

320 Глава 14

Рис. 14.2. Примеры программ для создания некоторых звуковых эффектов.

10
20
30

REM * —Случайный шум---------------------- -
SOUND RND41>*300+440,RNDС1)*RND(1)
GOTO 20

10
20
30
40
50

Глухие удары—•———----------------
TOR K=6Q TO 1 STEP -2
SOUND 246.94-K/2,K/20
SOUND 32767,K/15
NEXT К

10
20
30
40

т— Затихание мелодии--—«
FOR K=2000 TO 550 STEP -W
SOUND KzK/4000
NEXT К

10
20
30
40
50
60

Сирена———-------------------
FOR L=650 TO -650 STEP -4
SOUND 780-ABS(L>,.3
L=L-2/65Q
NEXT L
GOTO 20

10
20
30
40

' — Высокий и низкий гудки-------------------
SOUND 987.7,5
SOUND 329.63,. 5
GOTO 20

10
20
30
40
50

т— Звук работающего мотора^*-------—-
FOR L=50 TO 60 STEP 10
SOUND L,.OO2
NEXT L
GOTO 20

делом затруднительным. В расширенном Бэйсике вместо оператора
SOUND можно использовать оператор PLAY, который предусмат­
ривает применение специального музыкального языка, облегчаю­
щего программирование мелодий. Такой язык состоит из 19 под­
команд, перечисленных в табл. 14.2. Чтобы исполнить какую-ни­
будь мелодию, надо соответствующим образом выбрать номер стро­
ки, содержащей нужную последовательность подкоманд.

Обозначение нот

Существуют два способа указания нот в строке подкоманды
оператора PLAY. Можно обозначать ноты буквами, например
100 PLAY “С D Е F G А В”

Воспроизведение звука 321

Таблица 14.2. Подкоманды оператора PLAY

Подкоманда Назначение подкоманды
нота Звучание названной ноты (С, D, Е, F, G, А или В) в

нужной октаве с диезом (знак 4" или гЦз), с бемолем
(знак —) либо чистой (только буква)

О октава Задание номера октавы от 0 до 6 (среднее С находится в
октаве 3)

N номер Звучание ноты с указанным номером от 0 до 84 (0 озна-

L длительность
чает паузу)

Задание длительности всех последующих нот, от целой
ноты (длительность = 1) до шестьдесятчетвертой (дли­
тельностькак вариант этот параметр может сле­
довать за конкретной нотой, указывая именно ее дли­
тельность

Р длительность Пауза; параметр длительности задается как и в подко­
манде L

точка Эта подкоманда увеличивает длительность ноты или паузы

Т число ударов
MF

в полтора раза
Задание темпа в пределах от 32 до 255 ударов в 1 мин
Исполняется музыка, программа переводится в состояние

ожидания
МВ
MN

Музыка исполняется на фоне продолжающейся программы
Обычное исполнение (так называемое нон легато), не ле­

гато и не стаккато
ML
MS
Xs$

Исполнение легато
Исполнение стаккато
Выполнение подкоманд очередной строки

В данном случае исполняется полная (7-звуковая) диктониче-
ская гамма, начинающаяся с «до» второй октавы.

Для повышения звука на полтона надо рядом с его обозначением,
нотой, поставить знак # или «+», а Для понижения поставить
знак «—». Диезы и бемоли, не имеющие соответствующих черных
клавиш на фортепьяно, использовать не разрешается, т. е. недо­
пустимы сочетания В-диез, Е-диез, С-бемоль, F-бемоль.

Для перехода из одной октавы в другую используют подкоманду
О. С помощью оператора PLAY можно исполнять мелодии в семи
октавах, из которых три лежат ниже первой (номера с 0 по 2), а че­
тыре— выше (номера с 3 по 6).

Пример. Воспроизведение всего звукоряда, начинающегося
с «до» первой октавы (включая полутона).
110 PLAY “ 03 С C# D D# Е F F# G G# A A# В ”.

Всего в семи используемых октавах содержится 84 звука
(рис. 14.3). Вместо того чтобы определять их номером октавы, обо­
значением и наименованием, можно указать просто порядковый
номер ноты, используя подкоманду N.

11 № 2275

322 Глава 14

В в- А« A A- G# G G- F# F Е Е- D# D D- C# С
. 1 1 1 1 1 И 1 i! 1 Tf t Рм

.... — .. :------- ОктаЗа6

84 83 83 82 81 81 80 79 79 78 77 76 76 75 74 74 73

В B-A# A A-G# G G- F# F Е Е- D# D D- C# С
Г t *£ г t *£ Г T *г г f "г ? г >> \ в

72 71 71 70 69 69 68 67 67 66 65 64 64 63 62 62 61

В В- A# A A- G# G G- F# F Е Е- D# D D- C# С
А F > Я» , 1 !■ , ь, L ь й_____ и

1 - г- f— Г~~ Г=4 .. -> У г. у-Л-тОктйда 4
60 59 59 58 57 57 56 55 55 54 53 52 52 51 50 50 49
В В- A# A A- G# G G- F# F Е Е- D# D D- C# С

-,j ..ц _ен р ij J- " j ~ --^Октава з

48 47 47 46 45 45 44 43 43 42 41 40 40 39 38 38 37
В В- A# A A- G# G G- F# F Е Е- D# D D- C# С

: а - ОктаЗа 2

36 35 35 34 33 33 32 31 31 30 29 28 28 27 26 26 25

В В- A# A A- G# G G- F# F Е Е- D# D C# С
-hj ij=-] l;j g.|_ - j ■ ~7■ -^=4^—j Октава 1

24 23 23 22 21 21 20 19 19 18 17 16 16 15 14 14 13

В В- A# A A- G# G G- F# F E E— D# D D- C# C
»- : .. ~ - ^Ц)кта8ао

12 11 11 10 998776544322 1

Рис. 14.3. Ноты, которые можно генерировать при помощи оператора PLAY
(номера под нотами предназначены для использования в подкоманде N).

Пример. Исполнение той же гаммы, что и в предыдущем примере.
PLAY “N37 N38 N39 N40 N41 N42 N43 N44 N45 N46 N47 N48J!

Длительность нот

До сих пор в приведенных примерах фигурировали лишь ноты,
длительность которых составляла х/« целой ноты. В общем случае
для указания длительности ноты рядом с ее обозначением простав­
ляют соответствующее число:

PLAY “03 Cl С2 С4 С8 С16 С32 С64”

Длительность воспроизводимой ноты равна единице, деленной
на число, следующее за ее обозначением. Таким образом, число 1
указывает целую ноту, число 2— половинную и т. д. В приведен­

Воспроизведение звука 323

ном примере звучат разные по длительности «до» первой октавы:
целая, половинная, четвертная, восьмая, шестнадцатая, тридцать
вторая и шестьдесят четвертая (рис. 14.4).

Можно объявить длительность ноты принимаемой по умолчанию,
используя подкоманду L. Для этого после обозначения подкоманды
следует поставить число, соответствующее желаемой длительности,
как описано выше.

Пример. Исполнение нисходящей гаммы, длительность звуча­
ния каждой ноты которой составляет Vs целой ноты.

PLAY “02 L8CB AGFED”

Для удлинения ноты необходимо поставить точку после числа,
указывающего ее длительность. Можно после ноты поставить и не­
сколько точек; в этом случае каждая из них увеличивает длитель­
ность звука в полтора раза.

Пример. Исполнение удлиненных половинной и восьмой нот.

PLAY “С2. G8.”

11*

324 Глава 14

Паузы
С помощью подкоманды Р устанавливаются паузы, длительность

которых указывается соответствующим числом точно так же, как
и при использовании подкоманды L (рис. 14.4).

Пример
PLAY “03 С Pl С Р2 С Р4 С Р8 С Р16 С”

Темп

Темп (или скорость) исполнения музыкального сочинения обо­
значается словами allegro, andante и др. или числом ударов метро­
нома в 1 мин. Последний способ используется при установлении
темпа с помощью подкоманды Т. В табл. 14.1 приведены числа уда­
ров метронома, соответствующие некоторым музыкальным темпам.

Музыкальные передний план и фон

Обычно в расширенном Бэйсике не предусматривается переход
к следующей ноте мелодии до тех пор, пока не закончится звуча­
ние текущей. Такой способ исполнения музыкального произведе­
ния называется музыкальным передним планом. Однако посредст­
вом подкоманды МВ расширенного Бэйсика возможно сообщить
ПВМ инструкцию обработать до 32 нот, запомнить их в буферном
запоминающем устройстве и затем исполнить эти ноты, одновре­
менно продолжая выполнение программы. Такой режим называет­
ся музыкальным фоном] он может быть задан ПВМ, когда речь идет
об исполнении коротких мелодий, содержащих не более 32 нот и
пауз.

Приемы извлечения звука: staccato, legato, non legato

С помощью оператора PLAY звуки можно исполнять с четкими
перерывами между ними — staccato, без перерывов — legato и с
короткими перерывами — non legato, вполне достаточными для того,
чтобы отличить звуки друг от друга. Исполнение staccato с помощью
подкоманды MS достигается только за счет того, что выдерживается
3/4 номинальной длительности каждого звука и х/4 оставляется на
паузу. Для исполнения legato с помощью подкоманды ML выдержи­
вается полная длительность каждого звука, в результате чего со­
здается ощущение, что соседние звуки плавно переходят один в
другой. Исполнение non legato обеспечивается подкомандой MN,
при этом выдерживается 7/8 номинальной длительности звука, а
я/8 приходится на паузу.

Воспроизведение звука 325

Исполнение музыкальных произведений

С помощью оператора PLAY можно добиться вполне приемле­
мого звучания простых мелодий, в особенности музыкальных про­
изведений, написанных для клавишных инструментов, таких, как
фортепьяно или орган. Однако исполнение при этом ограничивается
только одной партией. Проиллюстрируем сказанное на примере
исполнения «Менуэта» и «Менуэта ре-минор» Иоганна Себастья­
на Баха из «Нотной тетради Анны-Магдалины» (рис. 14.5 и 14.6).
Программы для их исполнения приведены на рис. 14.7 и 14.8.
Чтобы легче было сопоставлять программы с соответствующими
нотными записями, в партитуре под каждой нотой напечатано ее
буквенное название. Ниже дается краткий анализ работы программ
и поясняется, каким образом партитуры обоих произведений были
переведены на язык подкоманд.

Обе программы работают одинаково. Подкоманды оператора
PLAY заносятся в операторы DATA, начиная со строки 1010; далее
строки подкоманд считываются такт за тактом в последовательный
массив TUNE$. После этого исполнение мелодии, хранящейся
в массиве, становится просто вопросом использования подкоманды
X, которая устанавливает очередность исполнения каждого эле­
мента массива.

В партитуре «Менуэта» указан темп moderato (рис. 14.5), кото­
рому в табл. 14.1 соответствует диапазон 108—120 ударов в 1 мин.
Подкомандой Т в первом такте (рис. 14.7, строка 1010) устанавли­
вается темп в 110 ударов в 1 мин. Подкомандой Т объявляется дли­
тельность нот по умолчанию, равная х/8- Точка над первой нотой
первого такта означает, что ее нужно играть staccato, поэтому далее
следует подкоманда MS. Сама нота — это «ре» четвертой октавы
(принимаемой по принципу умолчания) длительностью в х/4; поэтому
ее исполнение реализуется подкомандой D4. Следующая подкоман­
да MN устанавливает прием исполнения пой legato, поскольку над
остальными нотами в этом такте нет точек. Очередная нота нахо­
дится в третьей октаве, что и оговорено подкомандой ОЗ. Подкоман­
дами G, А и В инициируется исполнение соответствующих звуков
длительностью в х/8. Последняя нота в этом такте — «до» четвертой
октавы — реализуется подкомандами 04 и С. Каждый из остав­
шихся 31 такта этого сочинения аналогично преобразуется в один
оператор DATA (строки с 1020 по 1320).

Темп второго произведения (рис. 14.6) — andante. Первой под­
командой (рис. 14.8, строка 1010) устанавливается темп, равный
90 ударам в 1 мин; эта величина находится в диапазоне, указанном
в табл. 14.1. Затем в соответствии с партитурой подкомандой ML
задается прием исполнения legato. Остальные операторы DATA не­
посредственно преобразуют партитуру в подкоманды.

326 Глава 14

D G А В С В G G E C D EF# G GG

С Г> С В А В С В A G F# G A В G В A

BGABC D G G E С D EF# G GG

CDCBA В CBAG A В A G F# G

BCABG A DEF# Г» С E F# G D C# JB C# A

A В C# D EF# . G F# E F# A C# В

D GF# G E CF# G X> С В A GF#G A

DEF# GAB CBA В D G F# G

Рис. 14.5. «Менуэт» из «Нотной тетради Анны-Магдалины» И. С. Баха.

Воспроизведение звука 327

Рис. 14.6. «Менуэт ре-минор» из «Нотной тетради Анны-Магдалины» И. С. Баха.

328 Г лава 14

10 DIM TUNESC4)
20 CLS:WIDTH 40:KEY OFF
30 locate 11,12:print’’Менуэт ре-минор11
40 LOCATE 12,17:PRINT " И.С. Бах a
90 rem ’ — Считывание музыкального произведения из массива данных-*
100 FOR MEASURED ТО 32
110 READ NOTESS
120 TUNE$(MEASURE\8)-TUNE$(MEASURE\8>+N0TESS
130 NEXT MEASURE
190 ’ — Исполнение мелодии—------—- ----------- ------------- -
200 PLAY ”xTUNE$(O); xTUNE$(1); xTUNE$(2); XTUNE$(3); xTUNE$(4);H
1 ooo • — Воспроизведение мелодии такт за тактом————™—
1010 DATA Т90 ML L8 03 А4 04 F Е 0 C#
1020 DATA D4 03 А4 В-4
1030 DATA 03 C# Е G В- A G
1040 DATA F4 Е F D4
1050 DATA F4 В- А 04 D С
1060 DATA F4 Е D С 03 В-
1070 DATA А В-16 04 С16 03 F4 Е4
1080 DATA F2.
1090 DATA А4 04 F Е D C#
1100 DATA D4 03 A4 B-4
1110 DATA C# E G B- A G
1120 DATA F4 E F D4
1130 DATA F4 В- A 04 D C
1140 DATA F4 E D C 03 B-
1150 DATA A B-16 04 C16 03 F4 E4
1160 DATA F2.
1170 DATA MS 04 A4 03 F ML 04 A 6 F
1180 DATA E16 F16 G C2
1190 DATA MS F4 03 D ML 04 F E 0
1200 DATA C#16 D16 E 03 A2
1210 DATA A В 04 C# D E F
1220 DATA G E C# B- A G
1230 DATA F16 E16 D E4 C#4
1240 DATA D2.
1250 DATA MS A4 03 F ML 04 A G F
1260 DATA E16 F16 G C2
1270 DATA MS F4 03 D ML 04 F E 0
1280 DATA C#16 D16 E 03 A2 -
1290 DATA A В 04 C# D E F
1300 DATA G E C# B- A G
1310 DATA F16 E16 D E4 C#4
1320 DATA D2.

Рис. 14.7. Программа для машинного исполнения «Менуэта» И. С. Баха
(рис. 14.5).

Воспроизведение звука 329

10 DIM TUNESC4)
20 CLS:WIDTH 40:KEY OFF
30 LOCATE 11 z 1 7: PR TNT " МсНуЭГП n
40 LOCATE 12,15:PRINT ”И.С. Bax’'
90 rem •— Считывание музыкального произведения из массива данных --
100 FOR MEASURED TO 32
110 READ NOTESS
120 TUNE$(MEASURE\8)«TUNE$(MEASURE\8)+N0TES$
130 NEXT MEASURE
190 «--.Исполнение мелодии -------------------------- - --------------------------------
200 PLAY "xTUNE$(O>; xTUNE$(1); xTUNE$(2); xTUNE$(3); xTUNE$(4);u
1000 '— Воспроизведение мелодии такт за тактом------------------------
1010 DATA Т110 L8 MS D4 MN 03 G А. В 04 С
1020 DATA D4 03 MS G4 MN G4
1030 DATA 04 MS E4 MN C D E F#
1040 DATA G4 03 MS G4 MN G4
1050 DATA MS 04 C4 MN D C 03 В A
1060 DATA MS B4 MN 04 C 03 В A G
1070 DATA MS F#4 MN G A В G
1080 DATA B4 A2
1090 DATA 04 MS D4 MN 03 G A В 04 C ’
1100 DATA D4 03 MS G4 G4
1110 DATA 04 E4 MN C D E F#
1120 DATA G4 03 MS G4 G4
1130 DATA 04 C4 MN D C 03 В A
1140 DATA B4 04 C 03 В A G
1150 DATA A4 В A G F#
1160 DATA G2.
1170 DATA 04 B4 G A В G
1180 DATA A4 D E F# D
1190 DATA G4 E F#. G D
1200 DATA C#4 03 В 04 C# 03 A4
1210 DATA A В 04 C# D E F#
1220 DATA MS G4 MN F#4 E4
1230 DATA MS F#4 03 A4 04 C#4
1240 DATA MN D2.
1250 DATA D4 03 G F# G4
1260 DATA 04 E4 03 G F# G4
1270 DATA 04 D4 C4 03 B4
1280 DATA A G F# G A4
1290 DATA D E F# G A В
1300 DATA 04 C4 03 B4 A4
1310 DATA В 04 0 03 G4 F#4
1320 DATA G2. •

Рис. 14.8. Программа для хмашинного исполнения «Менуэта ре-минор» И. С. Баха
(рис. 14.6).

