
ОГЛАВЛЕНИЕ

Предисловие.......................... 3
Введение .. 4
Глава 1. Форматы чисел и основы арифметических операций................... 6

1.1. Биты, байты, слова... 6
1.2. Форматы, целых двоичных чисел.. 12
1.3. Десятичные числа ... 22
1.4. Форматы чисел с плавающей точкой... 24
1.5. Стандарт на арифметику с плавающей точкой........................ 33
1.6. Особенности выполнения арифметических операций в микропро­

цессорах .. 34
1.6.1. Операции над целыми числами... 35
1.6.2. Операции над числами с плавающей точкой 46
1.6.3. Операции над десятичными числами... 51

Контрольные вопросы и упражнения.. 52
Глава 2. Арифметические операции в микропроцессоре КР580ИК80 ... 54

2.1. Общая характеристика микропроцессора.................................... 54
2.2. Программная модель микропроцессора 57
2.3. Система команд микропроцессора... 64
2.4. Алгоритмы и программы арифметических операций................. 73
2.4.1. Операции над двоичными целыми числами............................ 75
2.4.2. Операции с десятичными числами...................................... 101
2.4.3. Операции над числами с плавающей точкой........................ 106
2.4.4. Вспомогательные программы... 125
2.4.5. Преобразование чисел по методу сдвига и коррекции 134

Контрольные вопросы и упражнения.. 152
Глава 3. Арифметические операции в микропроцессоре К1810ВМ86 . . . 154

3.1. Общая характеристика микропроцессора.................................... .154
3.2. Программная модель микропроцессора....................................... 159
3.3. Система команд микропроцессора... 170
3.3.1. Команды передач данных... 171
3.3.2. Арифметические команды.. 174
3.3.3. Логические команды и команды сдвигов............................... 177
3.3.4. Команды передачи управления .. 180
3.3.5. Цепочечные команды... 184
3.3.6. Команды управления микропроцессором................................... 186
3.3.7. Программная совместимость микропроцессоров К580 и К1810 186
3.4. Алгоритмы и программы арифметических операций.................. 187
3.4.1. Операции над двоичными целыми числами............................... 192
3.4.2. Операции с десятичными числами 199
3.4.3. Операции над числами с плавающей точкой........................... 209
3,4.4. Вспомогательные программы 219

Контрольные вопросы и упражнения..................................... . 224

302

Глава 4. Арифметический сопроцессор К1810ВМ87 .. 227
4.1. Особенности сопроцессорных конфигураций................................ 227
4.2. Внутренняя организация и программная модель сопроцессора 231
4.3. Форматы чисел.. 235
4.4. Система команд сопроцессора... 239
4.4.1. Команды передач данных.. 241
4.4.2. Арифметические команды.. 243
4.4.3. Команды сравнения 248
4.4.4. Команды трансцендентных функций.. 249
4.4.5. Команды загрузки констант.. 252
4.4.6. Команды управления сопроцессором... 253
4.5. Специальные числа и особые случаи... 254
4.6. Алгоритмы и программы вычислительных задач..................... 264
4.7. Особенности представления чисел в персональных компьютерах 280

Контрольные вопросы и упражнения.. 286
Приложение. Система команд арифметического сопроцессора К1810ВМ87 287
Заключение... 298
Список литературы.. 301

Предисловие

Подготовка специалистов по вычислительной технике, в общем
плане — по электронной обработке данных, немыслима без углуб­
ленного изучения микропроцессорной техники. Микропроцессор­
ная техника является основой для компьютеризации общества.
Благодаря микропроцессорам родились удивительные технические
творения наших дней — профессиональные персональные компью­
теры, возможности которых близки, а иногда и превосходят воз­
можности больших и средних компьютеров недавнего прошлого.
Внедрение персональных компьютеров в сферу инженерной дея­
тельности повысит производительность труда в несколько раз;
станет более дешевой, массовой и надежной, а ее использование
будет экономически эффективным практически во всех областях
народного хозяйства.

В нашей стране в развитии микропроцессорной техники объек­
тивно сложились два основных направления. Первое из них обра­
зуют микропроцессоры и микрокомпьютеры, имеющие систему
команд СМ ЭВМ. Второе направление составляют однокристаль­
ные микропроцессоры КР580ИК80, К1810ВМ86 и арифметический
(математический) сопроцессор К1810ВМ87. Литературы по этому
направлению издано недостаточно. Изучение программирования
для микропроцессора К1810ВМ86 и сопроцессора К1810ВМ87 при­
обретает особое значение, так как они применяются в профессио­
нальных персональных компьютерах ЕС1840/1/2, Искра-1030 и
Нейрон-И9.

Пособие состоит из четырех глав. Содержание гл. 1 соответст­
вует разделу по арифметическим основам компьютеров. Наиболь­
ший интерес представляет § 1:5, в котором рассматривается приня­
тый за рубежом стандарт на арифметику с плавающей точкой, и
§ 1.6, где показаны особенности программирования арифметических
операций. Гл. 2—4 построены по единому принципу: краткая общая
характеристика микропроцессора, его программная (регистровая)
модель, система команд (с более подробным изложением арифме­
тических команд) и заключительный параграф по алгоритмам и
программам вычислительных задач. Завершают каждую главу
контрольные вопросы и упражнения, помогающие закрепить изу­
чаемый материал.

Авторы выражают благодарность сотрудникам кафедры вычис­
лительной техники Московского института электронной техники—■
зав. кафедрой чл.-кор. Л. Н. Преснухину, проф. Б. М. Кагану за
ряд ценных замечаний, способствовавших, улучшению материала
книги, и инж. О. Ф. Куприяновой за помощь в подготовке руко­
писи.

Свои замечания и пожелания о книге направлять по адресу:
101430, Москва, ГСП-4, Неглинная ул., д. 29/14, издательство «Выс­
шая школа»'.

Авторы

Введение

При подготовке данного учебного пособия авторы поставили
цель познакомить студентов вузов, специализирующихся в области
электронной обработки данных, с основами программирования
арифметических операций в современных однокристальных микро­
процессорах. Достижение этой цели и желание сделать пособие
автономным потребовали кратко изложить двоичную систему
счисления, двоичную арифметику, форматы машинных чисел и
особенности производства арифметических операций в микропро­
цессорах с ограниченной длиной слова. Этот материал представлен
в первой главе пособия. Остальные три главы содержат конкрет­
ные алгоритмы и программы арифметических операций для наи­
более распространенных сейчас микропроцессоров КР580ИК80 и
К1810ВМ86, а также арифметического сопроцессора К1810ВМ87.
Наряду с алгоритмами и программами в этих главах имеются не­
обходимые сведения о самих микропроцессорах: краткая техниче­
ская характеристика, программная модель, режимы адресации и
система команд.

Эволюция микропроцессоров прошла этапы от сравнительно
слабого по вычислительным возможностям 8-битного микропро­
цессора КР580ИК80 к гораздо более мощному 16-битному микро­
процессору К1810ВМ86 и далее к арифметическому сопроцессору
К1810ВМ87, ориентированному исключительно на инженерно-тех­
нические и научные расчеты. Сопроцессор обеспечивает диапазон
и точность представления чисел, характерные для средних и боль­
ших компьютеров недавнего прошлого, и имеет сравнимую с ними
производительность. Благодаря ему сфера применений микропро­
цессоров будет значительно расширена, а это потребует увеличе­
ния числа специалистов, ориентирующихся в численных расчетах.

Программы арифметических операций сопровождается графи­
ческими иллюстрациями и даются на языке Ассемблер. Выбор
этого языка объясняется несколькими причинами, в частности эф­
фективностью ассемблерных программ, наибольшей близостью
языка Ассемблера к архитектуре микропроцессора и доступностью
для программиста всех ресурсов микропроцессора. Изучение про­
грамм на языке Ассемблер поможет студентам уяснить реализа­
цию арифметических операторов на языках программирования вы­
сокого уровня и освоить некоторые общие приемы программиро­
вания.
4

Рассмотренные в данном учебном пособии вопросы программи­
рования арифметических операций охватывают наиболее распро­
страненные 8- и 16-битные однокристальные микропроцессоры и
арифметический сопроцессор. По-видимому, необходимость знания
точных численных расчетов в настоящее время будет все более
настоятельной благодаря повышению вычислительной мощности
микропроцессоров и реализуемых на их основе качественно новых
систем. В ближайшем будущем появятся 32-битные микропроцес­
соры и совместимые с ними арифметические сопроцессоры. Наи­
больший интерес для студентов представляет материал по ариф­
метическому сопроцессору К1810ВМ87 из-за недостатка посвящен­
ной ему технической литературы и архитектурной совместимости
его с будущими разработками.

Изучение схем алгоритмов и программ арифметических опера­
ций поможет студентам глубже разобраться в особенностях про­
граммирования микропроцессоров. Используемые в них приемы
программирования применимы к решению других практических
задач.

ГЛАВА 1

ФОРМАТЫ ЧИСЕЛ И ОСНОВЫ АРИФМЕТИЧЕСКИХ
ОПЕРАЦИИ

Данная глава носит вводный характер и знакомит чи­
тателей с двоичной системой счисления и основами дво­
ичной арифметики, форматами числовых данных, приня­
тыми в современных компьютерах, общими алгоритмами
выполнения арифметических операций и особенностями их
реализации в микропроцессорах с ограниченной длиной
машинного слова. Рассмотрены также диапазоны и точ­
ность представления чисел в компьютерах, стандарт на
числа ,с плавающей точкой, принятый в новейших разра­
ботках, а также особые случаи (нарушение нормализации,
переполнение и антипереполнение'), возникающие при про­
изводстве арифметических операций над числами с пла­
вающей точкой. Изложение материала сопровождается
иллюстративными примерами.