Глава 15

ПРЯМОЙ ДОСТУП И УПРАВЛЕНИЕ
ВЫЧИСЛИТЕЛЬНЫМИ РЕСУРСАМИ

По сравнению с Бэйсиком для других машин Бэйсик ПВМ значительно более
совершенен, так как обеспечивает доступ к большинству ресурсов вычислительной
системы. Однако с помощью операторов или функций Бэйсика нельзя управлять
некоторыми средствами и дополнительными опциями ПВМ, в том числе заданием
функции ключа Num Lock или переключением адаптера монохроматических
и цветных графических устройств при наличии обоих типов. В ряде ситуаций Бэй­
сик не обеспечивает требуемого быстродействия при управлении предусмотрен­
ными средствами ПВМ, как, например, в случае «оживления» изображений на
экране дисплея. Кроме того, системные программные средства расширенного
и дискового Бэйсика позволяют использовать только около 92 000 байт динами­
ческой памяти, а кассетный Бэйсик — всего лишь 65 000 байт, несмотря на то
что память системы может иметь гораздо большую емкостьХ).

Х) Программы на ассемблере не подвержены такому ограничению, поэтому
в системах с памятью большой емкости их можно делать значительно более
длинными, чем Бэйсик-программы.

Для преодоления указанных ограничений в Бэйсике ПВМ предусмотрено
несколько операторов и функций, обеспечивающих прямой доступ к памяти
системы. В настоящей главе поясняется их использование и рассматривается ряд
практических примеров.

Операторы и функции, объясняемые в данной главе, требуют осторожного
обращения, поскольку все они обходят стандартные средства защиты Бэйсика
и позволяют, следовательно, менять любое содержимое динамической памяти,
включая Бэйсик-интерпретатор, ДОС-ПВМ, а также программы и переменные
Бэйсика. Внеся изменения не в ту область памяти, можно создать ситуацию, при
которой придется возвращать систему в исходное состояние с помощью клавиш
Ctrl|Alt|Del. Возможно даже, что при этом потребуется полностью выключить
систему, выждать несколько секунд и включить ее снова для восстановления
функций управления.

Прямое обращение к памяти

Использование памяти ПВМ организуется самым различным
образом. Для выполнения даже элементарной Бэйсик-программы
система должна выделить ей сегмент памяти для хранения про­
граммных строк и сегмент для записи переменных Бэйсика. Не­
сколько сегментов требуется для размещения Бэйсик-интерпрета­
тора, его рабочей области, информации, выдаваемой на экран дис­
плея, и рабочего стека, не говоря уже об управляющей программе
дисковой операционной системы.

Каждая ячейка памяти содержит число между 0 и 255, которое
может представлять собой код символа, команду Бэйсика, код со­
стояния некоторой части оборудования ПВМ или команду машин­
ного языка. Если используется прямое обращение к памяти, то

Прямой доступ и управление вычислительными ресурсами 331

именно программист должен определить, каким образом следует
интерпретировать число, хранящееся в конкретной ячейке памяти.

В большинстве случаев программистам, работающим с Бэйсиком,
нет необходимости задумываться над тем, каким образом устроена
память ПВМ или какой смысл имеет то или иное число в отдельной
ее ячейке. Это требуется лишь тогда, когда некоторыми возможно­
стями или средствами нельзя управлять иначе как с помощью опе­
раторов DEF SEG, РОКЕ и функции РЕЕК, которые открывают
доступ к отдельным ячейкам памяти. Предусмотрена также команда
CLEAR, позволяющая управлять размером программного стека.

Адресация памяти
Каждая отдельная ячейка памяти ПВМ определяется номером,

который называется ее адресом. Персональная ЭВМ может иметь
до 1 048 576 ячеек памяти (1024К байт) с адресами от 0 до 1048575.
Часть этой области адресов относится к динамической памяти,
часть — к ПЗУ, а некоторая часть ячеек в большинстве ПВМ оста­
ется вообще неиспользуемой. Это бывает в системах с объемом па­
мяти меньше максимально допустимого. В силу специфики работы
применяемого в ПВМ микропроцессора 8088 нельзя задавать нуж­
ный адрес памяти ПВМ простым указанием номера между 0 и
1048575. Сначала должен быть определен базовый адрес, называе­
мый адресом сегмента, а затем указано смещение относительно ба­
зового адреса. При этом для вычисления действительного (абсолют­
ного) адреса ПВМ умножает адрес сегмента на 16 и прибавляет сме­
щение.

Пример
Если десятичный адрес сегмента 64 (в шестнадцатеричной сис­

теме это число 40), а смещение 23 (17 — в шестнадцатеричной сис­
теме), то действительный адрес будет 64*16+23=1047 (шестнадца­
теричное число 417).

На величину адреса сегмента или смещения не накладывается
никаких ограничений, за исключением того, что они должны лежать
в пределах от 0 до 65535. Существует, следовательно, несколько раз­
личных комбинаций адреса сегмента и смещения, дающих один и тот
же абсолютный адрес.

Пример
Если адрес сегмента 0, а смещение равно 1047 (417i6), то дейст­

вительный адрес будет равным 0*16+1047 = 1047 (41716), т. е. точно
таким же, как и вычисленный абзацем выше.

Адреса памяти ПВМ, как правило, записываются в форме сег-
мент'.смещение, а адрес сегмента и смещение обычно указываются
в шестнадцатеричной системе.

332 Глава 15

Пример
Адрес 1047 (41716) можно записать как 0:417 или 40:17.
Существует ряд адресов со смещением, отсчитываемым от начала

рабочей области Бэйсика, адрес которой меняется в зависимости
от используемой версии этого языка. Такие адреса записываются
в форме Х)Ь:смещение.

Определение адреса сегмента памяти

Оператор DEF SEG задает адрес сегмента памяти, точнее, сег­
ментную часть адреса, имеющего вид сегмент-.смещение. Для ука­
зания адреса сегмента используется шестнадцатеричное число, как,
например, в строке программы
100 DEF SEG=&H40

В системе указанная величина умножается на 16, а результат ис­
пользуется в качестве базового адреса для всех последующих опе­
раторов прямого доступа к памяти и функций типа РЕЕК, РОКЕ,
BLOAD, BSAVE, CALL и DEF USR. Значение адреса сегмента долж­
но находиться в пределах от 0 до 65535.

Часть оператора DEF SEG, определяющая адрес сегмента па­
мяти, является факультативной. Если она отсутствует, то в каче­
стве базового адреса автоматически принимается базовый адрес ра­
бочей области Бэйсика ПВМ. В этой форме оператор DEF SEG оп­
ределяет первую часть конструкции DS:#d/7e£ сегмента и выглядит
следующим образом:

1310 DEF SEG 'Используйте адрес сегмента рабочей области
Бэйсика

Когда Бэйсик-интерпретатору впервые передается управление
системой, в качестве адреса сегмента принимается базовый адрес
рабочей области Бэйсика. В дальнейшем оператор DEF SEG может
изменить этот адрес сегмента на любой другой. Оператор RUN, как
и другие операторы, не возвращает адрес сегмента в рабочее поле
Бэйсика; это может осуществиться только при повторном запуске
интерпретатора или с помощью обычного оператора DEF SEG.

Проверка состояния и изменение содержимого памяти

Проверить содержимое любой ячейки памяти позволяет функ­
ция РЕЕК. Однако следует помнить, что это функция, а не оператор,
поэтому надо использовать ее соответствующим образом.

Пример

200 DEF SEG=0:LW=PEEK(&H4A) 'Установите длину строки

Прямой доступ и управление вычислительными ресурсами 333

Значение в скобках определяет смещение для текущего сегмен­
та, которое должно находиться в пределах от 0 до 65535 (в шест­
надцатеричной системе FFFF); оно определяет поле смещения в струк­
туре адреса сегмент:смещение.

Функция РЕЕК сообщает численное значение в интервале от О
до 255, содержащееся в проверяемой ячейке памяти. Эту величину
можно интерпретировать как код символа, команду Бэйсика, номер
строки, часть числа, состоящего из нескольких байт, и т. д. В неко­
торых случаях правильную интерпретацию можно дать по контек­
сту, однако, если должной уверенности нет, надо анализировать те
ячейки, использование которых известно.

Содержимое любой ячейки динамической памяти можно изменить
с помощью оператора РОКЕ, однако содержимое ПЗУ и адреса
свободной области оперативной памяти таким способом изменить
нельзя.

Пример
225 DEF SEG=0:POKE &Н41А,РЕЕК(&Н41С)

'Сброс клавиатуры

Первая величина в операторе РОКЕ, значение которой должно
лежать между 0 и 65535 (в шестнадцатеричной системе FFFF), оп­
ределяет смещение текущего сегмента. Эта часть определяет поле
смещения в структуре адреса сегментлсмещение. Значение второй
величины помещается в указанную ячейку памяти; оно должно ле­
жать между 0 и 255 (в шестнадцатеричной системе FF).

Несколько полезных для запоминания адресов

В табл. 15.1 приведено несколько адресов памяти, используемых
в операторе РОКЕ и в функции РЕЕК; некоторые из них описаны
более подробно ниже, при этом рассматриваются возможные пути
обхода ряда «неудобных» особенностей, присущих ПВМ как вычис­
лительной системе.

Изменение цвета символов на экране дисплея средней разрешающей
способности

Текст и другие символы отображаются на экране дисплея сред­
него разрешения обычно в цвете, обозначаемом кодом 3, и могут быть
белыми или золотистыми в зависимости от используемой палитры
(табл. 13.3).

Цвет символов на экране изменяется после того, как выполнен
составной оператор вида

1300 DEF SEG:POKE &H4E,HUE

334 Глава 15

Таблица 15.1. Некоторые важные адреса памяти

Название ячейки
Величина смещения в относи­тельных адресахшестнадца­теричное представ­ление десятич­ное представ­ление число

байт

Для команды вида DEF SEG

Для команды вида DEF SEG=0

Текущий номер строки Бэйсик-программы
Текущий номер строки с ошибкой

&Н02Е
&Н347
&Н030

46
839
48

2* 1)
21)
21)Смещение для начала текста Бэйсик-про­

граммы
Смещение для начала области переменных

Бэйсика
&Н358 856 21)

Управление буфером клавиатуры для Бэй­
сика 2)

&Н06А 106 1

Выбор цвета текстовых символов на экране
дисплея среднего разрешения 2)

&Н04Е 78 1

В данном примере переменная HUE должна принимать значения
1, 2 или 3; каждое значение соответствует одному из основных ис­
пользуемых цветов. Когда переменная HUE принимает нулевое зна­
чение, символы на экране делаются по цвету одинаковыми с фоном
и становятся невидимыми. При этом символы, набираемые на кла­
виатуре, не отображаются на экране, благодаря чему ввод с клави­
атуры надежно блокируется.

Если видимость символов не будет восстановлена программным
способом с помощью какого-либо другого оператора РОКЕ (с одно­
временным восстановлением и возможностью ввода с клавиатуры),
то команды нельзя вводить без повторного рестарта системы.

Ч Для записи величин, которые могут быть больше 255, как, например, номер строки» требуются две соседние ячейки памяти. В этом случае значение величины равно сумме числа в первой ячейке и числа во второй ячейке, умноженного на 256.г) Пояснения см. в тексте.

Выбор адаптерной платы 2) &Н410 1040 1
Режим работы клавиатуры 2) &Н417 1047 1
Указатель начала системного буфера клавиа­ &Н41А 1050 2

туры 2)
Указатель конца системного буфера кла­ &Н41С 1052 2

виатуры
Системный буфер клавиатуры &Н41Е 1054 16
Текущий режим экрана &Н449 1097 1
Ширина экрана (число колонок) &Н44А 1098 2

Прямой доступ и управление вычислительными ресурсами 335

Выбор видеоадаптера и задание ширины экрана

Если в ПВМ имеются и адаптер монохроматического дисплея,
и адаптер цветных графических устройств, то одновременное их
использование невозможно. При включении или возобновлении
работы ПВМ выбор нужного видеоадаптера определяется положе­
нием переключателей выбора конфигурации системы [разд. “Options”
в томе документации IBM “Guide to Operations” («Руководство по
эксплуатации»)]. Требуемый адаптер может быть выбран программно
путем изменения содержимого ячейки памяти с относительным
адресом 0:410.

Пример
10 '------ Переход на 40-символьный цветной монитор-------------- -------
20 DEF SEG=0:POKE &Н410,(РЕЕК(&Н410) AND

&HCF) OR &Н10
30 SCREEN ESCREEN 0:WIDTH 40 '40-символьная строка
40 LOCATE ,,1,6,7 'форма курсора
10 ’------ Переход на 80-симв. монохр. монитор------------
20 DEF SEG=0:POKE &Н410,РЕЕК(&Н410) OR &Н30
30 SCREEN OrWIDTH 80 '80-символьная строка
40 LOCATE ,,1,12,13 'форма курсора

Содержимое той же ячейки памяти определяет, какой из адапте­
ров включен:
10'------ Проверка выбранного адаптера-------------------------------
20 DEF SEQ-0
30 IF (РЕЕК(&Н410) AND &Н30)О&Н30 THEN 100
40 PRINT “Эта программа требует использования адаптера цветного

монитора и графического дисплея.”
50 END
100 REM далее продолжается программа графического вывода

Можно составить программу, предусматривающую использова­
ние как 40-символьной, так и 80-символьной строки в зависимости
от возможностей конкретного монитора. В этом случае ячейка с ад­
ресом 0:4А будет указывать выбранную на данный момент ширину
экрана.

Пример

200 DEF SEG=0:LW=PEEK(&H4A) ’Задание ширины экрана

Задание режима работы клавиатуры

Просто по клавиатуре нельзя определить, задан ли клавишей
Caps Lock режим прописных букв. Точно так же нельзя сказать, на
какой режим настроена система клавишей Num Lock: на ввод чис­

336 Глава 15

ловой или нечисловой информации. Оба факта устанавливаются пу­
тем проверки содержимого ячейки с адресом 0:417.

Пример

01 DEF SEG=0
20 '-------Проверка клавиши Shift Lock----------------------------------
30 LOCATE 25,39:IF (PEEK(&H417) AND &H40) = &H40

THEN PRINT CHR$(24); ELSE PRINT CHR$(25);
40 ’------ Проверка клавиши Num Lock-------------------------------
50 LOCATE 25,38:IF (PEEK(&H417) AND &H20) = &H20

THEN PRINT ELSE PRINT CHR$(219);

В этой программе символы, указывающие режимы работы клавиа­
туры, отображаются в 25-й строке экрана. Если в 39-й позиции стро­
ки 25 появляется знак|, это означает, что используются прописные
буквы, в противном случае будет стоять знак |. При настройке на
ввод числовой информации в 38-й позиции отображается знак
если вводится нечисловая информация, в этой позиции появляется
изображение квадрата.

Одна и та же ячейка памяти может быть использована для зада­
ния нужного режима клавиатуры.

Пример

10 DEF SEG=0
20 POKE &Н417,(РЕЕК(&Н417) OR &Н40) 'верхний регистр
20 POKE &Н417,(РЕЕК(&Н417) AND &HBF) 'нижний регистр
30 POKE &Н417,(РЕЕК(&Н417) OR &Н20) 'ввод чисел
30 POKE &Н417,(РЕЕК(&Н417) AND&HDF) 'нечисловой

ввод

Для установления нужного режима работы клавиатуры можно
по своему усмотрению выбрать для включения в программу одну
из двух строк с номером 20 или одну из двух строк с номером 30.
По желанию можно обеспечить вывод на экран дисплея строки
символов, указывающих заданный режим клавиатуры, как показано
в предыдущем примере.

Игнорирование случайного нажатия клавиш

В ПВМ предусмотрен 15-символьный буфер клавиатуры, что
позволяет работать на клавиатуре с максимальной скоростью даже
при переключении вычислительной системы, например, с приема
набираемых данных на обращение к диску. Буфер клавиатуры может
очищаться программным путем непосредственно перед очередным за­
просом ввода с клавиатуры, благодаря чему надежно игнорируются
все случайные нажатия клавиш, имевшие место после обслуживания
предыдущего запроса ввода. Для достижения такого эффекта содер­

Прямой доступ и управление вычислительными ресурсами 337

жимое ячейки с адресом 0:41 А делается таким же, что и ячейки
0:41С.

Пример (рис. 11.4)
225 DEE SEG=0:POKE &Н41А,РЕЕК(&Н41С) 'Сброс

клавиатуры

В Бэйсике ПВМ предусматривается собственный буфер клавиа­
туры, в котором накапливаются символы, порождаемые нажатием
одиночной клавиши. Это необходимо потому, что, например, в ре­
зультате нажатия отдельной функциональной клавиши генериру­
ется целая цепочка символов. Буфер клавиатуры можно очистить
от лишних символов с помощью следующей программной строки:

235 DEF SEG:POKE &Н6А,0 'Очистка буфера
клавиатуры в Бэйсике

Увеличение рабочего стека

Для запоминания вложенных циклов FOR/NEXT, вложенных вы­
зовов программ (включая рекурсивные) и сложных операторов
PAINT в Бэйсике ПВМ используется программный стек. Если глу­
бина таких вложений слишком велика или программа «рисует»
очень сложную цветную фигуру, программный стек может оказать­
ся переполненным, и тогда появится сообщение об ошибке “Out
of memory” («Нехватка памяти»). Эту ошибку можно предотвратить,
увеличив размер стека с помощью оператора CLEAR

Пример
10 CLEAR ,,2048 'Задание размера стека

Указываемая пользователем величина определяет количество
ячеек памяти, резервируемых под программный стек. Стандартный
размер стека— 512 байт или 1/8 объема динамической памяти, до­
ступного для Бэйсик-программ; эта величина устанавливается в тех
случаях, когда пользователь указывает меньшую. Кроме того, опе­
ратор CLEAR стирает все переменные и массивы, оставляя неизмен­
ными строки программы (гл. 8).

Программирование на машинном языке

Предпочитая машинному языку Бэйсик, мы несколько проигры­
ваем в быстродействии программ, но зато получаем возможность
пользоваться более удобным и более естественным проблемно-ориен­
тированным языком программирования. Для большинства задач
прикладного программирования такое небольшое уменьшение ско­
рости выполнения программ оказывается незаметным; однако в за­
дачах типа машинной мультипликации скорость вычислений может

338 Глава 15

быть критичной, и тогда быстродействие Бэйсик-программы ста­
новится недостаточным. Бэйсик ПВМ обеспечивает наилучший вы­
ход из этого положения: можно применять Бэйсик в тех частях про­
граммы, где скорость вычислений несущественна, а с помощью опе­
ратора CALL или функции USR в программе на Бэйсике переходить
к блокам программы на машинном языке в тех местах, где требуется
максимальное быстродействие.