1.1. БИТЫ, БАЙТЫ, СЛОВА

Компьютеры оперируют данными, имеющими исключительно
двоичное представление или кодирование. Независимо от того, как
изображает входные данные пользователь (десятичные числа в
различных формах, шестнадцатеричные числа, символьные цепочки
и др.), они аппаратно и (или) программно преобразуются в цепоч­
ки (последовательности) двоичных цифр — единиц и нулей. При
выводе данных осуществляется обратное преобразование двоичных
цепочек в удобную для пользователя форму, например десятичные
числа.

Бит. Двоичная цифра, имеющая всего два значения 1 и 0, на­
зывается битом (Binary digiT). С помощью двух битов можно
представить четыре значения (кода) — 00, 01, 10 и 11; с помощью
трех битов — восемь значений от ООО до 111 и т. д. Группа из п
бит позволяет представить 2п значений или комбинаций-—от 00...
00 до 11... 11.

Единицы данных. Во всех современных компьютерах важную
роль играет представление данных группами по 8 бит, называе­
мых байтами (byte — слог) и содержащими любую из 28=256 ком-
6

бинаций. По существу, байт стал стандартной базовой единицей,
из которой образуются все остальные единицы машинных данных.
В зависимости от того, как интерпретируется содержимое байта,
оно может быть: кодированным представлением символа внешнего
алфавита, целым знаковым или беззнаковым числом, частью
команды или более сложной единицы данных и т. д. Друг-ими сло­
вами, интерпретацию байта определяет программист в зависимости
от контекста своей программы.

Биты в байте нумеруются справа налево, начиная с нуля (см.
рис. 1.1). Такая нумерация принята во всех компьютерах, только
в моделях ЕС ЭВМ биты нумеруются слева направо.

бит О

Рис. 1.1. Машинное представление данных

Трехбитная единица данных называется триадой. Она может
содержать 8 комбинаций от ООО до 111. Триады используются
только в восьмеричной системе счисления.

Четырехбитная единица данных называется тетрадой; она мо­
жет содержать 16 различных комбинаций от 0000 до 1111. Приме­
нение тетрад ограничено упакованными десятичными числами (см.
§ 1-3).

Единица данных, состоящая из 16 бит или двух байт, называ­
ется словом. Слово может содержать любую из 216=65536 ком­
бинаций. Для краткой записи больших ступеней числа два число
210 = 1024 обозначается «К» и читается как приставка «кило-»,
или, просто, как буква «к». По аналогии с нумерацией бит байты
в слове также нумеруются справа налево, начиная с нуля: байт 0
является младшим, а байт 1-—старшим.

7

Следующая единица данных состоит из четырех байтов и на­
зывается двойным (длинным) словом. Число возможных комбина­
ций в двойном слове составляет 232, что очень близко к 4 млрд.
Число 220= 1 048 576, близкое к миллиону, обозначают «М» и чи­
тают как приставку «мега», или как букву «м», а число 230=
= 1 073 741 824, близкое к миллиарду, обозначают «Г» и читают
как приставку «гига-», или как букву «г».

Последняя из рассматриваемых нами единица данных состоит
из 64 бит или 8 байт и называется счетверенным словом (возмож­
но, появится более короткий термин «тетраслово»). Число комби­
наций в этой единице данных составляет 264 или более 1019.

Машинное слово. Основная или базовая
Адрес Память

Рис. 1.2. Органи­
зация логической
памяти

единица данных, которой оперирует микропро­
цессор, называется машинным словом. Прак­
тически во всех микропроцессорах длина ма­
шинного слова кратна байту. Длина слова яв­
ляется важнейшей характеристикой микропро­
цессора и в соответствии с ней микропроцессо­
ры подразделяются на 8-, 16- или 32-битные.
В 16-битных микропроцессорах всегда есть
команды обработки байтов, а в 32-битных мик­
ропроцессорах— команды операций с байтами
и словами.

Хранение данных в памяти. Программы и
данные, к которым процессор имеет непосред­
ственный доступ, хранятся в основной памяти,
иногда называемой также оперативной памя­
тью (запоминающим устройством).

Различают логическую и физическую ос­
новную память. Логическая память, т. е. та память, которую «ви­
дит» и к которой обращается процессор, организована в последова­
тельность из N байт, образующих пространство логической памяти.
Байты нумеруются от 0 до N—1, и порядковый номер байта назы­
вается его адресом (см. рис. 1.2). Для обращения к любому байту
необходимо указать его адрес (адреса представляются в двоичной
форме и оказываются еще одной единицей данных, которой должен
оперировать процессор). В языках высокого уровня адреса обычно
называются указателями (pointer). Длина адреса m связана с чис­
лом N байт (емкостью памяти) простыми соотношениями:

N=2m, m = log2A\

• Примечание. Обычно адреса записываются в шестнадцатеричной системе
счисления и в таком же виде даются в листингах объектных программ. Мы
будем идентифицировать шестнадцатеричные числа заключительной буквой Н
(от Hexadecimal или Нех — шестнадцатеричный).

8

формируемый процессором адрес памяти всегда является ад­
ресом байта в пространстве логической памяти: он называется
эффективным, виртуальным или логическим адресом. Ниже ис­
пользуется термин логический адрес.

Длина логического адреса может совпадать или не совпадать
с длиной машинного слова. Например, в 8-битных микропроцес­
сорах длина логического адреса составляет 16 бит, определяя

' пространство логической памяти 64К байт. В 16-битных микро­
процессорах длина логического адреса обычно совпадает с длиной
машинного слова и пространство логической памяти также состав­
ляет 64К байт.

На практике наблюдается тенденция постоянного увеличения
емкости основной памяти, что позволяет хранить в ней программы
большего размера, несколько программ в мультипрограммных сис­
темах и значительные объемы обрабатываемых данных. Требова­
ние увеличения емкости памяти связано с расширением адресов и
создает трудности манипуляций адресами, не вписывающимися в
размер арифметико-логического устройства ■ (АЛУ) процессора.
Как компромиссное решение в ряде процессоров увеличение емко­
сти памяти достигается путем преобразования (отображения) ло­
гических адресов в более длинные физические адреса, по которым
и производятся реальные обращения к памяти. Специальное уст­
ройство, которое осуществляет такое преобразование, называется
устройством управления памятью или диспетчером памяти. Уст­
ройство управления памятью реализуется в виде внешней микро­
схемы, но может находиться и в составе микропроцессора. Вклю­
чение устройства управления памятью в системе показано на
рис. 1.3.

Принцип действия устройства управления памятью основыва­
ется на страничной либо сегментной организации памяти. У обоих
способов есть много общих моментов, но размер страницы фик­
сирован, а размер сегмента может быть переменным. В составе
устройства управления памятью есть несколько регистров, которые
процессор загружает специальными командами. Регистры содер­
жат начальные (базовые) адреса и атрибуты страниц (сегментов).
Логический адрес, выдаваемый процессором, считается смещением
байта в странице (сегменте), т. е. расстоянием его от начала стра­
ницы (сегмента), и получение физического адреса байта сводится
к суммированию, а иногда к сцеплению (конкатенации) содержи­
мого одного из регистров и логического адреса. При этом длина п
физического адреса больше длины m логического адреса.

Физическая память состоит из ячеек, в каждой из которых хра­
нится одно слово памяти. При каждом обращении (доступе) к па­
мяти, т. е. выполнении считывания или записи, в операции участ­
вует вся ячейка памяти. Обычно длина слова памяти совпадает
с длиной машинного слова, хотя это условие не является обяза­
тельным.

9

Таким образом, логический адрес однозначно определяет Райт
в пространстве логической памяти, а физический адрес—байт в
пространстве физической памяти. Рассмотрим, как адресуются
более крупные единицы данных, состоящие из нескольких байтов,
каждый из которых имеет свои логический и физический адреса.
В подавляющем большинстве современных компьютеров (за ис­
ключением ЕС ЭВМ) адресация данных подчиняется двум про­
стым правилам:

Пространстве
логической памяти

Рис. 1.3. Логическая и физическая память

адресом любой единицы данных считается наименьший из ад­
ресов тех байтов, которые образуют эту единицу;

по этому адресу находится младший байт единицы данных,
а остальные байты следуют в порядке возрастания адресов.

На рис. 1.4 показано, что адресом двойного слова является
1000Н и по этому адресу находится его младший байт. Принятые
правила несколько неудобны для пользователей, так как мы при­
выкли читать слева направо—«от старшего к младшему». Это не­
удобство проявляется только при анализе -содержимого памяти,
выведенного на дисплей или принтер в шестнадцатеричном фор­
мате. При программировании на любом языке (кроме машинного
языка) учитывать «обратный» порядок байтов в памяти не тре­
буется.

В тех случаях, когда длина слова памяти превышает байт, на
10

размещение данных могут накладываться некоторые ограничения.
Например, обычно требуется, чтобы 16-битные слова размещались
только по четным адресам (или по так называемым границам
слов), двойные слова — по адресам, кратным 4 (по границам двой­
ных слов) и т. д. Такое требование называется выравниванием ад-

Память

7 О
Аёрес

0FFFH

I000H

fOOIH

1002Н

мозн

I004H

У
АЗН по

7FH 61
59Н 62

ПСН 55
7 Двойное слова

БЗ 62 67 60

ПСН МН 7ЕН АЗН

Рис. 1.4. Хранение в памяти двойного слова

ресов по целочисленным границам. На рис. 1.5 показаны два ва­
рианта размещения слова в памяти с длиной слова 16 бит. Когда
слово выравнено (рис. 1.5, с), для его считывания достаточно од­
ного обращения к памяти по адресу 1000Н. Если же слово не вы­

Рис. 1.5. Размещение слова в памяти:
а — с выравниванием, б — без выравнивания

а) Замять
15

1

0FFFH 1
|

0FFEH

wot н 7FH i АЗН 1000 Н

/оозн 1
1 10(1020
1
1

равнено, считывание его потребует двух операций в памяти (по
адресам 1000Н и 1002Н), а процессор должен учитывать, по каким
линиям шины данных передаются байты слова.