Никто не пишет программы для ПВМ прямо на машинном языке:
для этого используется ассемблер, который является символической
версией машинного языка. Команды ассемблера состоят из простых
для запоминания буквенных комбинаций, каждая из которых может
быть преобразована точно в одну команду машинного языка.

Для того чтобы квалифицированно программировать на ассем­
блере, необходимо знать, как использовать некоторые сервисные
программы. К числу сервисных программ относятся:
• редактор вводимых программ;
• ассемблер для перевода исходной программы на машинный язык;
• редактор связей, создающий отображение программы на машин­

ном языке в памяти машины;
• отладчик, служащий вспомогательным средством для проверки

правильности программ и поиска ошибок в них.
Очевидно, что программирование на ассемблере — это сложная

проблема, требующая длительного изучения и не являющаяся пред­
метом рассмотрения данной книги. Для получения дополнительной
информации по этому вопросу можно обратиться к следующим ли­
тературным источникам.
• IBM Personal Computer Disk Operating System, 2nd ed., part

number 6024001; в главах 4—6 описываются способы использова­
ния текстового редактора, редактора связей и отладчика;
• IBM Personal Computer Basic, 2nd ed., part number 6025010;

в приложении С объясняется, как включать в программу на Бэйси­
ке блоки, написанные на машинном языке;
• IBM Personal Computer Macro Assembler, part number 6024002;

показано, как пользоваться программами на языке ассемблера
IBM;
• Rector, Russell and George Alexy, The 8086 Book: includes the

8088, Osborne/McGram-Hill, Berkeley, CA, 1980; в главах 1—6 кни­
ги обсуждается программирование на языке ассемблера для базо­
вого микропроцессора ПВМ — Intel 8088;
• Willin, David, 8088 Assembly Language Programming: The IBM

PC, Howard W. Sams & Co., Indianapolis, Indiana, 1983; рассмат­
риваются вопросы программирования ПВМ с использованием языка
ассемблера.

Приложение А

КРАТКОЕ ОПИСАНИЕ БЭЙСИКА

В данном приложении содержится краткое описание всех
команд, операторов и стандартных функций Бэйсика, а также список
математических функций, получаемых путем комбинирования стан­
дартных функций. Приводимые здесь сведения могут быть исполь­
зованы при наличии интерпретатора дискового или расширенного
Бэйсика версий 1.05 и 1.10 либо интерпретатора кассетного Бэйсика
версии 1.0. Для каждой команды, оператора и функции приводятся
сведения о том, какому варианту Бэйсика они принадлежат — кас­
сетному, дисковому, расширенному или всем трем. Более подробную
информацию о перечисленных здесь командах, операторах и функ­
циях можно получить, пользуясь предметным указателем данной
книги, либо обратившись к гл. 4 книги “IBM Personal Computer BA­
SIC”, 2nd ed., которая содержит описание Бэйсика ПВМ фирмы
IBM.

При вводе рассматриваемых ниже команд с клавиатуры сле­
дует набирать все символы, выделенные ЖИРНЫМ ШРИФТОМ, в
точности так, как они напечатаны, и только заглавные буквы раз­
решается в любом месте заменять на строчные и наоборот. Все
напечатанное курсивом необходимо заменять на соответствующие
фактические слова, константы, переменные, элементы массивов,
выражения и т. п. Текст, напечатанный в квадратных скобках,
является необязательным, однако если он используется в команде,
операторе или функции, то квадратные скобки не набираются. Лю­
бой параметр, за которым следует многоточие (. . .), можно повто­
рять многократно, причем само многоточие набирать не следует.
Необходимо внимательно следить за тем, чтобы были проставлены
все указанные знаки препинания (кроме квадратных скобок и мно­
готочия), включая запятые, двоеточия, косую черту, восклицатель­
ные знаки, точки, знаки равенства и знак номера.
Команды

Перечисленные ниже команды наиболее широко используются
в режиме немедленной обработки, однако три из них — NAME,
TRON и TROFF — в ряде случаев оказываются полезными и в про­
граммируемом режиме. Роль своеобразных команд играют и неко­
торые комбинации клавиш при их совместном нажатии:
• Ctrl (Scroll Lock— прерывает текущую операцию, оставляя ПВМ
в режиме немедленной обработки;

340

• Ctrl|Alt|Del — завершает выполнение Бэйсик-программ и воз­
вращает ПВМ в исходное состояние;
• I PrtSc—выводит текст, высвеченный на экране, на печатающее
устройство (обозначаемое какЬРТ!:);
• Ctrl | Num Lock — переводит экран дисплея в состояние приоста­
новки синтеза динамического изображения.

Ниже разъясняется смысл остальных команд Бэйсика.
AUTO [номер первой строки][,[приращение]]

Установка режима автоматической нумерации программных
строк. Нажатие комбинации клавиш Ctrl 1 Scroll Lock возвращает
машину в режим ручной нумерации программных строк. (Во всех
разновидностях Бэйсика.)

В LOAD имя файла [,[смещение]]
Считывание из файла с заданным именем информации, относя­

щейся к определенной области памяти, и занесение ее в память с на­
чального адреса этой области либо по адресу, определяемому сме­
щением, если оно задано в команде (см. команду DEF SEG). (Во всех
разновидностях Бэйсика.)

BSAVE имя файла, смещение, длина
Запоминание в файле с заданным именем информации из неко­

торой области памяти, которая начинается с адреса, определяемого
смещением (см. команду DEF SEG), и имеет заданную длину. (Во
всех разновидностях Бэйсика.)

CLEAR [,[память программ^,стековая память]]
Присваивание нулевых значений всем числовым и строковым

переменным и элементам массивов. Задавая указанные в команде
факультативные параметры, можно получить информацию об имею­
щемся свободном объеме памяти программ (используемой для хра­
нения программных строк, переменных и организации рабочей об­
ласти интерпретатора), а также об объеме динамической памяти,
зарезервированной для рабочего стека. (Во всех разновидностях
Бэйсика.)
CONT

Продолжение выполнения программы после останова, начиная
с очередного оператора. (Во всех разновидностях Бэйсика.)

DELETE номер первой строки[—номер последней строки]
Исключение строк программы с заданными номерами. (Во всех

разновидностях Бэйсика.)

EDIT номер строки
Вывод на экран заданной программной строки для редактирова­

ния. (Во всех разновидностях Бэйсика.)

341

FILES [имя файла]
Вывод на экран из дискового справочника тех имен файлов, ко­

торые соответствуют заданному в команде имени (разрешается ис­
пользовать родовое имя в качестве заданного). (В дисковом и расши­
ренном Бэйсике.)

LIST [номер первой строки][—[номер последней строки]] [, имя фай­
ла устройства]

Вывод на экран всех или части программных строк из памяти;
возможна запись их в файл или вывод на устройство с заданным име­
нем. (Во всех разновидностях Бэйсика.)
LLIST [номер первой строки][— [номер последней строки]]

Вывод на печатающее устройство (с именем LPT1:) всех или части
находящихся в памяти программных строк. (Во всех разновидно­
стях Бэйсика.)

LOAD имя файла[,К]
Загрузка программы из файла с заданным именем (с одновремен­

ным стиранием программных строк, находившихся в памяти до это­
го момента) и последующее ее выполнение в случае необходимости.
(Во всех разновидностях Бэйсика.)
MERGE имя файла

Объединение программных строк из файла с заданным именем
с находящимися в данный момент в памяти. (Во всех разновидно­
стях Бэйсика.)

NAME старое имя AS новое имя
Переименование дискового файла. (В дисковом и расширенном

Бэйсике.)
NEW

Удаление из памяти всех программных строк, переменных и
массивов. (Во всех разновидностях Бэйсика.)
RENUM [[первый новый номер с троки][.[первый старый номер стро­
ки]^ приращение]]

Перенумерация программных строк. (Во всех разновидностях
Бэйсика.)
RESET

Закрытие всех открытых файлов и устройств. (В дисковом и рас­
ширенном Бэйсике.)
RUN [номер строки]

Выполнение находящейся в памяти программы; если задан но­
мер, то программа выполняется, начиная с указанной строки. (Во
всех разновидностях Бэйсика.)
RUN имя файла[.Щ

342

Загрузка программы из файла с заданным именем и ее выпол­
нение; все находившиеся ранее в памяти программные строки сти­
раются. Если задан факультативный параметр ([,R]), то файлы
остаются открытыми. (Во всех разновидностях Бэйсика.)
SAVE имя файла [,опция]

Запись программы, находящейся в памяти, в файл с заданным
именем. Если не задано никакой опции, то при записи используется
сжатый формат; опция А определяет кодирование символов в коде
ASCII, опция Р запрещает представление программных строк. (Во
всех разновидностях Бэйсика.)

SYSTEM
Передача управления операционной системе ДОС ПВМ. (В дис­

ковом и расширенном Бэйсике.)
TRON

Установка режима трассировки программы. (Во всех разновид­
ностях Бэйсика.)

TROFF
Отмена режима трассировки программы. (Во всех разновидно­

стях Бэйсика.)

Операторы

Перечисленные ниже операторы наиболее распространены в про­
граммируемом режиме, хотя все они, за исключением двух, DATA и
DEF FN, могут использоваться и в режиме немедленной обработки.
ВЕЕР

Включение встроенного звукового устройства. (Во всех разновид­
ностях Бэйсика.)
CALL числовая переменная [(переменная [.переменная,]...')]

Передача управления объектной программе, находящейся в па­
мяти по относительному адресу, задаваемому числовой переменной
(см. оператор DEF SEG). Для каждой заданной в команде перемен­
ной (необязательные параметры) в программу на машинном языке
с помощью микропроцессорного стека передается адрес памяти, по
которому находится значение этой переменной. (Во всех разновид­
ностях Бэйсика.)
CHAIN [MERGE] имя файла [,[выражение][,[ALL]]
[,DELETE номер первой строки, номер последней строки]]

Загрузка программы из файла с заданным именем и ее выполне­
ние. Когда факультативный параметр MERGE не задан, все находя­
щиеся в памяти программные строки стираются, в противном случае
они объединяются с загружаемыми. Если в операторе задано выра­

343

жение (необязательный параметр), то его значение используется в
качестве номера первой программной строки, с которой должно на­
чинаться выполнение программы; в противном случае выполнение
начинается со строки с наименьшим номером. Если факультатив­
ный параметр ALL отсутствует, то все переменные (кроме перечис­
ленных в предыдущих операторах COMMON) стираются. Исполь­
зование факультативной конструкции DELETE позволяет удалить
из памяти заданный диапазон программных строк перед объедине­
нием текущей программы с новыми загружаемыми строками. (В дис­
ковом и расширенном Бэйсике.)

CIRCLE (столбец, строка), радиус [,[цвет][,начальная точка дуги,
конечная точка дуги][,характеристическое отношение]]]

Построение на экране окружности, эллипса или дуги заданного
радиуса, который измеряется количеством столбцов, с центром в точ­
ке с заданными координатами (столбец, строка). С помощью необя­
зательного параметра цвет можно задать цвет выводимой окруж­
ности, эллипса или дуги; в качестве значений этого параметра могут
использоваться номера 0 или 1 в режиме высокого разрешения или
от 0 до 3 в режиме среднего разрешения (выбор одного из четырех
цветов активной палитры) (см. табл. 13.3). Если номер цвета не за­
дан, то используется стандартный цвет переднего плана. В тех слу­
чаях, когда заданы факультативные параметры начальная точка
дуги, конечная точка дуги, на экране вместо полной окружности стро­
ится дуга с указанными концевыми точками (для задания началь­
ной и конечной точек должны использоваться единицы измерения
длин дуг— радианы, от 0 до 6.2831). Если концевая точка задана
отрицательным значением, то дополнительно проводится радиус из
центра окружности в эту концевую точку. При задании факульта­
тивного параметра характеристическое отношение строится эллипс
с отношением высоты к ширине, указанным в операторе (отноше­
ние 5/6 определяет окружность в режиме среднего разрешения, а
5/12 — в режиме высокого разрешения). (В расширенном Бэйсике.)

СЕО8Е[*][ножр файла/устройства]!,[^][номер файла!устрой­
ства]] ...

Закрытие файлов и устройств с заданными номерами. Если не
задано ни одного номера, то закрываются все файлы и устройства.
(Во всех разновидностях Бэйсика.)

CLS
Очистка экрана дисплея. (Во всех разновидностях Бэйсика.)

COLOR [цвет переднего плана][,[цвет фона][,цвет границы]]
Установка цвета переднего плана, фона и границы для экрана,

работающего в режиме текстового вывода. Возможные цвета пере­
числены в табл. 13.3. (Во всех разновидностях Бэйсика.)

344

COLOR [цвет фона/границы][,палитра]
Установка одного из 16 возможных цветов фона и границы и

выбор одной из двух палитр переднего плана для экрана, работаю­
щего в режиме среднего разрешения. Допустимые цвета и палитры
приведены в табл. 13.2 и 13.3. (Во всех разновидностях Бэйсика.)
СОМ (адаптер) действие

В качестве значения параметра действие может быть задано OFF,
ON или STOP. В зависимости от этого производится блокирование
(OFF), разблокирование (ON) или приостановка (STOP) последова­
тельной передачи данных к адаптеру 1 или 2 (см. ON COM-GOSUB).
(В расширенном Бэйсике.)
COMMON переменная[,переменная]...

Задание имен переменных и массивов, значения которых долж­
ны сохраняться при выполнении последующего оператора CHAIN.
После каждого задаваемого имени массива должны стоять круглые
скобки (). (В дисковом и расширенном Бэйсике.)

DATA константа, [константа,]...
Добавление строковых и числовых констант к программному

списку значений для операторов READ. (Во всех разновидностях
Бэйсика.)
DATE$-строковое значение

Установка текущей даты для системного календаря. (В дисковом
и расширенном Бэйсике.)
DEF FN имя[(фиктивная переменная[,фиктивная переменная...)]
^определение

Присваивание имени строковой или числовой функции и зада­
ние ее определения в виде выражения. Любое задаваемое в каче­
стве необязательного параметра имя фиктивной переменной может
использоваться в выражении, определяющем функцию (параметр
определение). Фиктивные переменные заменяются на фактические
значения всякий раз при обращении к функции (см. функцию FN).
(Во всех разновидностях Бэйсика.)
DEF SEG[= адрес]

Задание текущего адреса сегмента; этот адрес, умноженный на 16,
в дальнейшем будет автоматически прибавляться к адресным смеще­
ниям для получения действительных адресов в операторах BLOAD,
BSAVE, CALL и РОКЕ, а также в функциях РЕЕК и USR.
Если параметр адрес отсутствует, то в качестве адреса сегмента ис­
пользуется адрес свободного пространства Бэйсик-интерпретатора.
(Во всех разновидностях Бэйсика.)
DEF буква типа [—буква][,буква [—буква]]...

Определение типа для переменных, имена которых начинаются
с букв, входящих в один из перечисленных диапазонов. Параметр

345

тип должен иметь значения: INT — для определения целого типа,
SNG — с обычной точностью, DBL — с двойной точностью, а Т —
для определения строковых переменных.(Во всех разновидностях
Бэйсика.)

DEF USR [номер] =смещение
Указание адреса смещения для объектной подпрограммы с за­

данным номером, которая вызывается с помощью функции USR.
В качестве номера разрешается использовать любую цифру от О
до 9. (Во всех разновидностях Бэйсика.)
DIM имя массива (индекс[,индекс]...) [,имя массива(индекс[,ин­
декс]...)]...

Распределение памяти для массивов. Задаваемое в качестве пара­
метра индекс числовое выражение определяет максимальное зна­
чение соответствующего индекса массива (см. OPTION BASE). (Во
всех разновидностях Бэйсика.)

DRAW строка подкоманд
Построение на экране геометрического рисунка, определяемого

заданной строкой подкоманд. Возможные подкоманды перечислены
в табл. 13.4. (В расширенном Бэйсике.)

END
Останов программы, закрытие всех файлов и устройств и возврат

в режим немедленной обработки. (Во всех разновидностях Бэйсика.)

ERASE имя массива [,имя массива]...
Стирание массивов с заданными именами. (Во всех разновид­

ностях Бэйсика.)

ERROR код
Формирование кода ошибки из заданного списка (см. ON

ERROR GOTO). (Во всех разновидностях Бэйсика.)

FIELD [=£]номер файла,длина AS строковая переменная[,длина
AS строковая переменная]...

Определение полей файла с прямым доступом. (В дисковом и рас­
ширенном Бэйсике.)

FOR переменная-счетчик цикла=начальное значение ТО конечное
значение[$ТЕР значение приращения]

Начало цикла FOR/NEXT. (Во всех разновидностях Бэйсика.)

GET [#] номер файла [,номер записи]
Считывание записи из файла с произвольным доступом. Если

задан факультативный параметр номер записи, то считывается за­
пись с заданным номером, в противном случае — запись с очеред­
ным номером. (В дисковом и расширенном Бэйсике.)

346

GET (столбец!,строка!) — (столбец2,строка2) ,имя массива
Запоминание цвета всех точек прямоугольной области, заданной

координатами двух диаметрально противоположных углов. Номера
цветов записываются в массив с заданным именем. (В расширенном
Бэйсике.)

GOSUB номер строки
Передача управления в подпрограмму строке с заданным номе­

ром (см. RETURN). (Во всех разновидностях Бэйсика.)
GOTO номер строки

Передача управления строке с заданным номером. (Во всех раз­
новидностях Бэйсика.)

IF условие THEN оператор]:..оператор]... [ELSE оператор ['.опе­
ратор]...]