1.2. ФОРМАТЫ ЦЕЛЫХ ДВОИЧНЫХ ЧИСЕЛ

Система вещественных десятичных чисел, применяемая в руч­
ных расчетах, предполагается бесконечной и непрерывной, т. е.
здесь не накладывается никаких ограничений на диапазон исполь­
зуемых чисел и на точность (количество значащих разрядов или
цифр) их представления. Для любого вещественного числа суще­
ствует бесконечно много чисел, которые больше и меньше его, и
между любыми двумя вещественными числами находится также
бесконечно много чисел. Реализовать такую систему чисел в тех­
нических устройствах невозможно. В компьютерах размеры реги­
стров и ячеек памяти фиксированы, что накладывает ограничения
на систему представимых чисел. Ограничения касаются диапазона
допустимых чисел и точности их представления. Другими словами,
система машинных чисел оказывается конечной и дискретной, об­
разуя подмножество системы вещественных чисел.

В любом компьютере имеется максимальное представимое чис­
ло 2макс и минимальное представимое число ZMmj, между ними
находится конечное множество допустимых чисел (рис. 1.6). Если

Переполнение
Область

машинного
Представимые

числа
ПпеЗстаВимые

числа
Переполнение

Числовая ось

^мвкс ^мцн ^мцн ?мокс

Истинный нуль

Рис. 1.6. Система машинных чисел

результат операции превышает ХМакс>’ возникает переполнение и
дальнейшее продолжение выполнения программы не имеет смыс­
ла. Если результат операции оказывается меньше ZMHH, фиксиру­
ется антипереполнение; большинство компьютеров при антипере­
полнении возвращают как результат операции нуль. Область чи­
сел от —ZMmi до +ZMI1H, за исключением истинного нуля, называют
машинным нулем.

В компьютерах применяется исключительно двоичная позици­
онная система счисления — любое число представляется последо­
вательностью из 1 и 0.
• Примечание. В соответствии с правилами употребления точки и запятой в
языках высокого уровня и, в машинных листингах отделяют целую часть числа
от дробной точкой и говорят о форматах с фиксированной точкой и с плаваю­
щей точкой.

Позиционные системы счисления. В позиционных системах счи­
сления, к которым относится и общепринятая десятичная система
12

счисления, числовое значение цифры зависит от ее местоположе^
ния (позиции) в последовательности цифр, изображающей число.
Например, в числе 636.96 одна и та же цифра 6 обозначает (сле­
ва направо) шесть сотен, шесть единиц и шесть сотых. Это пред­
ставление есть сокращенная запись следующей суммы:

639.96=6 х 102 + 3 х ЮЧ-6 х 10° 4-9 х 10-1+6 X 10-2.
Любое десятичное число

АГ=ая_1а„_2.. .аха^.а-ха^.. .а_т,

где ае{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}—десятичные цифры, п — число
разрядов целой части, т — число разрядов дробной части, можно
развернуть в сумму:

X=ап-х х 10"-1 -|- а„_2 х Ю"-2 + ...4-аохЮ°4-

-|-a-iхЮ-1 -}-...4-a..mxl(rm= а;хЮ‘. (>k)
/=i

Здесь значение i называется разрядом, величина 10’— весом
i-ro разряда, а п+т— длиной числа. Число десять называется
основанием системы счисления; оно равно отношению весов двух
соседних разрядов.

Принципы построения десятичной системы счисления распро­
страняются и на другие позиционные системы счисления. Выберем
в качестве основания целое положительное число q>l. За цифры
рассматриваемой системы счисления естественно принять первые
порядковые десятичные числа 0, 1, 2, ..., q—1; основание q будет
иметь вид lO^ (нижний индекс показывает основание системы счис­
ления; в десятичных числах он будет опускаться). Если q больше
десяти, придется вводить специальные символы, соответствующие
цифрам десять, одиннадцать и т. д. Если q—16, цифрами будут
0, 1, ... 9, А, В, С, D, Е и F. Для данной системы счисления спра­
ведливо приведенное соотношение (>}<)•

Пример 1.1. Найти десятичный эквивалент восьмеричного числа 376.2g.

?C=376.28 = 3 X82 + 7 X 81 +6 X 80 + 2 x 8-1 =254.25.

В двоичной системе счисления имеется всего две цифры: 1 и 0.

Пример 1.2. Найти десятичный эквивалент двоичного числа 100110.1012.

X = 100110.101 = 1x25 +0х24+0х23 + 1Х22 + 1X21 +

+ 0x20 + 1X2-1 +0х2-2 + 1Х2-3 = 38.625.
,13

Двоичная система счисления получила исключительное распро­
странение в вычислительной технике благодаря возможности пред­
ставления цифры каждого разряда электронной схемой с двумя
устойчивыми состояниями и простоте выполнения арифметических
операций.

Перевод чисел из одной системы счисления в другую. Посколь­
ку люди и компьютеры пользуются различными системами счис­
ления, следует познакомиться с принципами перевода чисел из од­
ной системы счисления в другую. Рассмотрим перевод десятичных
чисел в системы с произвольными основаниями q, так как преоб­
разование числа в десятичное осуществляется по соотношению
(ф:) и никаких трудностей не вызывает. Разберем перевод чисел
вручную (машинный перевод покажем далее).

Пусть задано целое десятичное число X и его необходимо пере­
вести в систему счисления с основанием q, т. е. найти цифры а,- в
записи ап-\ап--2.... d\aG. Воспользуемся соотношением (ф:) и запи­
шем в общем виде:

X=an-xqn~1 'Х1п<2-Х ••• ~Уа\Ях 4“ао-

Разделим обе части этого равенства (а фактически только ис­
ходное число X) на q:

Xlq=ап_ xqn~ 2 -j- an-2qn~z ф-... ф- ах (а0).

Как результат получается целое частное

X^=an-xan-2...a.fix,

а остаток от деления равен цифре а0. Частное Х(1) имеет такой же
вид. как и исходное число X, поэтому для нахождения сц необхо­
димо разделить на q. В результате получается новое частное

Л'(2> = а„_1а„_2...а3а2,

а остаток от деления равен сц. Повторяющееся выполнение ука­
занных действий позволяет найти все цифры щ. Это приводит к
следующему правилу:
■ Правило первое. Для перевода целого десятичного числа
X в систему счисления с основанием q необходимо последователь­
но делить исходное число X и образующиеся частные на q до по­
лучения частного, равного нулю. Искомое представление есть по­
следовательность остатков от операций деления, причем первый
остаток дает младшую цифру.

$ Пример 1.3. Перевести число 236 в восьмеричную систему счисления (д=

14

Выполняются операции деления:

Следовательно, восьмеричная запись числа 236 имеет вид 3548-
Пример 1.4. Перевести число 236 в двоичную систему счисления.
Простые операции деления на 2 производятся в уме и получается короткая

запись:
Частные Остатки

236 < 0 = Со
118 0 = Ci
59 1 = с2
29 1 = с3
14 0 = с4
7 1 = с5
3 1 = Об
1 1 = с7
0

Записывая снизу вверх, получим 236= 111011002.
Рассмотрим перевод правильных дробей. Правильную десятич­

ную дробь X требуется перевести в систему счисления с основани­
ем q\ иначе говоря, необходимо найти цифры a.i в записи
(O.c_ia_2...fi_m). Воспользуемся соотношением (>}<):

X=a-xq-x+я-.#-2+a_3q~s -ф - + d-mq~m.
Как и при переводе целых чисел, цифры a-i находятся после­

довательно. Умножим обе части приведенного равенства (а фак­
тически только исходную дробь X) на q~.

А" X 7=а-! 4-а-27-’+«_?7-2+. --+
Цифра я_] равна целой части полученного произведения,

а дробная часть его соответствует новой правильной дроби Х<'>:
!>=а_27-1+a_3q~2+- - - 4- a~rnq -m+*.

При умножении Х<’> на q целая часть произведения дает цифру
а~2, а дробная часть соответствует новой правильной дроби

Х(2)=^-2 + „. +2-

Отсюда вытекает следующее правило перевода.
В Правило второе. Для перевода правильной десятичной
дроби X в систему счисления с основанием q необходимо после­
довательно умножать исходную дробь и дробные части получаю­

15

щихся произведений на q. Искомые цифры нового представления
есть последовательность целых частей произведений, причем пер­
вая из них дает старшую цифру а-У.

Пример 1.5. Перевести десятичную дробь 0.8125 в восьмеричную систему
счисления.

Выполняем операции умножения:
_ 0.8125 0.5000
х 8 х 8

а_, = 6.5000 а_2 = 4.0000
Восьмеричное представление десятичной дроби 0.8125 есть 0.64е.

Пример 1.6. Перевести десятичную дробь 0.3 в двоичную систему счисле­
ния. Производим операции умножения:

0.3
х 2 У °-ех 2 Х°! х°| х °-£

х 2 х 2

0.6 1.2 0.4 0.8 1.6 1.2
«_1 2 О-з а_4 £1—5 Я—6

Как видно, при умножении никогда не получится нулевая дробная часть,
поэтому десятичная дробь не имеет точного двоичного представления, а с точ­
ностью до шестого двоичного разряда равна 0.0100112.