Выполнение того или иного набора операторов в зависимости
от истинностного значения заданного условия. Если условие удовлет­
воряется, то выполняется первый набор операторов (стоящий не­
посредственно после слова THEN), в противном случае — второй
(стоящий после слова ELSE). Если условие не удовлетворяется и
конструкция ELSE отсутствует, то осуществляется переход к оче­
редной программной строке. (Во всех разновидностях Бэйсика.)
IF условие THEN GOTO номер строки [ELSE оператор ['.оператор]

Выполнение тех или иных операторов в зависимости от истинно­
стного значения условия. Если условие истинно, то управление пере­
дается строке с заданным номером, в противном случае выполняется
второй набор операторов (операторы, стоящие непосредственно пос­
ле слова ELSE). Если условие ложно, а конструкция ELSE не за­
дана, то управление передается следующей программной строке.
(Во всех разновидностях Бэйсика.)

INPUT [;][“запрос”; или “запрос”,] переменная],переменная]...
Присваивание вводимых с клавиатуры значений всем поименован­

ным переменным. В качестве наводящего сообщения (запроса на
ввод данных с клавиатуры) на экран выводится вопросительный
знак, а за ним, возможно, факультативный текст запроса. Когда
перед списком имен переменных стоит запятая, вопросительный знак
в наводящем сообщении не выводится; если список предваряется
точкой с запятой, то сообщение заканчивается знаком вопроса. Фа­
культативная точка с запятой после слова INPUT приводит к по­
давлению сигнала возврата каретки, который обычно формируется
при нажатии клавиши 4-1, завершающем ввод очередной записи.
(Во всех разновидностях Бэйсика.)
INPUT#ttcufep файла,переменная],переменная]...

Присваивание значений, считываемых из указанного файла или

347

устройства, по очереди всем переменным с заданными именами. Сим­
волы возврата каретки, перехода на новую строку, запятые, а также
проблемы между числовыми значениями интерпретируются при этом
как разделители значений. (Во всех разновидностях Бэйсика.)

KEY номер .строковое значение
Активизация функциональной клавиши с заданным номером (от

1 до 10) как программируемой клавиши и задание в качестве ее оп­
ределения указанного строкового значения. Если это строковое зна­
чение — нулевое, то функциональная клавиша перестает считаться
программируемой. (Во всех разновидностях Бэйсика.)

KEY действие
Значением параметра действие должно быть ON, OFF или

LIST. Если задано ON, то на 25-й строке экрана выводятся по шесть
первых символов каждого определения программируемых клавиш;
если OFF, то они стираются, а если LIST, то в основной области
экрана выводятся полностью все определения, т. е. по 15 символов
на каждое. (Во всех разновидностях Бэйсика.)

KEY (числовое значение) действие
Значением параметра действие должно быть OFF, ON или STOP.

В зависимости от этого запрещается (OFF), разрешается (ON) или
приостанавливается (STOP) слежение за функциональной клавишей
или заданной клавишей управления курсором (числовое значение,
определяющее номер этой клавиши, должно заключаться между 1
и 14). (В расширенном Бэйсике.)

KILL имя файла
Удаление дискового файла с заданным именем. (В дисковом и рас­

ширенном Бэйсике.)

[LET] переменная ^выражение
Присваивание значения выражения заданной переменной. (Во

всех разновидностях Бэйсика.)

LINE [(столбец 1,строка 1)—(столбец^строкаЪ) [,[цвет][,В[ЕЦ]
Построение на экране дисплея линии или прямоугольника. При

использовании факультативного параметра F прямоугольник можно
закрасить стандартным цветом переднего плана (если параметр цвет
не задан) либо цветом с номером, заданным в качестве значения па­
раметра цвет. При задании цвета допустимы номера 0 или 1 в режи­
ме графического вывода с высоким разрешением или от 8 до 3 в ре­
жиме среднего разрешения для выбора одного из четырех цветов ак­
тивной палитры (см. табл. 13.3). (Во всех разновидностях Бэйсика.)
LINE INPUT!;][“запрос”;] строковое значение

Ввод всех символов, набираемых на клавиатуре до нажатия кла­
виши и последующее присваивание их заданной строковой пере­

348

менной. Вопросительный знак в наводящем сообщении (запросе на
ввод данных с клавиатуры) присутствует лишь тогда, когда он в яв­
ном виде включен в значение необязательного параметра запрос.
Точка с запятой после слова INPUT подавляет возврат каретки,
который обычно происходит при нажатии клавиши в конце ввода
очередной записи. (Во всех разновидностях Бэйсика.)

LINE INPUT # номер файла,строковая переменная
Ввод всех символов из указанного файла вплоть до ближайшего

возврата каретки, за которым следует символ перехода на следую­
щую строку; все введенные символы присваиваются заданной стро­
ковой переменной. (Во всех разновидностях Бэйсика.)

LOCATE [строка][,столбец][,[видимость][,[первый][,последний]]]}
Перемещение курсора в позицию, определяемую заданными но­

мерами строки и столбца (используется нумерация строк и столб­
цов экрана, принятая в режиме текстового вывода). Значение пара­
метра видимость определяет, должен ли курсор быть видимым на
экране (1) или нет (0). Значения параметров первый и последний опре­
деляют размер и форму курсора. (Во всех разновидностях Бэйсика.)
LPRINT [USING шаблон;] список значений[;]

Печать на основном системном печатающем устройстве (LPT1:);
в остальном производятся те же действия, что и в случае оператора
PRINT. (Во всех разновидностях Бэйсика.)

LSET переменная поля=строковое значение
Присваивание строкового значения заданной переменной поля

в буфере файла с произвольным доступом. Поле заполняется начи­
ная с крайней левой позиции, оставшиеся неиспользованными пра­
вые позиции заполняются пробелами. Производится также вырав­
нивание по крайней левой позиции значения стандартной строко­
вой переменной. (В дисковом и расширенном Бэйсике.)

MID$(строковая переменная,первый символ[,количество
символов])=строковое значение

Замена подстроки значения заданной строковой переменной на
указанное справа строковое значение. Заменяемая подстрока на­
чинается с заданного первого символа. С помощью факультативного
параметра количество символов можно ограничить число заменяемых
знаков. (Во всех разновидностях Бэйсика.)
MOTOR состояние

Пуск (состояние<0 или >0) или останов (состояние^) ленты
накопителя. (Во всех разновидностях Бэйсика.)
NEXT [переменная-счетчик цикла\[,переменная-счетчик цикла]...

Окончание одного или более FOR/NEXT-циклов. (Во всех раз­
новидностях Бэйсика.)

349

ON COM (адаптер) GOSUB номер строки
Задание номера подпрограммной строки, которой должно пере­

даваться управление в случае обнаружения факта последовательной
передачи данных к адаптеру 1 или 2 (см. СОМ-ON). (В расширенном
Бэйсике.)
ON ERROR GOTO номер строки

Задание номера программной строки, которой должно переда­
ваться управление в случае выявления ошибки (см. RESUME).
(Во всех разновидностях Бэйсика.)

ON выражение GOSUB номер строки].,номер строки]...
Передача управления в подпрограмму строке с одним из указан­

ных номеров в зависимости от конкретного значения выражения
(см. RETURN). (Во всех разновидностях Бэйсика.)
ON выражение GOTO номер строки[,номер строки]...

Переход к строке с одним из указанных номеров в зависимости
от конкретного значения заданного выражения. (Во всех разновид­
ностях Бэйсика.)

ON KEY (числовое значение) GOSUB номер строки
Задание номера подпрограммной строки, которой должно переда­

ваться управление при нажатии функциональной клавиши или кла­
виши управления курсором, номер которой определяется заданным
числовым значением (от 1 до 14) (см. KEY-ON). (В расширенном
Бэйсике.)

ON PEN GOSUB номер строки
Задание номера подпрограммной строки, которой должно пере­

даваться управление, если обнаруживается, что световое перо на­
ходится в активном состоянии (см. PEN ON). (В расширенном Бэйси­
ке.)
ON STRIG (числовое значение) GOSUB номер строки

Задание номера подпрограммной строки, которой должно пере­
даваться управление, если обнаруживается, что триггер управления
электронной игрой, номер которого определяется заданным число­
вым значением (0, 2, 4 или 6), находится в активном состоянии (см.
STRIG ON). (В расширенном Бэйсике.)

OPEN имя файла/устройства [FOR режим] файла/
устройства [LEN=<?4UHa записи]

Присваивание файлу или устройству с заданным именем указан­
ного номера и установление режима доступа, который будет ис­
пользоваться применительно к этому файлу. Если в качестве зна­
чения параметра режим задано INPUT, OUTPUT или APPEND, то
устанавливается режим последовательного доступа. Если конструк­
ция FOR отсутствует, то устанавливается режим произвольного до­

350

ступа. С помощью соответствующего факультативного параметра
можно задать длину записи в режиме произвольного доступа. (Во
всех разновидностях Бэйсика.)
OPEN режим [#] номер файла 'устройства, имя файла/устройства
[,длина записи]

Видоизмененная форма предыдущего оператора OPEN. В данном
случае способ доступа определяется значением параметра режим
следующим образом: при значении, равном 0, организуется после­
довательный вывод, при значении 1 — последовательный ввод, а при
значении R — произвольный доступ. (Во всех разновидностях Бэй­
сика.)

OPEN “С&№шдаптер\протокол” AS [^=]номер устройства
1LEN =длина буфера]

Присваивание заданного номера файла/устройства адаптеру по­
следовательной передачи данных с номером 1 или 2. Возможно (хотя
и не обязательно) задание протокола передачи данных. Допустимые
опции параметра протокол перечислены в табл. А.1. (В дисковом
и расширенном Бэйсике.)
OPTION BASE наименьшее значение индекса

Установка наименьшего значения индекса (0 или 1) для всех мас­
сивов (см. DIM). (Во всех разновидностях Бэйсика.)

OUT порт,байтовое значение
Запись заданного байтового значения в указанный машинный

порт вывода. (Во всех разновидностях Бэйсика.)
PAINT (столбец, строка) [,цвет-заполнителъ[,цвет-ограничитель]]

Закрашивание цветом-заполнителем области экрана, начиная
с точки с заданными координатами и по всем направлениям. По
каждому направлению закрашивание продолжается до тех пор, пока
не встретятся точки, окрашенные в заданный цвет-ограничитель.
В качестве значений необязательных параметров цвет-заполнитель
и цвет-ограничитель указываются 0 или 1 в режиме высокого раз­
решения или от 0 до 3 в режиме среднего разрешения для выбора
одного из четырех цветов активной палитры (см. табл. 13.3). Если
указанные параметры не заданы, то при выполнении оператора ис­
пользуется стандартный цвет переднего плана. (В расширенном
Бэйсике.)

PEN действие
Значение параметра действие (OFF или ON) определяет, можно

ли использовать функцию PEN (если ON — можно, а если OFF —
нельзя). В расширенном Бэйсике в качестве значения этого парамет­
ра можно задавать также и STOP; в этом случае ON разблокирует,
OFF блокирует, a STOP приостанавливает слежение за работой све­
тового пера. (Во всех разновидностях Бэйсика.)

351

PLAY строка подкоманд
Исполнение встроенным звуковым устройством мелодии, опре­

деляемой заданной строкой подкоманд. Возможные подкоманды пе­
речислены в табл. 14.2. (В расширенном Бэйсике.)

РОКЕ смещение,байтовое значение
Запись заданного байтового значения по адресу, определяемому

смещением (см. DEF SEG). (Во всех разновидностях Бэйсика.)
PRESET (столбец, строка)!,цвет}

Построение на экране дисплея отдельной точки. Если цвет для
нее не задан (выбором по табл. 13.3 одного из цветов активной па­
литры: 0 или 1 в режиме высокого разрешения, от 0 до 3 в режиме
среднего разрешения), то используется цвет фона. (Во всех разновид­
ностях Бэйсика.)

PRINT [список значений]^,]
Вывод на экран перечисленных в списке значений, если они за­

даны. Когда в конце оператора не стоит точка с запятой, после вы­
вода последнего значения формируется сигнал возврата каретки и
перехода на следующую строку. Точка с запятой, разделяющая зна­
чения в списке, не оказывает никакого влияния на то, в какие по­
зиции экранной строки будут помещаться выводимые значения; если
же между отдельными значениями в списке стоят запятые, то каждое
значение будет выводиться на экран, начиная с первой позиции оче­
редной зоны. (Во всех разновидностях Бэйсика.)

PRINT [^номер файла!устройства,} [USING шаблон',} список зна­
чений

Вывод перечисленных в списке значений на экран либо, если за­
дано значение первого факультативного параметра, на требуемое
устройство или в соответствующий файл. Задавая необязательный
параметр шаблон, можно выводить данные в нужном формате (до­
пустимые символы, используемые в шаблоне, и их интерпретация
приводятся в табл. 10.1). Точка с запятой, разделяющая значения
в списке, не оказывает никакого влияния на то, в какие позиции
экранной строки будут помещаться выводимые значения. Однако
если в операторе отсутствует конструкция USING, то между от­
дельными значениями в списке можно ставить запятые, и в этом
случае каждое значение будет располагаться с начала очередной
зоны вывода. Если в конце оператора стоит точка с запятой, то обыч­
ного возврата каретки после вывода на экран последнего значения
не производится. (Во всех разновидностях Бэйсика.)
PSET (столбец,строка)!,цвет]

Построение на экране дисплея отдельной точки. Если цвет для
нее не задан путем выбора одного из цветов активной палитры по
табл. 13.3 (0 или 1 в режиме высокого разрешения, от 0 до 3 в режиме

352

среднего разрешения), то используется цвет переднего плана. (Во
всех разновидностях Бэйсика.)
PUT ^номер файла[,номер записи]

Занесение записи в файл с произвольным доступом. Если номер
записи не задан, то ей присваивается очередной номер. (В дисковом
и расширенном Бэйсике.)

PUT (столбец,строка),имя массива].,параметр смеси цветов]
Воспроизведение на экране цветов всех точек некоторой прямо­

угольной области, начиная с точки с заданными координатами, ко­
торая соответствует верхнему левому углу указанного прямоуголь­
ника. Информация о цветах точек хранится в виде кодовых номеров
цвета в массиве с заданным именем. Необязательный последний
параметр смеси определяет, по каким правилам должно происходить
слияние заданных цветов с уже имеющимися на экране. Возможные
значения'параметра смеси цветов перечислены в табл. 13.5. (В рас­
ширенном Бэйсике.)
RANDOMIZE целое значение

Выбор набора случайных чисел, определяемого заданным целым
значением (см. функцию RND). (Во всех разновидностях Бэйсика.)

READ переменная],переменная]...
Присваивание переменным с заданными именами значений из

списка, созданного операторами DATA. (Во всех разновидностях
Бэйсика.)
REM [комментарий]

Задание комментария; все символы, следующие за командным
словом и стоящие в той же самой программной строке, интерпрети­
руются как комментарий к программе и не исполняются. (Во всех
разновидностях Бэйсика.)

RESTORE [номер строки]
Восстановление положения указателя списка значений опера­

торов DATA так, что указатель будет соответствовать первому опе­
ратору DATA данной программы либо оператору DATA, стоящему
в строке с заданным номером (необязательный параметр номер стро­
ки). (Во всех разновидностях Бэйсика.)
RESUME [опция]

Возобновление выполнения программы после выявления и обра­
ботки ошибки оператором ON ERROR GOTO. Если необязательный
параметр опция отсутствует или его значение равно 0, то выполнение
возобновляется с того оператора, в котором произошла ошибка.
Когда в качестве значения этого параметра указан номер строки,
выполнение начинается со строки с этим номером. Если этот па­
раметр принимает значение “NEXT”, то выполнение программы про-

353

должается с оператора, непосредственно следующего за тем, в ко­
тором была обнаружена ошибка. (Во всех разновидностях Бэйсика.)

RETURN [номер строки]
Возврат управления из подпрограммы оператору, стоящему не­

посредственно за самым последним выполненным оператором GOSUB
(или ON=GOSUB). В расширенном Бэйсике допустим также воз­
врат управления строке с заданным номером (необязательный пара­
метр номер строки), (Во всех разновидностях Бэйсика.)

RSET переменная поля=строковое значение
Заполнение указанным строковым значением заданного поля в

файле с произвольным доступом. При заполнении строковое зна­
чение выравнивается по крайней правой позиции, а оставшиеся не­
использованными левые позиции поля заполняются пробелами.
Производится также выравнивание по правым позициям значения
для стандартной строковой переменной. (В дисковом и расширен­
ном Бэйсике.)

1 SCREEN [режим][.[свечение][.[активная страница]^.видимая стра­
ница]]]

Выбор режима работы экрана (значение параметра режим, рав­
ное 0, определяет режим текстового вывода, 1—режим графическо­
го вывода со средней разрешающей способностью, а 2—режим гра-

з фического вывода с высокой разрешающей способностью). Исполь-
зование факультативного параметра свечение позволяет запретить
воспроизведение цветного изображения (при значении этого пара­
метра, равном 0 для режима текстового вывода или О 0 для режима
среднего разрешения). В режиме текстового вывода можно также
с помощью соответствующих необязательных параметров устано­
вить активную страницу для операторов вывода, подобных PRINT,
а также видимую страницу, которая будет выводиться на экран (до­
пустимыми номерами страниц являются номера от 0 до 3 при 80-сим­
вольной ширине экрана и от 0 до 8 при 40-символьной ширине). (Во
всех разновидностях Бэйсика.)

SOUND частота.длительность
Генерация тона заданной частоты (от 37 до 32 767 Гц) и заданной

длительности (измеряемой с помощью тактовых импульсов часто­
той 18,2 имп./с). Значение параметра длительность, равное 0, прек­
ращает звучание. В расширенном Бэйсике на выполнение оператора
SOUND оказывают влияние некоторые подкоманды, используе­
мые в операторе PLAY. (Во всех разновидностях Бэйсика.)
STOP

Прекращение выполнения программы, вывод на экран сообще­
ния “Break...” («Прерывание...») и возврат к режиму немедленной
обработки. (Во всех разновидностях Бэйсика.)