Сформулированные правила перевода справедливы не только
для перевода десятичных чисел в систему счисления с основани­
ем q, но и для перевода чисел из системы счисления с основанием
qx в систему счисления с основанием q%. В этом случае операции
умножения и деления нужно производить по правилам системы
счисления с основанием qi. Так как легко оперировать только де­
сятичными числами, обычно такое преобразование осуществляется
через промежуточную десятичную систему счисления, что условно
можно записать в виде qi->-10 -^-<72-

Рассмотрим элементарные приемы взаимного преобразования
двоичных и восьмеричных (а также шестнадцатеричных) чисел.
Так как 8 = 23= 10002 и 16 = 24= 10 0002, эти преобразования вы­
полняются без каких-либо вычислений.
И Правило третье. Для перевода двоичного числа в систему
счисления с основанием 8 (16) необходимо исходное число влево
и вправо от точки сгруппировать по три (четыре) бита, а затем
каждую группу записать одной восьмеричной (шестнадцатерич­
ной) цифрой.

Пример 1.7. Перевести 1111010.10112 в системы счисления с основаниями
8 и 16.

ИНОЮ. 10112 = 001 111 010. 101 1002 = 172.54s
1111010.10112 = 0111 1010. 10112 = 7А.В16

■ Правило четвертое. Для перевода восьмеричного (шест­
надцатеричного) числа в двоичное необходимо каждую цифру ис-

16

ходкого числа записать в виде эквивалентного ей трехбитного (че­
тырехбитного) двоичного числа.

Пример 1.8. Перевести числа 273.4а и 6AF18i6 в двоичную систему счис­
ления.

273.48 = 010 111 011. 1002 = 10111011.12
5AF.1816 = 0101 1010 1111.0001 10002 = 10110101111.000112

Целые беззнаковые двоичные числа. Формат целых двоичных
чисел без знака имеет вид, показанный на рис. 1.7. Здесь значок
вставки (д) обозначает местоположение двоичной точки. Как
видно из этого рисунка, все разряды числа являются значащими,
а двоичная точка находится справа или, как говорят, фиксирована
после младшего значащего разряда. Отсюда появляется еще одно
название этого формата и других аналогичных форматов — формат

п-1 П-2 f О

Значащие биты

Рис. 1.7. Формат целых беззна­
ковых двоичных чисел

Значащие биты
Знак

Рис. 1.8. Общий формат целых
знаковых чисел

с фиксированной точкой. Следовательно, в этом формате предста­
вимы только целые числа 0, 1,2, ..., 2й—1 и любая комбинация би­
тов (двоичный набор) является допустимой.

Целые беззнаковые числа при программировании используются
для представления тех числовых объектов, которые принципиаль
но не могут быть отрицательными. Примерами таких объектов
служат адреса ячеек памяти, номера строк исходной программы,
счетчики повторений циклов и т. п. В различных языках прог| ам-
мирования для указания типа беззнаковых целых чисел применя­
ются объявления (спецификаторы) типов BYTE (n=8), WORD
(п— 16), ADDRESS (п= 16), UNSIGNED (п=16) и др.

Целые знаковые двоичные числа. Чтобы компьютеры могли
оперировать положительными и отрицательными числами, один
из разрядов необходимо отвести для изображения знака чисел S.
Обычно им является старший (левый) бит, а стандартное коди­
рование знака имеет такой вид:

10 — число положительное,
(1 — число отрицательное.

Знаковые числа длиной п бит представляются в формате, по­
казанном на рис. 1.8. Имеется несколько способов кодирования
знаковых чисел.

Прямой код. Наиболее естественное кодирование знаковых
чисел заключается в том, чтобы поместить в бит S знак числа,

17

а остальные биты использовать для абсолютного значения числа.
В англоязычной литературе для этого способа принят вырази­
тельный термин «знак и модуль», а в нашей литературе закрепил­
ся термин «прямой код». Отображение двоичных «-битных набо­
ров на числовую ось для прямого кода показано на рис. 1.9. Диа­
пазон представимых чисел составляет от —(271-1—1) до + (2nI—
■—1), а число нуль может быть положительным 00... 00 и отрица­
тельным 100 ... 00.

Пример 1.9. Представить в прямом коде числа +108 и —108.
+ 108 0000 0000 ОНО 1100 006С
— 108 1000 0000 ОНО 1100 806С

Прямой код наиболее удобен и в нем очень легко реализуется
операция изменения знака числа (операция NEGATE). Однако
с «компьютерной» точки зрения у прямого кода есть существен­
ные недостатки. Во-первых, неудобно иметь два представления
нуля, и, во-вторых, операция алгебраического сложения требует
анализа знаков операндов и выбора фактической операции сло­

жения или вычитания. Указанные недостатки привели к тому, что
прямой код лишь иногда применяется при вводе и выводе данных.

Дополнительный код. В дополнительном коде сохраня­
ется общий формат знаковых целых чисел, показанный на рис. 1.8,
но отображение двоичных наборов на числовую ось становится
другим (рис. 1.10). Положительные числа от 0 до 2”-1—1 пред-

Рис. L10. Представление чисел в дополнительном коде
18

ставляются без всяких изменений, как в прямом коде, а для от­
рицательных чисел введено специальное кодирование. Так, число
—1 кодируется набором 11... II, а число —2’1-1 — 100 ...00. Еще
одно наглядное изображение чисел в дополнительном коде пока­
зано на рис. 1.11. Вне круга показаны все 4-битные наборы, а вну­
три — представляемые ими числа в дополнительном коде.

Получение дополнительного кода отрицательного числа —X
осуществляется по следующему правилу:

ХЛК=2"-|Х|,
где п— длина машинного слова.

Пример 1.10. Образовать дополнительный код числа —-1429 (п=16).
—1429 —0000 0101 1001 0101 —0595/1

10000 0000 0000 0000 216
0000 0101 1001 0101

(-1429) Дк ИИ ЮЮ ОНО ЮН FA6B11
Стандартное получение дополни­

тельного кода несколько неудобно
из-за операции вычитания, поэтому
обычно дополнительный код отрица­
тельного числа —X образуют по
следующему правилу.
■ Правило пятое. Для получе­
ния дополнительного кода отрица­
тельного числа —X необходимо за­
писать п-битный модуль этого числа.
Затем все биты инвертируются, т. е.
заменяются на противоположные,
и к полученному числу прибавляет­
ся 1.

Рис. 1.11. Круговая диаграмма
дополнительного кода

Пример 1.11. Найти дополнительный код числа —1429 (м=16).

—1429 —0000 0101 1001 0101 —0595
Модуль 0000 0101 1001 0101 0595

Инверсия 1111 1010 ОНО 1010 FA6A

Плюс 1 1

(—1429) Дк НН 1010 ОНО 1011 FA6B

Это же правило можно сформулировать по-другому.
И Правило шестое. Для получения дополнительного кода
числа —X необходимо записать n-битный модуль этого числа, за­
тем вычесть единицу и инвертировать все биты.

Оба правила (пятое и шестое) элементарно доказываются при условии, что
инвертирование n-битного числа X эквивалентно вычитанию его из числа 11 ... 11»
равного 2”—1. Тогда, например, по пятому правилу имеем:

19

инвертировать все биты
прибавить 1

Действия по шестому правилу принимают вид:
вычесть 1
инвертировать все биты

2"—1—|Х|
2"—1—|Х| 4-1 =2"—|Х]

|Х|—1
(2П—1)—(|Х| —1) =2"—|Х|

В обоих случаях результатом оказывается дополнительный код
числа —X.

Когда получение дополнительного кода осуществляется вруч­
ную, удобно воспользоваться следующим правилом.
И Правило седьмое. Для получения дополнительного кода
числа —X необходимо записать «-битный модуль этого числа. За­
тем следует просматривать число справа налево, сохранить все
младшие нули и первую встретившуюся 1, а остальные биты ин­
вертировать.

Пример 1.12. Найти дополнительный код числа —1408 (п=16).
—1408 —0000 0101 1000 0000 —0580

Сохранить

—1408 * 0 0 0 0
t t t t

0 10 1
t t t t

4 i i 4
10 0 0

4 4 i 4
0 0 0 0

Инвертировать
(—1408)дк 1111 1010 1000 0000 FA8

Аналогичные правила (пятое и шестое) справедливы и для' пе­
рехода от дополнительного кода отрицательного числа к симмет­
ричному положительному числу. Поэтому, если исходить из допол­
нительного кода числа, пятое, шестое и седьмое правила превра­
щаются в правила изменения знака числа. Обычно эта операция
имеет мнемоническое обозначение NEG (от negate — изменить
знак).

Отметим, что в дополнительном коде:
число нуль имеет единственное представление 00... 00;
максимальное по модулю отрицательное число —2й-1 не имеет

симметричного положительного числа, поэтому применительно к
нему в операции изменения знака фиксируется особый случай;

инкремент (увеличение на 1) максимального положительного
числа 4-(2n-t—1) как результат дает 2П-1, т. е. максимальное по
модулю отрицательное число, поэтому операция инкремента (и
декремента, т. е. уменьшения на 1) применима только к беззнако­
вым числам.

Очень широкое применение дополнительного кода в современ­
ных компьютерах объясняется следующими двумя основными при­
чинами. Во-первых, при сложении дополнительных кодов слагае-
20

мых как беззнаковых целых чисел получается дополнительный код
суммы (если, конечно, переполнение исключено):

^лк + Гж=(А' + Г)дк.
При этом знаковые биты суммируются обычным образом, а

возникающий при их сложении перенос игнорируется.
Пример 1.13. Сложить в дополнительном коде числа +2500 и —1200 (п=

= 16).
(4-2500)Дк 0000 1001 1100 0100 09С4
—1200 —0000 0100 1011 0000 —04В0
(—1200)дк 1111 1011 0101 0000 В50
Сложение , 0000 1001 1100 0100

*■ 1111 1011 0101 0000

(+1300)д„ 1 0000 0101 0001 0100 0514
Игнорируется

Во-вторых, любое число в дополнительном коде можно считать
младшими битами («хвостом») числа любой длины, если содержи­
мое знакового бита копировать влево.

Пример 1.14. Найти десятичный эквивалент числа ХД,;=А2.
Хдк 1010 0010 А2
X —0101 1110 —5Е

Получилось число —94.
Скопируем знаковый бит 8 раз влево, т. е. сделаем длину числа равной 16,

п найдем десятичный эквивалент полученного числа.
Хд« 1111 1111 1010 0010 FFA2

X —0000 0000 0101 1110 —005Е
В результате получается такое же число —94.

Таким образом, знаковый бит числа, представленного в допол­
нительном коде, разрешается копировать влево произвольное чис­
ло раз, не изменяя при этом значение числа. Эта операция назы­
вается расширением знака, и она необходима в тех случаях, когда
исходные операнды в операциях сложения и вычитания имеют раз­
личную длину.

В заключение отметим, что понятие дополнительного кода рас­
пространяется на системы счисления с любым основанием д. При
этом во всех выкладках вместо двух будет фигурировать число д:

ХЖ=9П-|Х|.
Операция инвертирования цифры превращается здесь в на­

хождение дополнений до д—1.
Пример 1.15. Найти десятичный дополнительный код числа —638 (п=5).

—638
1—6381

Дополнить до 9
Прибавить 1

—00638
00638
99361
99362 -*----десятичный дополнительный код

21

Пример 1.16. Найти шестнадцатеричный дополнительный код числа —ЗА7
(п=4).

—ЗА7
|—ЗА7|

Дополнить до F
Прибавить 1

—03А7
03А7

,FC58
FC59 -----шестнадцатеричный дополнительный код.

Целые знаковые числа применяются в программах для пред­
ставления тех числовых объектов, которые принципиально не
могут иметь дробной части, но могут быть положительными и от­
рицательными. В языках программирования высокого уровня та­
кие числа должны записываться без десятичной точки и объяв­
ляются спецификаторами типа SINT (п=8), INTEGER или INT
(п= 16), LONG или INTEGER4 (п=32).

1.3. ДЕСЯТИЧНЫЕ ЧИСЛА

Как уже отмечалось, существует противоречие между машин­
ным представлением чисел (двоичная система счисления) и пред­
ставлением чисел в нашей повседневной жизни (десятичные чис­
ла) . Преобразования между ними, в случае большого объема
входных данных и выходных результатов, ведет к заметным поте­
рям процессорного времени. Вместе с тем имеется обширный круг
задач, характеризующихся значительными объемами числовых
данных и сравнительно простой их обработкой (экономические
задачи, статистические расчеты, бухгалтерские выкладки и т. п.).
Поэтому потребовалось разработать такие формы представления
чисел, в которых каким-либо образом совмешались бы двоичная
и десятичная системы счисления. Такие формы получили общее
название двоично-кодированного десятичного (Binary — Coded De­
cimal) представления или BCD-кодирования. Общее свойство этих
форм заключается в том, что за основу берется десятичное число
и каждая его цифра изображается тем- или иным двоичным экви­
валентом. К настоящему времени из многочисленных систем дво­
ично-десятичного кодирования практическое применение находят
только две: упакованные десятичные числа и неупакованные де­
сятичные числа.

Упакованные десятичные числа. В упакованном формате, ко­
торый часто называют BCD-представлением десятичных чисел,
байт содержит две десятичные цифры. Младшая цифра занимает
правую тетраду (биты 3:0), старшая — левую тетраду (биты 7:4).
Обе цифры представлены своими двоичными эквивалентами, на­
зываемыми также кодом 8421 (по двоичным весам). Размещение
десятичных цифр в байте показано на рис. 1.12, а.

Многоразрядные упакованные десятичные числа занимают не­
сколько смежных байтов. При необходимости работы со знаковы­
ми числами старшая тетрада (иногда — младшая) старшего байта
отводится для знака числа (рис. 1.12,6). Для кодирования знака
22

можно использовать шесть запрещенных тетрад 1010—1111 (или
А—F), не представляющих десятичных цифр. Обычно для изобра­
жения знака плюс применяется код 1100 (С), а знака минус —
код 1101 (D). Из-за необходимости изображения знака многобайт­
ные упакованные десятичные числа имеют' нечетное число раз­
рядов.

°) 7____________ 4 J____________ 0
П о о ГТо / 1 Fl
I____ I_____ I_____L-__ I—__ I_____I_____ I____ I

<9

IS... Ш
'----- .----- • 4
«+» = 1100 (с)

= 1101 (о)

DNI/M

2 /

Млаёшпя цифра
С

Старшая цифра
9

8 Ч3 7

DNUM

Рис. 1.12. Формат упакованных десятичных чисел:
а—кодирование байта, б — многоразрядное число, в — размещение его в
памяти

При программировании упакованные десятичные числа обычно
определяются начальным адресом DNUM (это адрес младшего
байта) и числом байтов N. Размещение упакованного десятичного
числа в памяти показано на рис. 1.12, в.

Неупакованные десятичные числа. Неупакованный десятичный
формат, называемый также символьным кодом и кодом ASCII
(в переводной литературе), приведен на рис. 1.13. Здесь байт со­
держит одну десятичную цифру, представленную в коде КОИ-7
(рис. 1.13, а). В этом коде десятичным цифрам соответствуют дво­
ичные наборы от ООП 0000 (цифра 0) до ООП 1001 (цифра 9),
или в шестнадцатеричной системе от ЗОН до 39Н. Следовательно,
можно считать, что собственно значение десятичной цифры зани­
мает младшую тетраду и дается ее двоичным эквивалентом, а в
старшей тетраде находится комбинация ООН.

Многоразрядные неупакованные десятичные числа занимают
смежные байты (рис. 1.13,6). Для знака числа отводится старший
байт, в котором комбинация 0010 1011 (2ВН) обозначает знак
плюс, а комбинация 0010 1101 (2DH) — знак минус. Такие числа
определяются в программах их начальным адресом DNUM и чис­
лом разрядов (байт) или длиной N. Размещение неупакованного
десятичного числа в памяти показано на рис. 1.13,6.

23

6)

I Знак

7 _______ 4 J_________ О
P+ ,' , ' I ' ,g + ,° I

■-------' DNUMHutppa ।
8 |

■=< + » = 2BH
« - ~ = 2DH

Рис. 1.13. Формат неупакованных десятичных чисел:
а — кодирование байта, б — многоразрядное число, в—размещение его в
памяти

1.4. ФОРМАТЫ ЧИСЕЛ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Рассмотренный выше формат чисел с фиксированной точкой —■
не единственный из-за своих ограничений на диапазон чисел и
представимые числовые значения (только целые числа). Очень
мало задач, для решения которых Достаточно оперировать только
целыми числами. Поэтому для компьютеров разработан еще один
формат представления чисел — формат с плавающей точкой, на­
зываемый полулогарифмическим или экспоненциальным форматом
или же научной записью.

В вычислениях с большими и малыми числами применяется
следующая запись чисел:

Х= +0.000035= +3.5 х 10-5=0.35 х 10-4= +35 х 10-6=...
X = —19000000 = -19 х Ю+6 = - 1.9 х Ю+7= - 0.19 х 10+8=...

Здесь число X изображается как произведение некоторого дру­
гого числа на степень 10, т. е. основания системы счисления. Так
как основание системы счисления известно, его можно не указы­
вать, а взять от второго сомножителя только показатель степени.
Другими словами, Первый сомножитель записывается как есть,
а от второго сомножителя 10±N записывается только ±N, т. е. его
десятичный логарифм, что объясняет термин «полулогарифмический
формат». Чтобы не путать знак показателя степени со знаком ариф­
метической операции (сложение или вычитание), перед показате­
лем степени принято записывать букву Е (от слова Exponent —
показатель степени, экспонента). Следовательно, число записыва­
ется в виде

+ МЕ + П.
24

Число ±М называется мантиссой (или значащей частью)-, ман­
тисса может быть любым знаковым числом: целым, правильной
дробью или смешанным числом. Нетрудно заметить, что знак
мантиссы определяет знак всего числа. Число ±П называется по­
рядком (экспонентой)-, порядок может быть только целым зна­
ковым числом. Буква Е — разделитель мантиссы и порядка. Чтобы
сообщить о представлении числа с повышенной или двойной точ­
ностью, вместо буквы Е записывается буква D (от слова Double —
двойной). В этом случае для мантиссы отводится больше разря­
дов.

Порядок ±П определяет истинное или фактическое положение
десятичной точки вместо положения, которое она занимает в изо­
бражении мантиссы. Если порядок положительный, точка переме­
щается («плывет» — отсюда и название «плавающая точка») впра­
во на число разрядов, равное значению порядка.

Пример 1.17. Найти значение числа —0,0956 Е+2.
—0.0956Е + 2 = —0.0956Х10+2 = —009.56 = —9.56

Если порядок отрицательный, точка перемещается («плывет»)
влево.

Пример 1.18. Найти значение числа +1.289 Е—3.
+ 1.289Е —3 = +1.289 X 10~3 = +0.001289 = +0.001289

Переход к изображению чисел с плавающей •Точкой в двоичной
системе счисления не вызывает никаких трудностей: порядок и
мантисса становятся двоичными числами, а основанием системы
счисления служит число 2:

+ Мх2±п=+МЕ + П.
Как и в десятичной системе счисления, порядок определяет

истинное положение двоичной точки, а перемещение ее осуществ­
ляется по двоичным разрядам.

Пример 1.19. Найти десятичные эквиваленты двоичных чисел с плавающей
точкой.

—0.000101 Е+100 = —0.000101 = —1 1/4
+ 10.111Е— 11 = +0.010111 = +23/64

Рассмотренное представление чисел имеет один существенный
недостаток: запись числа оказывается неоднозначной.

Пример 1.20. Эквивалентные формы чисел с плавающей точкой.
—35 5 = —0.353 Е+2 = —0.00353 Е+4 = —35300 Е—2 = ...