12 № 2275

354

STRIG действие
Значение параметра действие (OFF или ON) определяет, может ли

использоваться функция STRIG (если ON, то может, а если OFF —
пет). (Во всех разновидностях Бэйсика.)
STR1G (числовое значение) действие

В зависимости от значения параметра действие (OFF, ON или
STOP) блокируется (OFF), разблокируется (ON) или приостанав­
ливается (STOP) слежение за заданным триггером управления
электронной игрой; триггеры задаются числовыми значениями сле­
дующим образом: 0 определяет триггер А1, 2 — триггер В1, 4 —
триггер А2, 6 — триггер В2. (В расширенном Бэйсике.)

SWAP переменная,переменная
Обмен значениями между двумя переменными с заданными име­

нами. (Во всех разновидностях Бэйсика.)
Т1МЕ$ ^строковое значение

Установка системного счетчика времени. (В дисковом и расши­
ренном Бэйсике.)

WAITS порт,маска[,выборка]
Приостановка выполнения программы и текущий контроль вход­

ного порта. Выполнение программы возобновляется, если следую­
щее выражение имеет ненулевое значение:
порт XOR выборка AND маска

Если параметр выборка отсутствует, то его значение принимает­
ся равным 0. (Во всех разновидностях Бэйсика.)
WEND

Возврат управления предыдущему оператору WHILE. (Во всех
разновидностях Бэйсика.)

WHILE условие
Если заданное условие истинно, то выполнение программы про­

должается со следующего (за WHILE) оператора. В противном слу­
чае управление передается оператору, непосредственно следующему
за ближайшим очередным оператором WEND. (Во всех разновидно­
стях Бэйсика.)
WIDTH [номер устройства,]ширина

Установка длины строки экрана дисплея или какого-либо дру­
гого устройства, если задан его номер (параметр номер устрой­
ства). (Во всех разновидностях Бэйсика.)

WIDTH имя устройства,ширина
Подготовка к изменению длины строки для устройства с заданным

именем; указанная длина устанавливается не сразу, а только после
открытия соответствующего устройства. (Во всех разновидностях
Бэйсика.)

355

WRITE (Аномер файла,] список значений
Вывод на экран перечисленных в списке значений; между от­

дельными значениями выводятся запятые, а строковые значения за­
ключаются в кавычки. Если задан необязательный параметр номер
файла, то значения записываются аналогичным образом в файл с
указанным номером. (Во всех разновидностях Бэйсика.)

Функции

Все функции перечисляются в алфавитном порядке. Большин­
ство функций имеет один или два операнда, в качестве которых мо­
гут использоваться константы, переменные, элементы массивов,
другие функции и выражения, если специально не оговорена иная
интерпретация. Для некоторых функций ограничивается диапа­
зон изменения значений их операндов. Результатами вычисления
функций являются числа с обычной точностью, если на этот счет нет
каких-либо иных указаний.
№§(числовое значение)

Вычисление абсолютной величины числового значения. (Во
всех разновидностях Бэйсика.)

А$С(строковое значение)
Определение кода первого символа заданного строкового значе­

ния, (Во всех разновидностях Бэйсика.)
ATN (Числовое значение)

Вычисление арктангенса заданного числового значения. (Во
всех разновидностях Бэйсика.)

CD В L (числовое значение)
Преобразование заданного числового значения в число удвоен­

ной точности. (Во всех разновидностях Бэйсика.)
CHR$(7cod)

Определение символа, соответствующего заданному коду (см.
Приложение D). (Во всех разновидностях Бэйсика.)
CINT (числовое значение)

Округление заданного числового значения до ближайшего це­
лого числа. (Во всех разновидностях Бэйсика.)
(OS (числовое значение)

Вычисление косинуса заданного числового значения. (Во всех
разновидностях Бэйсика.)

CSNG(числовое значение)
Преобразование заданного числового значения в число обычной

точности. (Во всех разновидностях Бэйсика.)

12*

356

CSRLIN
Выдача номера экранной строки, соответствующей текущему

положению курсора (в режиме текстового вывода). (Во всех разно­
видностях Бэйсика.)
CVD (строковое значение)

Преобразование заданного восьмисимвольного строкового зна­
чения в значение с двойной точностью (функция, обратная по отно­
шению к MKD$). (В дисковом и расширенном Бэйсике.)

CVI (строковое значение)
Преобразование заданного двухсимвольного строкового значе­

ния в численное значение целого типа (функция, обратная по отно­
шению к МК1$). (В дисковом и расширенном Бэйсике.)
C\lS(cmpoKoeoe значение)

Преобразование заданного четырехсимвольного строкового зна­
чения в значение с обычной точностью (функция, обратная по от­
ношению kMKS$). (В дисковом и расширенном Бэйсике.)
DATE$

Выдача текущей системной даты. (В дисковом и расширенном
Бэйсике.)
EOF (номер файла)

Выдача значения «Истина» (—1) или «Ложь» (0) в зависимости
от того, был ли достигнут конец заданного файла или нет. (Во всех
разновидностях Бэйсика.)

ERL
Выдача номера строки, в которой обнаружена последняя по

счету ошибка. (Во всех рановидностях Бэйсика.)
ERR

Выдача кода последней по счету обнаруженной ошибки. (См.
Приложение С). (Во всех разновидностях Бэйсика.)

ЕХР(числовое значение)
Возведение константы е (2,718282) в степень, равную заданному

числовому значению. (Во всех разновидностях Бэйсика.)
Е\Х{числовое значение)

Преобразование заданного числового значения в целое число
путем отбрасывания дробной части. (Во всех разновидностях Бэйси­
ка.)

Е^имя [{значение [,значение]...)]
Вызов названной функции, предварительно определенной опе­

ратором DEF FN, который одновременно задает количество и типы
значений, необходимых для вызова этой функции. (Во всех разно­
видностях Бэйсика.)

357

FREfc/ироковое значение или числовое значение)
Выдача сообщения об объеме свободной памяти. Задаваемое зна­

чение как таковое нигде не используется, но его присутствие вызы­
вает реорганизацию области памяти, предназначенной для хране­
ния строковых данных. (Во всех разновидностях Бэйсика.)
НЕХ$(числовое значение)

Преобразование заданного числового значения в его шестнад­
цатеричный эквивалент. (Во всех разновидностях Бэйсика.)
INKEY$

Выдача информации о том, какая клавиша нажимается в теку­
щий момент. Нулевое значение в качестве результата функции озна­
чает, что клавиатура блокирована. Односимвольное значение ре­
зультата интерпретируется как символ, соответствующий нажима­
емой клавише. Если же нажимаемая клавиша не имеет соответству­
ющего ей символа, то выдается двухсимвольное значение, которое
должно рассматриваться как расширенный код для этой клавиши
(см. Приложение D). (Во всех разновидностях Бэйсика.)
INP (порт)

Выдача сообщения о назначенном машинном порте. (Во всех
разновидностях Бэйсика.)

номер файла/устройства])
Считывание заданного числа символов с клавиатуры либо, если

задан параметр номер файла/устройства, с соответствующего уст­
ройства или из файла. (Во всех разновидностях Бэйсика.)
INSTR([Ha^a4bH6Zu символ],исходная строка,искомая строка)

Поиск в исходной строке первого вхождения искомой строки, на­
чиная с заданного начального символа, если он указан, или с самого
первого символа исходной строки. (Во всех разновидностях Бэй­
сика.)
I NT (числовое значение)

Определение наибольшего целого числа, не превосходящего за­
данное числовое значение. (Во всех разновидностях Бэйсика.)
ЪЪ?1$(строковое значение,длина)

Выделение из строкового значения подстроки заданной длины,
начиная с крайнего левого символа. (Во всех разновидностях
Бэйсика.)
LEN (строковое значение)

Подсчет количества символов в заданном строковом значении.
(Во всех разновидностях Бэйсика.)
LOCfnojnep файла)

Определение текущей позиции в заданном файле. (В дисковом
и расширенном Бэйсике.)

35S

LOF (номер файла)
Выдача сведений о длине заданного файла. (В дисковом и рас­

ширенном Бэйсике.)
ЪОО(числовое значение)

Вычисление натурального логарифма заданного числа. (Во всех
разновидностях Бэйсика.)

LPOS(<zw£4O£oe значение)
Выдача информации о знакопозиции последнего символа в бу­

фере печатающего устройства; в кассетном Бэйсике соответствую­
щее число должно быть задано, хотя оно и не используется. В диско­
вом и расширенном Бэйсике заданное числовое значение определя­
ет используемое печатающее устройство (0 соответствует устройству
LPT11 — LPT1:, 2— LPT2; 3 — LPT3:). (Во всех разновидно­
стях Бэйсика.)
MID$(строковое значение,начальный символ,[длина})

Выделение части строкового значения, начинающейся с первого
вхождения данного начального символа. Задавая необязательный
параметр длина, можно ограничить число символов выделяемой под­
строки. (Во всех разновидностях Бэйсика.)

МКО$(числовое значение)
Преобразование заданного числового значения в число удвоен­

ной точности, а затем представление его в виде восьмисимвольного
строкового значения (функция, обратная по отношению к CVD).
(В дисковом и расширенном Бэйсике.)
МКI $ (числовое значение)

Округление заданного числа до целого и представление послед­
него в виде двухсимвольного строкового значения (функция, обрат­
ная по отношению к CVI). (В дисковом и расширенном Бэйсике.)
MKS$(числовое значение)

Преобразование заданного числового значения в число обычной
точности и представление последнего в виде четырехсимвольного
строкового значения (функция, обратная по отношению к CVS).
(В дисковом и расширенном Бэйсике.)
ОС1$(числовое значение)

Представление заданного числового значения в восьмеричной
форме. (Во всех разновидностях Бэйсика.)
РЕЪ¥^(смещение)

Выдача содержимого ячейки памяти по заданному смещению и
текущему адресу сегмента (см. оператор DEF SEG). (Во всех разно­
видностях Бэйсика.)
PEN (деловое значение)

Выдача информации о работе светового пера. Интерпретация раз­

359

личных задаваемых чисел приводится в табл. А.2. Функцию PEN
можно использовать только после того, как выполнен оператор PEN
ON. (Во всех разновидностях Бэйсика.)

POI NT (столбец,строка)
Определение цвета точки с заданными координатами (должна

использоваться система координат, принятая для графического ре­
жима). (Во всех разновидностях Бэйсика.)

РО5(числовое значение)
Выдача номера столбца, соответствующего текущему положе­

нию курсора на экране в текстовом режиме вывода. Задаваемое чис­
ло при выполнении функции не используется, но обязательно долж­
но быть указано. (Во всех разновидностях Бэйсика.)

RIGHT $ (строковое значение,длина)
Выделение подстроки заданной длины, начиная с крайнего пра­

вого символа исходного строкового значения. (Во всех разновидно­
стях Бэйсика.)

Р№П{(числовое значение)]
Выдача случайного числа, заключенного между 0 и 1. Если за­

данное в функции числовое значение равно 0, то повторно выдается
то же случайное число, что и в предыдущем обращении к этой функ­
ции. Если числовое значение положительно или отсутствует, то
выбирается очередное число из текущего списка случайных чисел.
Если числовое значение отрицательно, то оно определяет новый
список случайных чисел, из которого выбирается первый элемент
(см. оператор RANDOMIZE). (Во всех разновидностях Бэйсика.)

SCREEN (строка,столбец[,опция])
Определение числового кода символа, высвеченного на экране в

заданной позиции (при задании позиции должна использоваться ну­
мерация строк и столбцов экрана, принятая в текстовом режиме).
Параметр опция имеет смысл только в текстовом режиме. Если этот
параметр принимает ненулевое значение («Истина»), то вместо чис­
лового кода символа, находящегося в заданной позиции, функция
SCREEN выдает атрибуты цвета для этой позиции на экране. Ниже
приводятся выражения, с помощью которых расшифровывается зна­
чение атрибутов цвета. (Во всех разновидностях Бэйсика.)

атрибуты ^ema=SCREEN (строка,столбец, —1)
цвет переднего плана-атрибуты цвета MOD 16
цвет фона=((атрибуты цвета—цвет переднего плана)/16)

MOD 128
мерцающие символы, если условие (атрибуты цвета>\21) истин-

но (—1)

360

SGN (числовое значение)
Выдача знака заданного числового значения: результат выпол­

нения функции равен +1, если числовое значение положительно;
— 1, если оно отрицательно, и 0, если оно равно 0. (Во всех разновид­
ностях Бэйсика.)

S\N (числовое значение)
Вычисление синуса заданной числовой величины. (Во всех

разновидностях Бэйсика.)
SPACE$ (число)

Генерация заданного числа пробелов. (Во всех разновидностях
Бэйсика.)

$РС(число)
Пропуск заданного числа позиций в выводимой на печать стро­

ке. Разрешается использовать только вместе с операторами PRINT
и LPRINT. (Во всех разновидностях Бэйсика.)
SQR (числовое значение)

Вычисление квадратного корня из заданного числа. (Во всех
разновидностях Бэйсика.)

STXGK (числовое значение)
Выдача информации о положении двух ручек или иных органов

управления электронными играми. Действительная проверка по­
зиций органов управления производится только тогда, когда зада­
ваемое в качестве аргумента числовое значение равно 0, однако и
при других значениях выдаются координаты по отдельным направле­
ниям. Допустимые числовые значения представлены в табл. А.З.
(Во всех разновидностях Бэйсика.)
STRlGf^uc^oeoe значение)

Определение состояния триггеров (кнопок) управления играми.
В зависимости от конкретного числового значения операнда про­
веряется тот или иной триггер. Соответствие между возможными
численными значениями и триггерами определяется табл. А.4. Функ­
ция STRIG может выполняться только после того, как был выпол­
нен оператор STRIG ON. (Во всех разновидностях Бэйсика.)

STRING$(04UHa, строковое значение или код)
Генерация строки заданной длины. Все символы этой строки оди­

наковы и совпадают с первым символом заданного строкового зна­
чения либо с символом, имеющим заданный числовой код, в зависи­
мости от того, какой из этих параметров указан. (Во всех разновид­
ностях Бэйсика.)
$Т^$(числовое значение)

Преобразование заданного числового значения в строку симво­
лов. (Во всех разновидностях Бэйсика.)

361

ТАЪ (столбец)
Подведение к заданной позиции (столбцу) в выводимой на печать

строке. Функция имеет смысл только вместе с операторами PRINT
и LPRINT. (Во всех разновидностях Бэйсика.)
TAN (числовое значение)

Вычисление тангенса заданной числовой величины. (Во всех
разновидностях Бэйсика.)

Т1МЕ$
Выдача системного времени. (В дисковом и расширенном Бэйси-

ке.)
\]$^[номер\(строковая переменная или числовое значение)

Передача управления программе на машинном языке, находя­
щейся по адресу, задаваемому оператором DEF USR. Программе
на машинном языке передается либо числовое значение, либо ад­
рес памяти, где хранится строковая переменная, в зависимости от
того, какой из двух параметров задан (строковая переменная или
числовое значение). (Во всех разновидностях Бэйсика.)

V АЪ(строковое значение)
Преобразование строкового значения в число. (Во всех разновид­

ностях Бэйсика.)
V A RPT R (переменная)

Определение адреса памяти, по которому хранится значение за­
данной переменной. (Во всех разновидностях Бэйсика.)

VARPTR(#HO^ep файла)
Определение адреса памяти, по которому хранится блок управ­

ления файлам ихБэйсик-интерпретатор а для заданного файла. (Во
всех разновидностях Бэйсика.)

V A R PT R $ (переменная)
Определение типа переменной и соответствующего ей адреса

памяти. Эти данные выдаются в виде трехсимвольного строкового
значения. (В дисковом и расширенном Бэйсике.)

Производные функции

Путем комбинации стандартных трансцендентных функций мож­
но получать различные другие функции того же типа, перечисленные
ниже. Вывод этих функций определяется уравнениями относитель­
но и, которое может представлять собой числовую константу, пере­
менную, элемент массива, функцию или выражение. Дополнительно
отмечены все значения аргумента и, использование которых приво­
дит к сообщениям об ошибках.

362

AR CCOS(n)=1.570796— ATN (n/SQR (1—— функция, об­
ратная косинусу n, где ABS(n)<l.

ARCCOT(n)=1.570796 — ATN(n) — функция, обратная котангенсу
n.

ARCCOSH(n)==LOG(n+SQR(n*n—1)) — функция, обратная ги­
перболическому косинусу п, где п > =1.

ARCCOTH(n)=LOG((n+l)/(n—1))/2— функция, обратная гипер­
болическому котангенсу п, где ABS(n)>l. 8

ARCCSC(n)=ATN(l/SQR(n*n— l))+(SGN(n)— 1)* 1.570796 —
функция, обратная косекансу п, где ABS(n)>l.

ARCCSCH(rt)=LOG((SGN(n)*SQR(n*n+l)-T-l)/n) — функция, об­
ратная гиперболическому косекансу п, где п>0.

ARCSEC(n)=ATN((SQR(n*n—l))+(SGN(n) — 1)*1.570796 —
функция, обратная секансу п, где ABS(n)> = l.

ARCSECH(n)=LOG((SQR(l—n*n)+l)/n) — функция, обратная ги­
перболическому секансу п, где 0<n<=1.

ARCSIN(n)=ATN(n/SQR(l—п*п)) — функция, обратная синусу
п, где ABS(n)<l.

ARCSINH(n)=LOG(n+SQR(n*n+l)) — функция, обратная гипер­
болическому синусу п.

ARCTANH(n)=LOG((H~n)/(l—п))/2 — функция, обратная гипер­
болическому тангенсу п, где ABS(n)< 1. <

COSH(n)=(EXP(n)+EXP(—n))/2—гиперболический косинус п.

COT(n) = l/TAN(n) — котангенс п, где п<>0.