+ 1012= +0.1012 Е+П2= +0.001,012 Е+1012= +1010.02 Е—1 = ...

Чтобы исключить неоднозначность записи чисел, во всех ком­
пьютерах принято нормализованное представление чисел с плаваю­
щей точкой, требующее, чтобы мантисса была правильной дробью

25

и старшая цифра ее отличалась от нуля Из приведенного выше
примера этим требованиям удовлетворяют только числа — 0.353
Еф-2 и 0.1012 E4-II2.

Кроме однозначности нормализованное представление обеспе­
чивает также сохранение максимального количества значащих
цифр мантиссы в результатах операций.

Пример 1.21. Пусть длина мантиссы составляет 6 бит. Определить норма­
лизованное и ненормализованное представления числа +43 (+1010112).

Нормализованное представление: +0.1010112 Е+1 Юг
Ненормализованное представление: + 0.000101 011г Е+100 +
Во втором случае три младших бита мантиссы оказываются потерянными

5
и истинное значение числа равно + — Х2+9 = 40, а не 43!

Классический формат с плавающей точкой. Формат чисел с пла­
вающей точкой, который применялся в компьютерах первого и вто­
рого поколений/представлен на рис. 1.14. Он состоит из 4 полей:

П-1 10 р-1 о

» Мантисса Порядок

Рис. 1.14. Классический формат чисел с плавающей точкой

знак мантиссы Sm (он совпадает со знаком всего числа), п — бит­
ная мантисса, являющаяся правильной дробью, знак порядка Sn и
p-битный порядок, который является целым числом. Мантисса и
порядок представлены в прямом коде — знак и абсолютное зна­
чение.

Пример 1.22. Пусть п=5
плавающей точкой.

1 11011 0 101

0 11000 1 100

0 11111 0 111

0. 10000 1 111

и р=3. Найти десятичные эквиваленты чисел с

мантисса = —27/32, порядок = +5,
число = —27/32 X 2+5 = —27
мантисса = +3/4, порядок = —4,
число — +3/4 X 2~4 = +3/64
мантисса == 31/32, порядок — +7,
число = + 31/42Х2+7 = +124
мантисса = +1/2, порядок = —7,
число = +1/2 X 2-7 = +1/256

Пример 1.23. Произвести обратное преобразование для того же формата с
я=5 и р=3.

Число = —3/128, двоичное представление —0.00000112 мантисса =
= —0.11000 = —3/4. порядок = —1012 = —5 1 11000 1 101

Число =+47.5, двоичное представление +101111.12 мантисса =+0.10111
И2 = +23/32, порядок =+1.102 = +6 0 10111 0 110

Последний пример показывает, что число 4*47.5 невозможно
точно представить с принятым количеством битов мантиссы. Вме­
сто него (без учета округления) представляется число +46.
26

Определим диапазон нормализованных чисел в формате, име­
ющем р бит порядка и п бит мантиссы. Поскольку для пря­
мого кода диапазон симметричен относительно нуля, производятся
расчеты только для положительных чисел. Минимальное число
получается, если взять минимальную мантиссу и максимальный
(по абсолютному значению) отрицательный порядок, т. е.

Хмин=0 100...00 1 11... 11

Здесь мантисса равна +1/2, а порядок — (2?—1); поэтому

Хмин+1/2х2-<2₽-О=2-2Р.

Чтобы получить максимальное число, необходимо взять мак­
симальную мантиссу и максимальный положительный порядок:

Хыакс = 0 111...11 0 И...П

Нетрудно установить, что
Л\1а,с=+(1-2-«)х22р-1.

Если в мантиссе пренебречь членом 2-п, то
X = 22P-i

Найденные для Хмин и Хмакс соотношения показывают, что диа­
пазон представимых чисел определяется только количеством р бит
порядка. С увеличением р диапазон очень быстро расширяется
как в область очень больших, так и в область очень малых чисел.
Воспользовавшись приближенным равенством 210~ 103, покажем,
насколько быстро расширяется диапазон:

р= 6 у -__-"члин 2-2'=2-64^; io-19,
^макс t.22e-1=263^й 1019,

р= 7 Хмин = 2—2’ — 2—128 ~s ю-38,
^макс 22’-1 = 2127 -s 1038,

р= 8 ^•мин 9—2s _ 2—256" io-7C,
V ^ 028—1__ 0255-
Лмакс 1076.

Увеличение длины порядка всего на один бит удваивает по­
казатель степени у десяти для минимального и максимального
чисел.

Рассмотрим, на что влияет количество битов мантиссы п. Возь­
мем любое число X в формате с плавающей точкой Х=Мх2п.
На числовой оси ему соответствует определенная точка.

27

Очевидно, ближайшие к нему представимые числа Х~бл и Х+бЛ
отличаются на единицу младшего бита мантиссы (рис, 1.15):

Х6л=(М- 2-«) х 2П.

Хб+=(М х 2“.

Рис. 1.15. Соседние числа с плаваю­
щей точкой на числовой оси

Примечание. Для простоты предпо­
лагается, что мантисса числа X не рав­
на 100.„00 или 11. .11, так как любые
уменьшение или увеличение таких значе­
ний мантиссы связаны с модификацией
порядка. Это ограничение оказывается
несущественным.

Определим значение разности
между соседними представимыми
числами:

Д-=ХГл-Х=-2-« х 2П,

д+=Х£1-Х=+2-« х 2П.
Значения Дг и Д+ равны по абсолютной величине и показывают

абсолютную ошибку (погрешность) представления чисел. Обо­
значим ее через Д:

д=2-« х 2П.
В вычислениях важнее относительная ошибка б, равная

„ Д 2~“х21! 2“п

X М X 2П М

Чтобы получить максимальное значение б, необходимо взять
минимальную мантиссу, т. е. 1/2:

о—л
g — ___ — 2-п+1°макс

Полученное выражение показывает, что количество битов ман­
тиссы (или длина мантиссы) определяет ошибку представления
чисел. Рассмотрим несколько примеров:

л=24 8макс=2-2з (~ю-7)

«=32 &макс=2-з1 (^10-9)
п=56 8накс=2-55 (^Ю-‘й)
« = 64 8маКС=2—63 (^10-19)

Про относительную ошибку 10-N говорят, что числа предста­
вимы с точностью до N-ro десятичного разряда или точность пред-
28

ставления чисел составляет N десятичных разрядов (цифр). По­
этому, например,- длина мантиссы п=56 соответствует точности
представления чисел до 16-го десятичного разряда.

Для формата с плавающей точкой из выражения для абсолют­
ной ошибки Д=2-ПХ^П следует, что величина Д зависит от по­
рядка числа и при изменении порядка на единицу изменяется
вдвое, но отношение Д к числу остается примерно постоянным.
Таким образом, представимые числа «сгущаются» в области малых
значений и «разрежаются» в области больших значений (рис.
1.16). Количество представимых чисел между соседними целыми
степенями двух одно и то же. Например, между 1/4 и 1/2 находит­
ся столько же представимых чисел, сколько между 4 и 8, между
16384 и 32768 и т. д. Объясняется это просто: при фиксированном
порядке количество представимых чисел определяется длиной
мантиссы п и равно 2П~1 (с учетом нормализации).

- --- tttWI+l Н 111 Н I 'I I l"l 1'1 1- 1----- 1--- f---- 1---- 1---- 1---- i----«-------- h-------- 1------ 1--------- 1------- I-
o /А t/г i 2 ‘f ч'к ? 5Цг б е'/г

Рис. 1.16. Расположение на числовой оси чисел с плавающей точкой

В рассматриваемом формате имеется одно особое число — нуль.
Оно представляется нулями во всех разрядах и называется истин­
ным (или ненормализованным) нулем. В отличие от него иногда
вводится так называемый машинный (или нормализованный) нуль,
под которым понимается минимальное представимое число Хмин.
Машинный нуль может быть положительным и отрицательным.

Как бы ни был огромен диапазон представимых чисел в фор­
мате с плавающей точкой, в программах могут возникать ситуа­
ции, когда получающийся результат выходит за пределы диапазо­
на представимых чисел. Такие ситуации называются особыми слу­
чаями.

Получение результата, который больше максимального пред­
ставимого числа Хмакс, называется переполнением или переполне­
нием порядка (порядок результата больше 0.11... 11). При воз­
никновении переполнения продолжение программы не имеет смыс­
ла, поэтому в процессоре генерируется внутреннее прерывание и
операционная система прекращает выполнение программы, выда­
вая сообщение о переполнении.

Если результат операции оказывается меньше минимального
представимого числа Хмин, возникает особый случай антиперепол­
нения или исчезновения порядка (порядок результата меньше
1 11... 11). Особый случай антипереполнения не является столь ка­
тастрофическим, как переполнение. В большинстве компьютеров
при возникновении антипереполнения как результат операции воз­
вращается истинный или машинный нуль.

29

В некоторых операциях, например сложения или вычитания,
как результат операции может получиться число, мантисса кото­
рого равна нулю. Очевидно, независимо от значения порядка та­
кое число равно нулю (его иногда называют псевдонулем). Такая
ситуация называется потерей значимости и естественная реакция
на ее возникновение — возвращение результата, равного истинному
или машинному нулю.

Формат с плавающей точкой ЕС ЭВМ. В форматах чисел с пла­
вающей точкой Единой Системы ЭВМ, которые показаны на рис.
1.17, введены два существенных изменения по сравнению с рас­
смотренным выше форматом. Во-первых, в поле порядка (биты 1—
7) содержится не истинное значение показателя степени, а так
называемый смещенный порядок Е или характеристика. Характе­
ристика представляет собой целое беззнаковое число из диапазона
0—127, равное истинному порядку, увеличенному на 64. Поэтому
минимальное значение характеристики 0000000 соответствует ис­
тинному порядку —64, а максимальное 11111112 (127) — истинному
порядку +63. Благодаря такому кодированию становится ненуж-

Слово (одинарная точность)

Л ДВойное слово ■(двойная точность)5

Рис. 1.17. Форматы чисел с плавающей точкой ЕС ЭВМ

ным специальный бит знака порядка (знак порядка совпадает с
инвертированным старшим битом характеристики) и можно срав­
нивать нормализованные числа с плавающей точкой как целые
числа. Операция сравнения, реализуемая в большинстве компью­
теров путем вычитания сравниваемых операндов, выполняется для
целых чисел намного быстрее, чем стандартная операция вычита­
ния чисел с плавающей точкой.