СОТН(п)=ЕХР(—п)/ЕХР(и)—ЕХР(—и))*2+1 — гиперболический
котангенс п, где п<>0.

CSC(n)=l/SIN(n) — косеканс п, где п<>0.

CSCH(n)=2/(EXP(n) — ЕХР(—п)) — гиперболический косеканс п,
где п<>0.

LOGa (n)=LOG(n)/LOG(a) — логарифм п по основанию а, где а>0
и п>0.

LOG10(n)=LOG(n)/2.302585 — десятичный логарифм п, где п>0.

SEC(n)=l/COS(n) — секанс п, где п<>1.570796.

SECH(n)=2/(EXP(n)+EXP(—и))—гиперболический секанс п.

363

SINH(n)=(EXP(n)—EXP(—n))/2 — гиперболический синус n.
TANH(n)=(EXP(—n)—EXP(n))/EXP(—n))+EXP(n)) — гиперболи­
ческий тангенс n.

Таблица A.l. Опции протокола последовательной передачи данных1*

‘) Данные опции используются в операторах OPEN “СОМ и задаются в том порядке, как они перечислены в таблице.

Опция Интерпретация
бод Скорость передачи данных: 75, НО, 150, 300, 600, 1200, 1800,

2400, 4800, 9600
способ кон­

троля
, слово
,стоп
,RS
,С5лЩ

S—по пробелам (0 бит), М—по маркеру (1 бит), О—по не­
четности, Е — по четности, N — в случае отсутствия контроля

Длина информационного слова в битах: 4, 5, 6, 7 или 8
Число стоповых битов: 1 или 2
Подавление сигнала запроса на передачу (RTS)
Ожидание в течение заданного числа миллисекунд сигнала

,DS^c
сброса (CTS)

Ожидание в течение заданного числа миллисекунд сигнала го­

,СВж
товности набора данных (DSR)

Ожидание в течении заданного числа миллисекунд сигнала

,LF
несущей (CD)

Принудительное формирование символа перевода строки после
каждого символа возврата каретки

Таблица А.2. Операнд функции PENЧисленное значение операнда Результат выполнения
0
1

Световое перо выключено с момента последнего опроса
Номер столбца, который последний раз отмечался световым

2
пером в графическом режиме

Номер строки, которая последний раз отмечалась световым

3
4
5
6

пером в графическом режиме
Световое перо включено Ч
Номер последнего допустимого столбца в графическом режиме
Номер последней допустимой строки в графическом режиме
Номер строки, которая последний раз отмечалась световым

7
пером в текстовом режиме

Номер столбца, который последний раз отмечался световым

8
9

пером в текстовом режиме
Номер последней допустимой строки в текстовом режиме
Номер последнего допустимого столбца в текстовом режиме

Ч Результатами выполнения функций PEN(O) и PEN(3) являются значения «Истина» (-1) и «Ложь» (0).

364

Таблица А.З. Операнд функции STICKЧисленное значение операнда Результат выполнения
0
1
2
3

Горизонтальная координата, ручка управления А
Вертикальная координата, ручка управления А
Горизонтальная координата, ручка управления В
Вертикальная координата, ручка управления В

Таблица А.4. Операнд функции STRIGЧисленное значение операнда х) Результаты выполнения 2)
0 Клавиша триггера А1 нажата с момента последнего выполне­

1
2

ния функции STRIG(O)
Клавиша триггера А1 нажимается в данный момент
Клавиша триггера В1 нажата с момента последнего выполне­

3
4

ния функции STRIG(2)
Клавиша триггера В1 нажимается в данный момент
Клавиша триггера А2 нажата с момента последнего выполне­

5
6

ния функции STRIG(4)
Клавиша триггера А2 нажимается в данный момент
Клавиша триггера В2 нажата с момента последнего выполне­

7
ния функции STRIG(6)

Клавиша триггера В2 нажимается в данный момент

») Численные значения 4—7 имеют смысл только’в расширенном Бэйсике.2) Результатом выполнения функции STRIG всегда является значение «Истина* (—1) или «Ложь» (0).

Приложение В

КРАТКОЕ ОПИСАНИЕ КОМАНД ДОС ПВМ

В данном приложении дается описание всех стандартных команд
ДОС ПВМ (версия 1.10), перечисленных в алфавитном порядке. Бо­
лее подробную информацию можно найти в гл. 3 и 5 данной книги
или в гл. 3 книги IBM “Personal Computer Disk Operating System”,
2nd ed., содержащей описание дисковой операционной системы для
ПВМ.

Поскольку в ПВМ предусматриваются средства формирования
пользовательских команд (гл. 5), каждая конкретная вычислитель­
ная система может иметь команды, не перечисленные в данном при­
ложении. Так, например, для винчестерских накопителей часто ис­
пользуются специализированные команды форматирования и копи­
рования дисков.

При вводе рассматриваемых ниже команд с клавиатуры следует
набирать все символы, выделенные ЖИРНЫМ ШРИФТОМ, в точ­
ности так, как они напечатаны; разрешается лишь в любом месте
заменять прописные буквы на строчные и наоборот. Все, что напе­
чатано курсивом, должно заменяться на фактические значения.
Текст, напечатанный в квадратных скобках, является необязатель­
ным, однако если он используется в команде, то сами квадратные
скобки набирать не следует. Любой параметр, за которым следует
многоточие (. . .), можно повторять многократно, причем само много­
точие при этом не набирается. Необходимо внимательно следить за
тем, чтобы при наборе команд вводились все указанные здесь знаки
препинания (кроме квадратных скобок и многоточия), включая за­
пятые, двоеточия, косую черту, знаки равенства и знаки плюс.
дисковод:

Регистрация заданного дисковода как используемого по умолча­
нию в тех командах, где опущено явное определение дисковода.
[дисковод:]файл[опции\

Работа с командным или пакетным файлом. Количество и вид за­
даваемых опций определяются конкретным командным или пакет­
ным файлом.
CHKDSK [дисковод:]

Проверка целостности дисковых файлов и выдача информации
об использовании дисковой памяти.
СОМР [дисковод:] файл [дисковод:][файл]

Сравнение содержимого двух файлов с заданными именами и вы­
дача информации о местонахождении обнаруженных несовпадений.

366

COPY [дисковод:]исходный файл [опция] 1+[дисковод:] присоединяе­
мый файл [опция]][дисковод:][результирующий файл][опция][/У]

Копирование заданного исходного файла в результирующий с
возможностью соединения исходного файла с другим присоеди­
няемым файлом. Если указан факультативный параметр /V, то
производится проверка полученной копии. В качестве значения пара­
метра опция может быть задано /А или /В. В случае опции /А исход­
ный файл копируется до первого символа конца файла (код 26), и
этот символ добавляется в конец результирующего файла. Если име­
ет место опция/В, то исходный файл копируется целиком, а в конец
результирующего файла не добавляется никаких специальных сим­
волов.

DATE [дата]
Установка системной даты. Если параметр дата не задан, фор­

мируется запрос на его ввод.
DIR [дисковод:][файл] [/P][/W]

Вывод всего дискового справочника или некоторой его части.

DISKCOMP [дисковод:] [дисковод'.] [/1]
Сравнение содержимого двух дискетов и выдача информации обо

всех обнаруженных несоответствиях. Если задан необязательный
параметр /1, то дискеты сравниваются только по одной стороне.
DISKCOPY [исходный дисковод'.][результирующий дисковод:] [/1J

Копирование дискета, установленного на заданном исходном
дисководе, на дискет результирующего дисковода. Когда задан толь­
ко один дисковод (или ни одного), копирование производится на тот
же носитель. Если задан параметр /1, то копируется лишь одна сто­
рона дискета.

ERASE [дисковод:]файл
Удаление из дискового справочника файла с заданным именем.

EXE2BIN [дисковод :]файл [дисковод\][файл]
Преобразование файла типа EXE в файл типа СОМ.

FORMAT [дисковод:] I/SJI/1]
Инициализация дискета с форматом хранения записей, принятым

в ДОС ПВМ, выделение и отметка на дискете дефектных областей,
разметка незаполненного справочника. При задании опции /S фор­
матированный дискет назначается системным диском, а в случае
опции /1 форматируется лишь одна сторона дискета.
MODE \№:номер[длина][,высота]

Установка длины строки (от 1 до 132 символов) и высоты шрифта
(1/6 или 1/8 дюйма) печатающего устройства под номером 1, 2 или
3. Задание высоты строки возможно лишь в некоторых моделях пе­
чатающих устройств.

367

MODEI/гшринаП .направление^ ,Т]
Установка ширины рабочего поля экрана (40 или 80 символов).

Можно также по этой команде сдвинуть изображение на экране в за­
данном направлении (значение параметра направление, равное R,
соответствует сдвигу вправо, a L — влево). Если опция Т задана, то
изображение сдвигается вместе с текстовыми данными; если Т от­
сутствует, то — без них.
MODE СО^адаптер:скорость[.способ кЬнтроля[.слово[.стоповая по­
сылка [, Р]Ш

Определение протокола последовательной передачи данных, ко­
торый должен будет использоваться с адаптером 1 или 2. Скорость
передачи данных может принимать значения 110, 150, 300, 600, 1200,
2400, 4800 или 9600 бод. Контроль, определяемый значением пара­
метра способ контроля, может быть по четности (Е), по нечетности
(О) или может вообще отсутствовать (N). Длина слова может состав­
лять 7 или 8 бит. Могут быть заданы 1 или 2 стоповых бита.
MODE \№номер:=£Шкадаптер

Переадресация выхода для печатающего устройства под номером
1, 2 или 3 (значение параметра номер) на адаптер последовательной
передачи данных номер 1 или 2.

PAUSE [комментарий]
Приостановка обработки для вывода на экран слова “PAUSE”

вместе с комментарием, если он задан, а также сообщения “Strike
any key when ready...” («По готовности нажмите любую клавишу...»),
после чего система ждег нажатия какой-либо клавиши.
REM [комментарий]

Вывод на экран слова “REM” вместе с комментарием, если он
задан.

RENAME [дисковод:]старое имя новое имя
Замена старого имени файла новым.

SYS дисковод:
Копирование программных файлов ДОС ПВМ, необходимых для

превращения диска, установленного на заданном дисководе, в сис­
темный; при этом устанавливаемый диск должен быть размечен с ис­
пользованием опции /S в команде FORMAT.
TIME [время]

Установка системного времени. Если параметр время отсутствует,
то ДОС ПВМ формирует запрос на ввод его значения.
TYPE [дисковод:]файл

Вывод на экран содержимого заданного файла', при выводе содер­
жимое интерпретируется как набор символов в коде ASCII (см. При­
ложение D).

Приложение С

СООБЩЕНИЯ ОБ ОШИБКАХ

В данном приложении содержится краткое описание всех сообще­
ний об ошибках, выдаваемых интерпретатором Бэйсика ПВМ. Со­
общения перечисляются в алфавитном порядке; для каждого из них
указан код ошибки, выдаваемый функцией ERL. Этот кодовый номер
служит также перекрестной ссылкой для списка развернутых сооб­
щений об ошибках, содержащегося в приложении А книги “IBM
Personal Computer BASIC”, 2nd ed.

Сообщение Перевод Кодовый номер ошибки
Advanced feature Средство расширенного Бэйсика 73
Bad file mode Неправильный режим файла 54
Bad file name Неверное имя файла 64
Bad file number Неверный номер файла 52
Bad record number Неверный номер записи 63
Can’t continue Продолжение невозможно 17
Communication buffer overflow Переполнение буфера информа­

ционного обмена
69

Device Fault Сбой в работе устройства 25
Device I/O error Ошибка ввода-вывода 57
Device Timeout Устройство выключено из работы 24
Device Unavailable Устройство недоступно 68
Direct statement in file Непосредственный оператор в файле 66
Disk full Диск заполнен 61
Disk Media Error Дефект диска 72
Disk not Ready Диск не готов 71
Disk Write Protect Запрещена запись на диск 70
Division by zero Деление на ноль 11
Duplicate definition Повторное определение 10
FIELD overflow Переполнение при выполнении

оператора FIELD
50

File already exists Файл уже существует 58
File already open Файл уже открыт 55
File not found Файл уже найден 53
FOR without NEXT FOR без NEXT 26
Illegal direct Недопустимая директива 12
Illegal function call Недопустимый вызов функции 5
Input past end Ввод после признака конца 62
Internal error Внутренняя ошибка 51
Line buffer overflow Переполнение буфера строки 23
Missing operand Отсутствует операнд 22
NEXT without FOR NEXT без FOR 1

369

Продолжение

Сообщение Перевод Кодовый номер ошибки
No RESUME Нет оператора RESUME 19
Out of data He хватает данных 4
Out of memory He хватает памяти 7
Out of paper Не хватает бумаги 27
Out of string space Не хватает места в строковой пере-

менной 14
Overflow Переполнение 6
RESUME without error RESUME без ON-ERROR 20
RETURN without GOSUB RETURN без GOSUB 3
String formula too complex Сложность строковой формулы

превышает допустимую 16
String too long Длина символьной строки пре­

вышает допустимую 15
Subscript out of range Индекс лежит вне пределов уста­

новленного диапазона значений 9
Syntax error Синтаксическая ошибка 2
Too many files Количество файлов превышает до­ 67

пустимое
Type mismatch Несоответствие типов 13
Undefined line number Неопределенный номер строки 8
Undefined user function Неопределенная функция пользо­

вателя 18
Unprintable error Не выводимая на печать ошибка
WEND without WHILE WEND без WHILE 30
WHILE without WEND WHILE без WEND 29

Приложение D

СИМВОЛЫ, КОДЫ И СПЕЦИАЛЬНЫЕ КЛАВИШИ

В табл. D.1 устанавливается соответствие между 256 символами,
которые можно использовать при работе с экраном дисплея, и их
числовыми кодами. Коды 128—256 недопустимы в кассетном Бэй-
сике.

Для того чтобы сгенерировать любой символ с кодом 32—126,
достаточно нажать соответствующую клавишу точно так, как это
делается на обычной пишущей машинке. Например, нажатие кла­
виши А вызывает появление на экране буквы А. Символ можно так­
же сгенерировать, если сначала нажать клавишу Alt, а затем, не
отпуская ее, набрать на малой цифровой клавиатуре код этого сим­
вола (гл. 7). Указанные способы генерации символов не применимы
для кодов 0—31 и кода 127 при вводе с клавиатуры команд в режиме
немедленной обработки и при ответах на запросы операторов INPUT
и LINE INPUT. Однако эти способы можно использовать при вводе
ответов на запросы функций INPUT$ и INKEY$. Безусловно, лю­
бой допустимый символ можно сгенерировать с помощью функции
CHARS.

Для большинства печатающих устройств коды 0—32 являются
управляющими и не имеют внешнего представления. Интерпретация
почти всех управляющих кодов меняется в зависимости от конкрет­
ной модели печатающего устройства; те немногие из них, которые
имеют одну и ту же интерпретацию для всех печатающих устройств,
перечислены в табл. 10.3. Интерпретация кодов, больших 127, также
в основном зависит от конкретного печатающего устройства, а на
печатающих устройствах со съемными шрифтоносителями (лепест­
ковыми или цилиндрическими) даже коды 32—127 могут отличаться
по интерпретации от стандарта ASCII, представленного в табл. D.I.

В табл. D.2 перечислены расширенные коды, которые в основном
генерируются путем одновременного нажатия нескольких клавиш,
включая AIt,и Ctrl. Этим кодам не соответствуют никакие символы
и их можно выявить только с помощью функции INKEYS (гл. 11).

371

Таблица D.l. Символы экрана и их коды

Десятичный. Десятичный Десятичный
код Символ код Символ код Символ

ООО (ПУМ) 047 1 094 Л
OOI © 048 0 095
002 е 049 1 096 •
003 050 2 097 а
004 ♦ 051 3 098 ъ
005 * 052 4 099 с
006 ♦ 053 5 100 d
007 (звуковой сигнал) 054 6 101 е
008 (возврат на 1позиц} 055 7 102 f
009 (метка табуляций) 056 8 103 g
010 (перевод строки) 057 9 104 h
011 (исх. позиц. курсора) 058 • 105 I
012 (очистка экрана) 059 106 j
013 (возврат каретки) 060 < 107 k
014 061 108 1
015 к 062 > 109 m
016 063 *> 110 n
017 064 (Э 111 о
018 t 065 А 112 p
019 ft 066 В 113 q
020 5 067 С 114
021 § 068 D 115 s
022 069 Е 116 t
023 JL 070 F 117 u
024 t 071 G 118 V
025 + 072 Н 119 w
026 -> 073 I 120 X
027 074 J 121 у
028 (перем, курс, вправо) 075 К 122 z
029 (перем, курс, влево) 076 L 123 {
030 (перем, курс, вверх) 077 М 124
031 (перем, курс, вниз) 078 м 125 }
032 (провел) 079 о 126
033 г 080 р 127 о
034 I» 081 Q 128 G
035 .082 R 129 u
036 $ 083 S 130 ё
037 % 084 Т 131 a
038 & 085 и 132 ’a
039 086 V 133 ’a
040 (087 % 134 a
041) 088 X 135 p
042 t 089 Y 136 'e
043 + 090 Z 137 "e
044 • 091 1 138 ’e
045 •• 092 \ 139
046 • • 093 1 140 ?

372

песятичныи Десятичный Десятичный
код Символ код Символ код СимВол

141 \ 180 ч 219 ■
142 А 181 И 220 ■ц
143 А 182 41 221 11
144 Ё 183 ~п 222 1

145 • зе 184 =ч 223 ■■
146 УЕ 185 224 а
147 ё 186 II 225 Р
148 6 187 =п 226 г
149 о 188 227 7Г
150 й 189 228 2
151 й 190 229 о.‘
152 V 191 —1 230 Д
153 б 192 и 231 ’т
154 и 193 1 232 ф
155 Ф 194 т* 233 -е-
156 £ 195 ь 234 Я
157 ¥ .196 235
158 Pt 197 4- 236 со
159 f 198 237 ЛГ
160 й. 199 г 238 е
161 1 200 239 л
162 6 201 г 240
163 й 202 241 4-
164 п 203 лг 242
165 N 204 2 243
166 а 205 244 Г
167 о 206 245 J
168 207 —fcs 246
169 Г~“ 208 _Ц_ 247
170 —1 209 248 о
171 Vz 210 249 •
172 % 211 250 •
173 i 212 U: 251 уД
174 « 213 F= 252 п
175 » 214 253 2
176 215 + 254 ■
177 216 255 (продел ’FF’)
178- 217 J
179 1 218 Г

♦) Непосредственный ввод с клавиатуры кода 3 (одновременно с нажатием клавиши Alt) вызывает прерывание аналогично тому, как это происходит при совместном нажатии кла­виш Ctrl} Scroll Lock однако функция CHRC (3) всегда генерирует указанный в таблице символ с кодом 3. ф+) Для большинства печатающих устройств код 12 соответствует прогону бумаги к на­чалу следующей страницы.

Таблица D.2. Коды символов расширенной клавиатуры и соответствующие им
комбинации клавиш

!) Если не запрограммированы как функциональные клавиши.

Десятичный
код Комбинация клавиш

Десятичный
код Комбинация клавши

3
15

(нулевой символ)
85 O|F2

16 AltlQ 86 O|F3
17 AltlW 87 O|F4
18 AltlE 88 OIF5
19 AltlR 89 O|F6
20 Alt IT 90 O|F7
21 AltlY 91 O|F8
22 AltlU 92 OIF9
23 Alt II 93 OlFlO
24 Alt IO 94 CtrllFl
25 Ait Ip 95 CtrllF2
30 AltlA- 96 CtrllF3
31 Alt IS 97 CtrllF4
32 Alt ID 98 CtrllF5
33 AltlF 99 CtrllF6
34 AltlG 100 CtrllF7
35 AltlH 101 CtrllF8
36 AltlJ 102 CtrllF9
37 Ait Ik 103 CtrllFlO
38 AltlL 104 AltlFl
44 AltlZ 105 AltlF2
45 Alt |K 106 Alt|F3
46 AltlG 107 AltlF4
47 AltlV 108 AltlF5
48 Alt IB 109 AltlF6
49 Alt IN 110 AltlF7
50 Alt IM 111 Alt|F8
59 Fl* 112 AltlF9
60 F2* 113 AltlFlO
61 F3* 114 CtrllPrtSc
62 F4* 115 ctrll*(>?vA/^ слово)
63 F5* 116 с^-^следуюш,.слово)
64 F6* 117 Ctrl I End
65 F7* 118 Ctrl! PgDn
66 F8* 119 Ctrl I Home
67 F9* 120 Alt 11
68 F10* 121 Alt 12
71 Home 122 Altl3
72 ♦ 123 Altl4
73 PgUp 124 Altl5
75 •125 Altl6
77 126 Alt 17
79 End 127 Alt 18
80 I 128 Altl9
81 PgDn 129 • AltlO
82 Ins 'y 130 Altl-
83 Del 131 Altl =
84 OlFl 132 Ctrl I PgUp

СПРАВОЧНАЯ КАРТА ДЛЯ ПВМ ФИРМЫ IBM

Как пользоваться картой

ф Текст, напечатанный жирным шрифтом, на­бирать на клавиатуре дословно.ф Текст, напечатанный курсивом, заменять на фактические значения, переменные или выра­жения.• Квадратные скобки

([1) означают, что заключенные в них па­раметры необязательны.• Многоточие (...) озна­чает, что стоящие перед ним параметры могут повторяться.ф Все остальные знаки препинания набирать на клавиатуре в точно-

сти так, как они напеча­таны.ф Более подробное описа­ние перечисленных в карте понятий, а также описание не указанных здесь команд, операто­ров и функций приводит­ся в приложениях А и
В.

Краткое описание Бэйсика9 Данное краткое описа­ние Бэйсика примени-
Команды Бэйсика
AUTO [номер первой ст ро­
ки] [, [приращение]]Установка режима ав­томатической нумерации программных строк.
DELETE номер первой
строки[— номер послед­
ней строки]Удаление одной или более программных строк.
EDIT номер строкиВывод на экран прог­раммной строки для редак­тирования.
FILES [имя файла]Вывод на экран всего дискового справочника или его части.
LIST [номер строки][—
[номер строки]][,имя фай­
ла/ устройства]Вывод на экран прог­раммных строк с номерами из заданного диапазона или вывод их на печать на уст­ройство с заданным именем.
LL1ST [номер строки] L—»

Операторы Бэйсика
ВЕЕРВключение встроенно­го звукового сигнального устройства.
CHAIN [MERGE] имя фай­
ла [, [выражение][, [ALL]]
[,DELETE номер первой
строки, номер последней
строки}]Загрузка или объеди­нение программных строк

мо для кассетного Бэй­сика версии 1.0 и для
[номер строки]]Вывод на печатающее устройство заданного диа­пазона программных строк.
LOAD имя файла[,К]Загрузка программы из файла с заданным име­нем и возможное ее выпол­нение.
MERGE имя файлаОбъединение программ­ных строк,записанных в файле с заданным именем, со строками, находящимися в памяти.
NAME старое имя AS но­
вое имяПереименование ди­скового файла.
NEWУдаление из памяти всех программных строк, переменных и массивов.
REN UM [[первый новый
номер строки] [, [первый
старый номер строки] [,
приращение]]

с возможностью предвари­тельного удаления заданно­го диапазона номеров строк. Выполнение полученной в результате программы, начиная со строки с наи­меньшим номером или со строки с заданным номером. Возможно сохранение зна­чений переменных.
CIRCLE (столбец,строка).

дискового и расширенно­го Бэйсика версии 1.10.
Перенумерация прог­раммных строк.

RUN [номер строки]Выполнение находя­щейся в памяти программы; если задан номер строки, то начиная со строки с этим номером.
RUN имя файла[,Щ]Загрузка и выполне­ние программы, записанной в файле с заданным именем. Файлы при необходимости остаются открытыми.
SAVE имя файла[,А или
.Р] Запись программы в файл.
SYSTEMПередача управления ДОС ПВМ.
TRONПереключение в ре­жим трассировки
TROFFОтмена режима трас­сировки.
радиус [, [цвет] [, [начало
дуги, конец дуги] ^характе­
ристическое отношение]]]Вычерчивание окруж­ности, эллипса или дуги.
CLOSE [=й=][мол«ер фай­
ла/устройствам,[#] [номер
файла/устройства]] ...Закрытие файлов и устройств.
CLS

374

Очистка экрана дисп­лея.
COLOR [цвет переднего
плана][, [цвет фона][,цвет
границы]]Установка цвета фона, переднего плана и границы для экрана в режиме тек­стового вывода.
COLOR [цвет фона/грани*
цы][, палитра]Установка цвета фона
и границы и выбор палит­
ры переднего плана для режима графического вы­вода со средней разрешаю­щей способностью.
COMMON переменная [,пе­
ременная] ...Задание имен тех пере­менных и целых массивов, значения которых должны сохраняться при выполне­нии последующего опера­тора CHAIN.
DATA константа, [конс­
танта,] . .Добавление строко­
вых или числовых констант к списку значений для опе­раторов READ.
DATE$ =строковое значе­
ние Установка текущей да­
ты для системного кален­даря.
DEF FN имя[(фиктивная
переменная[,фиктивная пе­
ременная]. ..)]=определена еПрисваивание имени строковой или числовой функции и задание ее опре­деления в виде выражения,
в которое могут входить
фиктивные переменные.
DEF буква типа [—бук*
ва][,буква[—буква]] ...Определение типа (INT, SNG, DBL, SNG) для переменных, имена кото­рых начинаются с букв, входящих в один из задан­ных диапазонов.
DIM имя массива(индекс
[,индекс] ...)[,имя массива
(индекс[,индекс] ...)] ...Распределение памяти для массивов и задание мак­симального значения индек­са по каждой размерности массивов.
DRAW строка подкомандВычерчивание фигу­
ры, определяемой заданной
строкой подкоманд.
ENDЗавершение программы.
ERASE имя массива[,имя
массива]...Удаление массивов с ваданными именами.
FIELD [^]номер файла,
длина AS строковая пере*
менная[,длина AS стро­
ковая переменная]...Задание переменных, соответствующих полям файла с прямым доступом.
FOR переменная-счетчик

цикла=первое значение ТО
последнее значение [STEP
значение приращения]Начало цикла FOR/ NEXT.
GET [^]номер файла[,
номер записи]Считывание записи из файла с прямым доступом.
GET (столбец!,строка!)—
(ст о л бе ц 2, ст р о к а 2), и м я
массиваЗапоминание цвета всех точек заданной пря­моугольной области экра­на.
GOSUB номер строкиПередача управления в подпрограмму строке с
заданным номером.
GOTO номер строкиПередача управления строке с заданным номером.
IF условие THEM оператор
[-.оператор]... [ELSEonepa-
тор [-.оператор]...]Выполнение одного или более операторов в зависи­мости от условия.
INPUT [;][“запрос”-, или “за­
прос”,] переменная[,переме­
нная] ...Присваивание всем
переменным с заданными именами значений, вводи­мых с клавиатуры. Возмож­но (но не обязательно) вы­давать наводящее сообще­ние или запрос на ввод с клавиатуры требуемых зна­чений.
INPUT ^номер файла, пе­
ременная [,переменная]...Присваивание значе­ний, считываемых из ука­занного файла или устрой­ства, по очереди всем пере­
менным с заданными имена­ми.
KILL имя файлаУдаление дискового файла с заданным именем.
[LET] переменная^ выраже­
ние Присваивание задан­ной переменной значения
выражения.
LI N (столбец! .строка!)]
—(столбец?,строка?) [,
[цвет] L,B[F]]]Вычерчивание на эк­ране дисплея линии или прямоугольника.
LINE INPUT[;][«sanpoc»;]
строковая переменнаяВвод всех символов, набираемых на клавиатуре до нажатия клавиши и последующее присваива­ние их заданной строковой
переменной. Возможно (хо­тя и не обязательно) вы­водить запрос на ввод с клавиатуры требуемого зна­чения.
LINE INPUT 41= номер фай­
ла,строковая переменнаяВвод всех символов из указанного файла, до бли­

жайшего символа возврата каретки, за которым следу­ет символ перехода к сле­дующей строке, а затем при­сваивание введенных сим­волов строковой перемен­
ной.
LOCATE [строка] [, [стол­
бец] [, [видимость][, [первый]
[,последний]]]]!Перемещение курсора на заданную позицию (оп­ределяемую номерами соот­ветствующих строки и стол­бца). Определение степени видимости курсора на эк­ране, а также его размера и формы.
LPRINT [USING шаблон;]
список переменных [;]Печать на основном системном печатающем устройстве, а в остальном производятся те же дейст­вия, что и в случае опера­тора PRINT.
LSET переменная поля=
=ст роковое значениеПрисваивание задан­ной переменной поля фай­ла с прямым доступом стро­
кового значения (начиная с крайней левой позиции поля).
MI Построковая перемен*
ная, первый символ [,коли­
чество символов])=строко­
вое значениеЗамена части строко­
вой переменной (начиная с заданного первого симво­ла) на указанное в коман­де количество символов строкового значения.
NEXT [переменная-счетчик
цикла] [,переменная-счетчик
цикла]...Окончание одного или более FOR/NEXT-циклов.
ON ERROR GOTO номер
строкиЗадание номера прог*
раммной строки, которой должно передаваться уп­равление в случае ошибки.
ON выражение GOSUB но­
мер строки[,номер стро­
ки] ...Передача управления подпрограмме в строку с но­
мером, совпадающим с од­ним из перечисленных, в за­висимости от значения вы­ражения.
ON выражение GOTO номер
строки[,номер строки]...Передача управления
строке с номером, совпа­дающим с одним из пере­численных, в зависимости от значения выражения. ~
OPEN имя файла/устрой­
ства [FOR режим] AS L=h=J
номер файла/устройства
[ЬЕЫ=длина записи]Присваивание номера
файлу/устройству с задан­ным именем и задание ре­

375

жима последовательного доступа (INPUT, OUTPUT или APPEND), который будет использоваться. Ука­зывая длину записи и опу­ская конструкцию FOR, можно установить режим прямого доступа.
OPTION BASE наимень­
шее значение индексаУстановка наименьше­
го значения индекса (О или 1) для всех массивов.
PAINT (столбец, стро­
ка) [, цвет-заполнитель [,
цвет границы}}Закрашивание задан­ным цветом-заполнителем области экрана, ограничен­ной указанным цветом гра­
ницы.
PLAY строка подкомандИсполнение встроен­ным звуковым устройством мелодии, определяемой за­данной строкой подкоманд.
РОКЕ смещение, значение
байтаЗапись по адресу сме­
щения заданного значения
байта.
PRESET (столбец, став­
ка)!.,цвет]Вывод на экран дисп­лея отдельной точки; если
цвет для нее не задан, то используется цвет фона.
PRINT [список значений]Вывод на экран пере­численных в списке значе­ний, если они указаны.
PRINT [=ф номер файла/
устройства,] [USING шаб­
лон',] список значенийВывод перечисленных в списке значений на эк­ран, либо на другое задан­ное устройство, либо в за­данный файл. Задавая шаб­лон, можно выводить дан­ные в нужном формате.
PSET (столбец, строка)
[,цвет]Вывод на экран дисп-
Функции в Бэйсике
ABS (числовое значение)Вычисление абсолют­ной величины заданного
числа.
ASC (строковое значение)Определение числово­го кода для первого симво­ла в заданном строковом
значении.
ATN (числовое значение)Вычисление арктанген­са заданного числового зна­
чения.
СЛ)ЪЪ(числовое значение)Преобразование задан­ного числового значения в значение с двойной точ­ностью.
CHR$(K0d)

Определение символа,

лея отдельной точки; если
цвет для нее не задан, то используется цвет тексто­вой информации.РиТ:Ц=но.мер файла],номер
записи}Занесение записи в файл с прямым доступом. PUT (столбец,строка), имя
массива],параметр смеси]Воспроизведение на экране цветов всех точек заданной прямоугольной области. Необязательный последний параметр позво­ляет смешивать заданные цвета точек (представлен­ные в виде массива своих номеров) со стандартными цветами экрана.
RANDOMIZE целое значе­
ние Выбор набора случай­ных чисел по заданному це­
лому значению.
READ переменная],пере­
менная]...Присваивание перемен­ным с заданными именами значений из списка, соз­данного операторамиЙАТА.
REM [комментарий]Задание комментария в программе; содержащие­ся в тексте комментария операторы не выполняются.
RESTORE [номер строки]Восстановление поло­жения указателя списка значений’ операторовИАТА.
RESUME [молер строки или
NEXT]Возобновление выпол­нения программы после выявления и обработки ошибки оператором ON ERROR GOTO.
RETURN [номер строки]Возврат управления из подпрограммы оператору, стоящему непосредственно за последним оператором GOSUB [или ON-GOSUB). Возврат управления в стро-

соответствующего задан­ному числовому коду.
CANT (числовое значение)Округление заданного
числового значения до бли­жайшего целого числа.
£Ъ$(числовое значение)Вычисление косинуса заданного числового значе­
ния.
С$Ы6(числовое значение)Преобразование задан­ного числового значения в значение с обычной точ­ностью.
CSRLINВыдача номера экран­ной строки, соответствую­щей текущему положению курсора.