Во-вторых, при определении величины числа за основание, воз­
водимое в степень (равную истинному порядку), взято число 16, а
не 2. Как будет показано далее, такой прием значительно расши­
ряет диапазон представимых чисел и несколько увеличивает ско­
рость выполнения арифметических операций. Переход к основа­
нию 16 означает, что перемещать точку в зависимости от значе­
ния порядка приходится не через отдельные биты, а через группы
из четырех битов (тетрады).

Левый бит отведен для единственного знакового бита, содер­
жащего знак S мантиссы и всего числа. Биты 8—31 или 8—63
30

занимает мантисса М, которая по-прежнему считается правильной
дробью. Условием нормализации становится отличие от нуля че­
тырех старших битов мантиссы, т. е. в битах 8—11 не разрешается
комбинация 0000. Таким образом, число становится равным

X = (-l)s х М х 16Е-И.
Определим диапазон и точность представления чисел в формате

ЕС ЭВМ. Для нормализованных чисел в формате слова, на­
зываемом также коротким форматом или форматом с одинарной
точностью, имеем:

Минимальное число Хмин 0 0000000 0001 0000 ... 0000
Характеристика равна 0, порядок равен —64 и мантисса равна

ili6-

Хмии= + 1/16 х 16-':4 = 2 -2“°^ + 10-78.
Максимальное число ХмаКс 0 1111111 1111 1111 ... 1111.
Характеристика равна 127, порядок равен +63 и мантисса рав­

на (1—16-6):
Хмакс = + (1 - 16-6) X 16+«3^ +2+252 ^ + 10 +7«.

У нормализованных чисел в формате двойного слова,
называемом также длинным форматом или форматом с двойной
точностью, диапазон получается практически таким же:*

Хмин= +1/16 х 16-С4=+2-2бо^ +10-+
Хмакс=+(1-16-14)х 16+63^+2+252^+10+76

Оба формата различаются только точностью представления чи­
сел: точность короткого формата соответствует 6—7 десятичным
разрядам, а длинного формата—16—17 десятичным разрядам.

Для того чтобы расширить диапазон в области малых чисел,
в ЕС ЭВМ допускаются ненормализованные числа. Минимальное
представимое число в коротком формате имеет вид

Хмин=0 0000000 0000 0000 0000 0000 0000 0001
Хмин= +16-6 х 16-64= 16-7 о=2-йо^+ 10-м-

Минимальное представимое число в длинном формате:
Хмии= + 16-14 х 16-64=+16-78= 2-312 ^ + 10-84.

Разумеется, при переходе к ненормализованным числам ухуд­
шается точность их представления, так как сокращаетея количе­
ство значащих цифр мантиссы из-за появления слева нулей.

Формат с плавающей точкой СМ ЭВМ. В этом формате, пока­
занном на рис. 1.18, также имеются отличия от классического
формата. Левый бит отведен для знака числа. Затем следует
8-битный смещенный порядок, смещение равно 128 (1000 6000).

31

Следовательно, диапазон истинного порядка составляет от —128
(характеристика равна 0000 0000) до +127 (характеристика рав­
на 1111 11112=255). Основанием, которое возводится в степень,
равную истинному порядку, вновь стало 2. Наиболее интересное
отличие рассматриваемого формата от классического формата и
от формата ЕС ЭВМ — представление мантиссы. Мантисса по-
прежнему считается правильной дробью и должна быть нормали-

31 о

-ДВойная точность

Рис. 1.18. Форматы чисел с плавающей точкой СМ ЭВМ

зованной, т. е. старший бит ее для всех представимых чисел со­
держит единицу 1: .1ХХ... XXX. В целях экономии памяти и по­
вышения точности представления чисел старшая «1» явно не фи­
гурирует, образуя так называемый скрытый бит. Когда число пе-
редается из памяти в процессор, скрытый бит превращается в
явный и в операции участвует 24- или 56-битная мантисса. При
записи результата в память старший бит мантиссы не передается
и она становится 23- или 55-битной. Таким образом, число равно

Х=(—l)s х Л(М) X 2Е—128.

Определим диапазон и точность представления чисел в фор­
мате СМ ЭВМ. Для нормализованных чисел в коротком формате
имеем
ХМи„ 0 00000000 000 0000 0000 0000 0000 0001
ХМин = +(1/2 +2-24)X2-128r; -I- 2-129» + Ю~39

Хмакс 0 11111111 111 1111 1111 1111 1111 ЦП

Хмакс = +(1 -2-24)х2+127» +2+127» + 101-38

У нормализованных чисел в длинном формате диапазон предста­
вимых чисел практически такой же. Короткий и длинный форматы
различаются только точностью представления чисел: точность ко­
роткого формата соответствует 6—7 десятичным разрядам, а
длинного формата — 16—17 десятичным разрядам.
32

1.5. СТАНДАРТ НА АРИФМЕТИКУ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Выше были рассмотрены действующие форматы чисел с пла­
вающей точкой. Наличие нескольких форматов создает трудности
в обеспечении мобильности программ, т. е. возможности переноса
программ, разработанных для одного компьютера, на другие.
Кроме того, компьютеры разных семейств по-разному реагируют
на особые случаи, возникающие при выполнении программ. Эти
и другие причины потребовали упорядочения форматов чисел с
плавающей точкой, унификации реакций на особые случаи и точ­
ного определения результатов операций, что привело к принятию
за рубежом стандарта на арифметику с плавающей точкой. Он
был введен как стандарт IEEE-754 и получил широкое распрост­
ранение. Вновь разрабатываемые системы, как правило, подчиня­
ются требованиям стандарта. Например, представление чисел и
правила выполнения операций в арифметическом сопроцессоре
К1810ВМ87 удовлетворяют стандарту (см. гл. 4). По-видимому,
стандарт получит международное признание и будет способство-
вать мобильности вычислительных про­
грамм. В стандарте определены четыре
формата чисел с плавающей точкой.

Базовый одинарный формат. Поля
этого 32-битного формата для двоично­
го числа X с плавающей точкой приве­
дены на рис. 1.19. Формат содержит

257 0 1
Е------- JL-

М
Рис. 1.19. Базовый одинарный
формат

F

О

знаковый бит S, 8-битный смещенный порядок Е и 23-битную дробь
F. Значение v числа X определяется по следующим правилам:

если Е = 255 и F=/=0, то v является не-числом,
если Е = 255 и F=0, то v—(—1)SX°° (знаковая бесконечность),
если 0<Е<255, то t>= (— 1)SX2E~127X(I.F),
если Е = 0 и F=#0, то t)= (— l)s+2~i26X(0.F),
если Е = 0 и F=0, то г=(—1)SXO (знаковый нуль).

Таким образом, в этом формате смещение равно 127, исполь­
зуется скрытый бит Fo целой части мантиссы, а минимальный
(Е=0) и максимальный (Е=255) смещенные порядки зарезерви­
рованы для представления специальных чисел. Введено, в частно­
сти, специальное кодирование для знаковой бесконечности. Диа­
пазон представимых чисел базового одинарного формата состав­
ляет ±10±38, а точность — 6—7 десятичных разрядов.

Базовый двойной формат. Поля этого 64-битного формата для
числа X с плавающей точкой показаны на рис. 1.20. Он содержит
знаковый бит S, 11-битный смещенный порядок Е и 52-битную
дробь F. Значение v числа X определяется по следующим прави­
лам:

если F=2047 и F=#0, то v является не-числом,
если Е = 2047 и F=0, то и=(— 1)SX°° (знаковая бесконечность),

2—1021 33

если 0<Е<2047, то v= (—l)sX2E-I023X(l.F),
если Е = 0 и Е^О, то а== (— l)sX2-1022X(0.F),
если Е=0 и F=0, то и= (—1)SXO (знаковый нуль)
Здесь смещение равно 1023, используется скрытый бит Fo це­

лой части мантиссы, а минимальный (Е=0) и максимальный
(Е=2047) смещенные порядки отведены для представления спе­
циальных чисел. Этот формат аналогичен предыдущему, но диа­
пазон и точность представления чисел значительно увеличены.
Диапазона ±1О±308 и точности в 16—17 десятичных разрядов это­
го формата достаточно для подавляющего большинства практи­
ческих применений.

10 0 I ___________ ___________ __Ц
f, I , , . F , , . —

5 65 1л 0

Рис. 1.20. Базовый двойной формат

Расширенный одинарный формат. Расширенные форматы за­
висят от реализации, т. е. их параметры жестко не фиксируются.
Двоичное число X с плавающей точкой в расширенном одинарном
формате имеет четыре поля: знаковый бит S, смещенный порядок
Е (диапазон и смещение зависят от реализации), один явный или
скрытый бит Fo целой части мантиссы и дробь F длиной не менее
31 бит. Диапазон порядка должен находиться между минималь­
ным значением —1023 и максимальным значением 7И7^1024.
Значение v числа X определяется по следующим правилам:

если Е=М и F=#0, то v является не-числом,
если Е=М и F=0, то v=(—1)SX°° (знаковая бесконечность),
если тСЕсМ, то о=(—1)SX2E'X(FO.F),
если Е=т и Fo или F ненулевые, то v=(—l)3X2E'X(F0.F), где Е' равно

т или m-f-1 в зависимости от реализации,
если Е = т и Fo=F=0, то о=(—l)sX0- (знаковый нуль).