ку с заданным номером до­пустим только в расширен­ном Бэйсике.
USET переменная поля=
— строковое значение Заполнение заданного поля файла с прямым досту­пом указанным строковым значением, выровненным по крайней правой позиции поля.
SCREEN [режим]], [свече­
ние]], [активная страница]
[,обозреваемая страница]]/ Выбор режима работы экрана и цвета свечения установка активной стра­
ницы для операторов вы­вода и обозреваемой стра­
ницы, которая будет появ­ляться на экране.
SOUND частота, длитель-
ностъГенерация тона.
STOPПрекращение выполне­ния программы.
SWAP переменная,перемен­
ная Обмен значениями меж­ду двумя переменными.
Т1МЕ$=ст роковое значе­
ние Установка системного счетчика времени.
WENDОкончание цикла WHILE/WEND.
WHILE условиеНачало цикла WHILE/ WEND
WIDTH [номер устройст­
ва,\длина строкиУстановка длины стро­ки для дисплея или како­го-либо другого устройства.
WIDTH имя устройства,
длина строкиОпределение длины строки для устройства с за­данным именем; указанная длина устанавливается не сразу, а только после раз­блокирования соответст­вующего устройства.
СVD(строковое значение)Преобразование задан­ного восьмисимвольного
строкового значения в зна­чение с двойной точностью (функция, обратная по от­ношению к MKD$).
СУ1(строковое значение)Преобразование за­данного двухсимвольного
строкового значения в це­лое значение (функция, обратная по отношению к МК1$).
С\1Ь(строковое значение)Преобразование задан­ного четырехсимвольного
строкового значения в зна­чение с обычной точностью

376

(функция, обратная по от­ношению к MKS$).
DATE$Выдача текущей систем­ной даты.
EOF(номер файла)Выдача значения «Ис­тина» (—1) или «Ложь» (0) в зависимости от того, был ли достигнут конец за­данного файла или нет.
ERLВыдача номера стро­ки, в которой была обнару­жена последняя ошибка.
ERRВыдача кода последней обнаруженной ошибки.
ЕХР(числовое значение)Возведение константы
е (2.718282) в степень, рав­ную заданному числовому
значению.
Е\Х(числовое значение)Преобразование задан­ного числового значения в целое путем отбрасывания дробной части.
FNmjhh (значение ^значе­
ние]...)Вызов функции с за­данным именем, которая предварительно была опре­делена оператором DEF FN; в этом определении со­держится также и информа­ция о количестве и типах значений, которые необхо­димо задавать при вызове
данной функции.
F R Е (строковое значение или числовое значение)Выдача сведений об объеме свободной памяти. Задание строкового значе­
ния вызывает реорганиза­цию области памяти, пред­назначенной для хранения строковых данных.
INKEY$Выдача информации о том, какая клавиша на клавиатуре нажималась в текущий момент.
INPUT$(4«c4o [, [#]нол*ер
файла/устройства])Считывание заданного числа символов с клавиа­туры, какого-либо устрой­ства или файла.
INSTR([начальный символ],
исходная строка, искомая
строка)Поиск в исходной стро­ке первого вхождения ис­комой строки, начиная с
Команды ДОС ПВМ Версия 1.10
дисководуНазначение заданного
дисковода в качестве ис­пользуемого по умолчанию?4 т. е. при выполнении ко­манд с неуказанным в яв­ном виде идентификатором

заданного начального сим­вола, если он указан, или с самого первого символа исходной строки.
INT('4uc4oeoe значение)Поиск наибольшего це­лого числа, не превосходя­щего заданное числовое значение.
L EFT$(строковое значение,
длина)Выделение из строково­го значения подстроки за­данной длины, начиная с крайнего левого символа.
LEN (строковое значение)Определение количест­ва символов в заданном строковом значении.
MID$ (строковое значение,
начальный символ [,длина])Выделение части стро­кового значения, начинаю­щейся с заданного началь­ного символа. Задавая дли­ну, можно ограничить чис­ло символов выделяемой подстроки.
MKD$(числовое значение)Преобразование задан­ного числового значения в значение с двойной точ­ностью и затем представле­ние его в виде восьмисим­вольного строкового значе­ния (функция, обратная по отношению к CVD). МК1$(чмсловое значение)Округление заданного числового значения до це­лого и представление пос­леднего в виде двухсим­вольного строкового значе­ния (функция, обратная по отношению к CVI).
МК$$(числовое значение)Преобразование за­данного числового значе­ния в значение с обычной точностью и представление последнего в виде четырех­символьного строкового значения (функция, обрат­ная по отношению к CVS).
РЕЕК(смещение)Выдача содержимого ячейки памяти по заданно­му смещению и текущему адресу сегмента.
Р01ЫТ(столбец,строка)Определение цвета точ­ки экрана, соответствую­щей заданным координа­там.
POS(числовое значение)Выдача номера столб-
дисковода.
[дисковод:]файл [опции]Работа с командным или пакетным файлом. Ко­личество и вид задаваемых
опций определяются кон­кретным командным или

ца экрана, соответствую­щего текущему положению курсора; указываемое чис­ловое значение при выпол­нении функции не исполь­зуется, но обязательно должно быть задано.
RIGHT$(cmpo/coaoe значе­
ние,длина)Выделение подстроки заданной длины, соответст­вующей крайним правым позициям исходного стро­кового значения.
RND[(4uc4t>eoe значение)]Вычисление случай­ного числа, заключенного между нулем и единицей.
SGN(числовое значение)Выдача знака заданно­го числового значения.
$1Щчисловое значение)Вычисление синуса за­данного числового значе­ния.
5РАСЕ$(чмсло)Генерация заданного
числа пробелов.
ЗРС(чнсла)Пропуск заданного
числа позиций в выводи­мой на печать строке.
SQR(числовое значение)Вычисление квадрат­ного корня из числового значения.
STRING$(d4wwa, строковое
значение или код)Генерация строки за­данной длины. Все симво­лы этой строки одинаковы и совпадают с первым сим­волом заданного строкового
значения либо с символом, имеющим заданный число­вой код, в зависимости от того, какой из этих пара­метров указан.
STR$ (числовое значение)Преобразование за­данного числового значения в строку символов.
ТАВ (столбец)Продвижение к задан­ной позиции в выводимой на печать строке.
TAN (числовое значение)Вычисление тангенса заданного числового зна­
чения.
Т1МЕ$Выдача системного вре­мени.
УАЪ(строковое значение)Преобразование стро­
кового значения в числовое.
пакетным файлом.
СНКЪЬКАдисковод:]Выдача информации о целостности диска и об ис­пользовании свободного пространства.
СОМР [дисковод;]файл [ди-

377

сковод:][файл]Сравнение содержимо­го двух файлов.
COPY [дисковод:]исходный
файл [опция]
(+ [дисковод:] объединяемый
файл [опция]
[дисковод:] [результирую­
щий файл][опция] L/V]Копирование исходно­
го файла в результирую­
щий с возможностью объе­динения с заданным фай­лом. Если указан параметр /V, то осуществляется про­верка полученной копии. Опция может иметь вид /А (в этом случае исходный файл копируется до перво­го символа конца файла и этот же символ добавляется в качестве последнего в ре­зультирующий файл) или /В (исходный файл копи­руется целиком, а в конец результирующего файла не добавляется никаких спе­циальных символов).
DATE [дата]Установка системной даты.
DIR [дисковод:] [файл] [/Р] [/W1Вывод всего дисково­го справочника или неко­торой его части.
DISKCOMP [дисковод:] [ди­
сковод:] [/1]Сравнение содержимо­го двух дискетой (при за­дании /1 производится срав­нение только одной сторо­ны дискетов).
DISKCOPY [исходный ди­

сковод:] [целевой дисковод:]
[/И ,Копирований дискета
исходного дисковода на ди­скет целевого дисковода (символы /1 вызывают толь­ко одностороннее копиро­вание).
ERASE [дисковод:]файлУдаление файла с за­данным именем из дисково­го справочника.
FORMAT [дисковод:] [/S] [/И Разметка дискета под формат записей ДОС ПВМ, выделение и отметка на дискете дефектных участ­ков незаполненного спра­вочника. При задании оп­ции /S форматированный дискет назначается систем­ным диском, а при /1 фор­матирование производится с одной стороны дискета.
MODE LPT: номер [ширина]
[,высота]Возможная установка
длины строки и ее высоты (только для некоторых мо­делей) в печатающем уст­ройстве с заданным номе­
ром (1, 2 или 3).
MODE [длина строки]
[,направление] [,Т]Возможная установка
длины строки экрана и сдвиг изображения с тек­стовыми данными или без них.
MODE СОМадаптер: ско­
рость в бодах [, признак
четности [,слово [, стоповая

посылка[,Р]]]]Определяется прото­кол последовательной пере­дачи данных, который дол­жен использоваться при ра­боте с адаптерами № 1 и 2.
MODE ЬРТнол/ер: = СОМ
адаптерИзменяется направле­ние передачи выводимых данных: они направляются не на печатающие устрой­ства с номерами 1, 2 или 3, а на адаптер № 1 или № 2.
PAUSE [комментарий]Приостановка обра­ботки, вывод на экран за­данного комментария с по­следующим ожиданием на­жатия какой-либо клави­ши.
REM [комментарий]Вывод на экран ком­ментария.
RENAME [дисковод'Лстарое
имя новое имяИзменение старого име­ни файла на новое.
SYS дисковод:Копирование программ­ных файлов ДОС ПВМ, не­обходимых для превраще­ния заданного диска в си­стемный (на указанном дисководе должен быть ус­тановлен диск, размечен­ный в соответствии с опци­ей /S).
TIME [время]Установка системного времени.
TYPE [дисковод:]файлВывод на экран содер­жимого заданного файла»

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Абсолютная координатная идентифика-
ция 279

Адаптерные платы 17, 19
Адресация памяти 331
Ассемблер 115

Байт 16
Буфер печати 22
— файла 249
Буферы печатающих устройств 22
Бэйсик 116
— версии 117
— дисковый 117, 119
— кассетный 117
— расширенный 117, 119

Видеодисплеи 11, 26
— 1 одноцветные (монохроматические)

— сложноцветные 12
— экран 11
Винчестерские диски 20
Возведение в степень 167
Вопросительный знак 51
Воспроизведение звука 317
Встроенный динамик 17
Выражения 163
— логические 169
— над массивами 163
------- переменными 163
— строковые 167
— числовые 166
Вычисление остатка 167

Генерация звука 317
Графические средства 270

Данные 139
— строковые 139, 153
— числовые 140, 153
Движущиеся объекты 307
Деление нацело 167
Диск гибкий 19

жесткий 20
Диски 18, 41, 62, 63
— винчестерские см. Винчестерские

диски
— дублирование 62

— сравнение 63
Дискеты 19, 58
— выбор 41
— вставление в дисковод 43
— двусторонние 58
— дублирование см. Дублирование ди­

скетой
— идентификация 42
— маркировка 42
— односторонние 58
— с защитой от несанкционированной

записи информации 44
— сравнение 63
— уход 42
Дисковод 14, 19, 41
— исходный 60
— целевой 60
Дисковая операционная система

(ДОС) 29, 41, 44, 74
 версии 45
— --------загрузка 46
------------ запуск 45
------------ разгрузка 46
Дисковые накопители 18
Дисплей 23
Длина строки дисплея 125
------------ управление 125
Дополнительные средства ДОС ПВМ

89
Дублирование дискетов 60
— на двух дисководах 60
------- одном дисководе 61

Естественные языки программирования
115

Запоминающее устройство (ЗУ) 16
------- динамическое 16
------- оперативное см. Оперативное за­

поминающее устройство
------- постоянное см. Постоянное за­

поминающее устройство (ПЗУ)
------- с произвольной выборкой

(ЗУПВ) 16
Запуск программ вручную 76
— прикладных программ типа BAS

77, 78
---------------- СОМ 77
---------------- EXE 77
Звездочка 51

380 Предметный указатель

Звуковые эффекты 319
Знаки операций 164

Инициализация печатающего устройст­
ва 51

Интервал печати 66
Информация, видимая на экране 28
Источник питания 14, 15
------- включение 26
------- выключение 26

Каталог имен файлов 52
------------анализ 55
------------пересмотр 55
— произвольного дисковода 56
Клавиатура 11, 26, 29, 33
— двухрежимная малая цифровая 32
Клавиши 29
— буквенные 30
— стандартные управляющие клави­

ши 30
Комбинации клавиш 34
Команда «подсказки» 48
Команды 339
— ДОС ПВМ 94
------------высвечиваемые 94
------------ копирование 94
------------ редактирование 94
------------резидентные (внутренние)

52
------------стандартные 53
------------транзитные (внешние) 52
------------формирование 52
------------хранимые 94
Комментарии 23, 111, 128
— вывод на экран 111
Компилятор 23
Константы 139, 167
Конструкция IF-THEN-ELSE 182
Копирование файлов 68
------- с контролем 71
Курсор 28
— изображение на экране 224
— определение положения 207
— управление 204
— форма 224

Лепестковый шрифтоноситель 40

Малая цифровая клавиатура 95
Макет файла 234
Массивы 139

— размерность 150
Микропроцессор 115
Множественная идентификация диско­

водов 44
Монитор 26
Музыкальный передний план 324
— фон 324

Нумерация строк 133
------- автоматическая 133
------- изменение 132

Обозначения дисководов 51
• Оживление» изображения 270
Окантовка 270
Операнд 164
Оператор 122
— CLEAR 159
— COLOR 273
— DATA 153
— GET 304
— DATA 153
— GET 304
— GOTO 178
— GOSUB 190
— INPUT 156
— IN-THEN 180
— LET 198
— LINE 276
— LINE INPUT 230
— NEXT 183
— ON-GOTO 179
— ON-GOSUB 191
— PAINT 291
— PRINT 159
— PSET 276
— PUT 301
— READ 153
— RESTORE 155
— RETURN 190
— WEND 187
— WHILE 187
Операторы 342
Операции 165
— логические 165
— приоритет 165
— сравнения 165, 168
— строковые 165
Органы управления печатающего уст­

ройства 38
Относительная координационная иден­

тификация 279
«Отпечаток изображения» 27

Предметный указатель 381

Пакетный файл 107
------- команды 108
------------выполнение 108
------- переменные 109
------- создание 107
------- AUTOEXEC 113
Память 16
— с оперативной записью 16
---------------- и считыванием 16
Параметры 109, 173
Паузы 112
— организация в ходе пакетной обра­

ботки 112
Передний план 270
Переименование файлов 72
Переключатели конфигурации систе­

мы 16
Переменные 109, 139, 144
— общие 196
— присваивание значений 147, 153
Печатающее устройство 35, 51
— органы управления см. Органы уп­

равления печатающим устройством
— подготовка к работе 40
— последовательного действия 22
— совместимость с ПВМ см. Совмести­

мость ПВМ с печатающим устрой­
ством

Подготовка пустых дисков 51
Поле 234
Последовательный доступ 248
Постоянное запоминающее устройство

16
Построение дуг окружностей 288
— круговой диаграммы 290
— окружностей 286
— пропорциональных окружностей

293
— радиусов 289
— точек 281
— эллипсов 290
Префикс 51
— двухсимвольный 51
Пробелы 159
Программа 23
— самозагрузки 46
Программы 23
— прикладные 23
Программное обеспечение 73
------- дублирование 73
------- на дискетах 73
— — со средствами автоматического

запуска 74
Произвольный доступ 248
Прорезь блокировки записи 44
— разрешения записи 44

Рабочая область экрана 60
Развертка за пределами рабочей облас­

ти экрана 28, 270
Расширение имен файлов 49
Расширительные гнезда 17
Режим взаимодействия 107
— немедленной обработки (прямого

общения) 120
— программируемой обработки (от­

сроченной обработки или непрямого
общения) 122

— работы дисплея 271
------------высокого разрешения 271
------------среднего разрешения 271
----------- текстовой 271
— связи 22
------- параллельный 22
------- последовательный 22
Резервные копии 60
Рекурсия 193
Родовые имена файлов 51, 89

Самоконтроль ПВМ 29
Синтаксис языка программирования

116
Синтез динамических изображений

303, 310
Система программного обеспечения 23
Системный блок 20
Скрытый файл 71
Совместимость ПВМ с печатающим

устройством 32
Сопроцессор 15
Стандартные расширения^ имен фай­

лов 50
Стек 191
Строка 139
— нулевая (пустая) 139
Строки 176
— цифровые 176
Структура ПВМ 11
Суффикс 49
— необязательный 49
— “/р” 55
— “/s” 59
— “/w” 55

Темп 324

Указатель хранимой команды 95
Установка времени 93
— даты 74

382 Предметный указатель

Файл 48
— дисковый 49
— пакетный см. Пакетный файл
— размер 55
Файлы 49
— имена см. Имена файлов 49
— соединение 89
— сравнение 91
Форматирование 57
— накопителей на винчестерских дис­

ках 59
— произвольного дисковода 59
Функции выделения подстроки 172
----------- LEFT$ 172
----------- MIDS 172
------------RIGHTS 172
— определяемые пользователем 173
— преобразования числовых данных

174
---------------- CINT 174
---------------- FIX 174
---------------- INT 174
— производные 361
— строковые 171

------- STRINGS 171
------- INSTR 171

Хранимая команда 96
------- вставка фрагментов 102
------- вывод на экран 99
------- замена 102
------- изменение 98
------- повторное использование 96
------- пропуск символов 98

Частотный модулятор 12
Числа 140
— восьмеричные 142
— двоичные 141
— с двойной точностью 142
------- обычной точностью 141
------- плавающей запятой 140
— шестнадцатеричные 142

Языки программирования 115
------- высокого уровня 116

ОГЛАВЛЕНИЕ

Предисловие редактора перевода .. 5
Предисловие 7

Часть I. Работа на персональной ЭВМ.. 11

Глава 1. Структура персональной ЭВМ .. 11
Глава 2. Монитор, клавиатура и печатающее устройство 26
Глава 3. Диски и дисковая операционная система ДОС ПВМ 41
Глава 4. Запуск программы... 73
Глава 5. Дополнительные средства ДОС ПВМ 89

Часть Н. Программирование на языке Бэйсик ... 115

Глава 6. Основные понятия..........................,.. 115
Глава 7. Константы, переменные, массивы.. 139
Глава 8. Работа с числовыми и строковыми данными........................... 153
Глава 9. Организация программы... 178
Глава 10. Управление выводом данных на экран дисплея и на устрой­

ство печати.. 202
Глава И. Ввод данных с клавиатуры 224
Глава 12. Файлы данных на дисках... 246
Глава 13. Графические средства... 270
Глава 14. Воспроизведение звука ... 317
Глава 15. Прямой доступ и управление вычислительными ресурсами . . 330
Приложение А. Краткое описание Бэйсика.. 339
Приложение В. Краткое описание команд ДОС ПВМ............................ 365
Приложение С. Сообщения об ошибках.. 368
Приложение D. Символы, коды и специальные клавиши.................... . 370
Справочная карта для ПВМ фирмы IBM... 374
Предметный указатель.. 379

Уважаемый читатель!

Ваши замечания о содержании книги, ее оформ­
лении, качестве перевода и другие просим присы­
лать по адресу: 129820, Москва, И-110, ГСП, 1-й
Рижский пер., д. 2, изд-во «Мир».

Научное издание
Лон ПулРАБОТА НА ПЕРСОНАЛЬНОМ КОМПЬЮТЕРЕ
Научный редактор Т. П. СапожковаМладший научный редактор Н. И. Сивилева Художник В. Е. КарповХудожественный редактор Н. М. Иванов Технический редактор Л. П. Бирюкова Корректор В. С. СоколовИБ № 5605Сдано в набор 18.02.86. Подписано к печати 11.10.86.Формат бОХЭО1/™- Бумага тип. № I.Печать высокая. Гарнитура литературная.Объем 12,00 бум. л. Усл. печ. л. 24,00.Усл. кр.-отт.24,00.Уч.-изд. л. 23,63. Изд. №6/4539.Тираж 80000 экз. Заказ № 2275. Цена 2 руб.ИЗДАТЕЛЬСТВО «МИР»129820, ГСП, Москва, И-110, 1-й Рижский пер., 2Ордена Октябрьской Революции и ордена Трудового Красного Знамени МПО «Первая Образцовая типография» имени А. А. Жданова Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфииИ книжной торговли. 113054, Москва, Валовая, 28