Расширенный двойной формат. Этот формат аналогичен пре­
дыдущему, но диапазон порядка должен составлять от —16383
до М^=-|-16384, а дробь F должна иметь минимум 63 бит.

Все реализации, удовлетворяющие рассматриваемому стандар­
ту, должны, как минимум, поддерживать базовый одинарный фор­
мат. Рекомендуется также поддержка одного из расширенных фор­
матов. Подробнее об этом стандарте см. гл. 4.

1.6. ОСОБЕННОСТИ ВЫПОЛНЕНИЯ АРИФМЕТИЧЕСКИХ
ОПЕРАЦИЙ В МИКРОПРОЦЕССОРАХ

Любое действие в микропроцессорах, в том числе и арифмети­
ческие операции, осуществляются специальными командами. Сис­
тема команд содержит группу команд, реализующих арифметиче­
ские операции и определяющих вычислительные возможности. Ко-
34

нечно, команды этой группы для микропроцессоров разных клас­
сов существенно различаются. Например, в 8-битном микропро­
цессоре КР580ИК80 есть только команды сложения и вычитания,
а для умножения и деления приходится разрабатывать подпро­
граммы. 16-битный микропроцессор К1810ВМ86 имеет команды
всех арифметических операций, а в сопроцессоре К1810ВМ87 есть
команды таких сложных операций, как извлечение квадратного
корня, возведение в степень, логарифмирование и др. В этом па­
раграфе рассмотрены принципы выполнения арифметических опе­
раций над целыми числами, числами с плавающей точкой и де­
сятичными числами.

1.6.1. ОПЕРАЦИИ НАД ЦЕЛЫМИ ЧИСЛАМИ

Арифметические флажки. В арифметических операциях важ­
ная роль отводится так называемым признакам или флажкам,
показывающим особенности полученного результата операции.
Любой микропроцессор имеет несколько арифметических флаж­
ков, состояния которых после выполнения команды дают общую
характеристику результата. Наиболее широко применяются сле­
дующие флажки.

1. Флажок переноса, обозначаемый С, СУ (CarrY) и CF (Carry
Flag), фиксирует цифру переноса из старшего бита при сложении
чисел, т. е. он представляет собой расширение результата на один
бит влево. В операции вычитания флажок переноса превращается
во флажок заема (borrow) и устанавливается в 1, когда уменьшае­
мое меньше вычитаемого при интерпретации операндов как целых
беззнаковых чисел. Очевидно, состояние флажка переноса при
сложении беззнаковых чисел можно считать признаком перепол­
нения: 0'—переполнения нет, 1—возникло переполнение. При
сложении и вычитании знаковых чисел состояние флажка пере­
носа самостоятельного значения не имеет. Этот флажок играет
важную роль и интенсивно используется в программах, так как
позволяет на малоразрядном микропроцессоре обрабатывать
числа любой длины, обеспечивая связь между отдельными частями
операндов.

2. Флажок вспомогательного или дополнительного переноса,
обозначаемый A (Auxiliary — дополнительный) или AF, показыва­
ет при сложении перенос, а при вычитании заем из младшей тет­
рады (т. е. бита 3) результата. Применение этого флажка, недо­
ступного программисту, ограничено командами десятичной ариф­
метики.

3. Флажок нуля, обозначаемый Z (Zero) и ZF, своим состоя­
нием показывает получение нулевого или ненулевого результата
операции: Z=0 — результат не равен нулю, Z—1 — получен ну­
левой результат.

4. Флажок знака обозначается S (Sign), SF и N (Negative —
2* 35

отрицательный) и своим состоянием повторяет значение старшего
бита результата. Так как в дополнительном коде старший бит яв­
ляется знаковым, то S=0, если получен положительный резуль­
тат, и S=l, если результат операции отрицательный.

5. Флажок переполнения обозначается О, OV (Overflow—пере­
полнение) или OF. В операциях сложения и вычитания знаковых
чисел этот флажок показывает, находится ли результат внутри
диапазона представимых чисел: V=0 — результат правильный, пе­
реполнения нет, V=1—-возникло переполнение. Флажок перепол­
нения относится только к операциям над знаковыми числами. Кро­
ме операций сложения и вычитания флажок переполнения дейст­
вует и в операции деления, показывая, что частное слишком
велико для отведенного ему места. В операции умножения состоя­
ние V=1 означает, что старшая половина произведения содер­
жит значащие разряды.

Сложение. Во всех микропроцессорах обязательно имеется
команда сложения, обычно с мнемоникой ADD, осуществляющая
сложение двоичных чисел, длина которых равна длине машин­
ного слова. Операнды команды ADD считаются целыми беззна­
ковыми числами, т. е. она единообразно суммирует все биты опе­
рандов. Особенность дополнительного кода заключается в том,
что операндй команды ADD можно интерпретировать и как целые
знаковые числа — результат будет правильным (конечно, с уче­
том возможного переполнения). Различие между формами пред­
ставления операндов приводит к различной интерпретации состоя­
ний флажков. Покажем это на примерах, используя операнды
длиной в один байт.

Пример 1.24 Беззнаковые
числа

Знаковые
числа

а) ОНО 1010 106 (+Ю6)
+ + 4-
0010 1110 46 (4-46)
1001 1000

С=о, S=l, Z=0, V=1
152 —104(?)

б) 1011 0111 183 (-73)
4- +' 4-
0010 1110 46 (4-46)
1110 0101

С=о, S=l, z=o, v=o
229 —27

в) 0100 0111 71 (4-71)
4- + 4-
1110 ООН 227 (-29)
0010 1010

C=l, S=0, Z=0, V=0
42(?) 4-42

36

г) 1100 0000 192 (-64)
4- + +
1010 1101 173 (-83)
ОНО 1101 109(?) +109(?)

с=1, S=o, Z=0, V=1
д) НЮ ООП 227 (-29)

+ +
0001 1101 29 (+29)
0000 0000 0(?) 0

с=1, S=0, Z=l, V=0

Флажок переполнения устанавливается в 1, если значения пе­
реноса в старший бит и из старшего бита не совпадают. Дейст­
вительно, при сложении переполнение может возникнуть, когда
знаки операндов одинаковы, а само переполнение заключается в
том, что при сложении положительных чисел получается отри­
цательная сумма (есть перенос в старший бит, но нет переноса
из старшего бита) или при сложении отрицательных чисел полу­
чается положительный результат (есть перенос из старшего бита,
но нет переноса в старший бит).

Когда длина операндов превышает длину машинного слова,
сложение приходится выполнять в несколько приемов, для чего
организуется программный цикл. Операцию необходимо начать
с младших частей операндов и «продвигаться» затем в сторону
старших частей. При этом следует учитывать переносы, возни­
кающие при каждом сложении и фиксируемые .во флажке пере­
носа. Покажем выполнение операции на примере сложения 24-бит­
ных операндов в микропроцессоре, длина слова которого состав­
ляет 8 бит (байт).

Пример 1.25. Сложить операнды 11001000 01110101 11101111 н 000.10010
11111111 11001011.

Начинается сложение с младших байтов:

, 11101111
11001011

1ч----10111010 флажок С = 1
Суммируются средние байты с учетом единицы переноса:

1 перенос от сложения младших байтов
, 01110101

11111111

1ч----01110101 флажок С = 1
Наконец, суммируются старшие байты чисел:

1 перенос от сложения средних байтов
+ 11001000

00010010
0ч—-11011011 флажок С = 0

37

Получен результат 11011011 01110101 10111010, флажок переноса нахо­
дится в состоянии 0.

Из примера видно, что в системе команд весьма желательно
иметь команду, которая не только суммирует операнды, но и при­
бавляет в младший бит значение флажка переноса (0 или 1).
Такая команда есть во всех микропроцессорах, она называется
сложением с переносом и обычно имеет мнемонику ADC (ADd
with Carry). Ее очень удобно использовать в программном цикле
сложения длинных операндов, обеспечив, чтобы при сложении
младших частей флажок переноса находился в состоянии 0.
Команда ADC воздействует на арифметические флажки точно
так же, как и команда ADD.

К командам сложения обычно относят и однооперандную
команду инкремента (INCrement) с мнемоникой INC или INR,
осуществляющую увеличение значения своего единственного
операнда на 1. Отличительная особенность этой команды заклю­
чается в том, что она воздействует на все арифметические флаж­
ки, за исключением флажка переноса, который при ее выполне­
нии сохраняет свое текущее состояние. Объясняется эта особен­
ность тем, что наиболее часто команда инкремента применяется
для модификации указателей памяти и значение переноса здесь
не играет никакой роли.

Вычитание. В системах команд всех микропроцессоров есть
двухоперандная команда вычитания с мнемоникой SUB
(SUBtract), в которой определяются уменьшаемое и вычитаемое,
а разность обычно помещается на место уменьшаемого. Операнды
этой команды, как и операнды команды сложения, можно интер­
претировать как целые беззнаковые или знаковые числа при ус­
ловии представления знаковых чисел в дополнительном коде.
Команда вычитания воздействует на все арифметические флажки,
причем флажок переноса становится флажком заема.

Во всех микропроцессорах выполнение команды вычитания
производится в два этапа: вначале образуется дополнительный
код вычитаемого, а затем уменьшаемое и модифицированное вы­
читаемое суммируются. При этом проявляется особенность: со­
стояние флажка переноса (т. е. заема) противоположно факти­
ческому значению переноса при сложении уменьшаемого и допол­
нительного кода вычитаемого. Рассмотрим действие команды вы­
читания на нескольких примерах.
Пример 1.26.

а) Уменьшаемое равно 0101 0111, вычитаемое равно 0100 1000.
Обычное вычитание:

0101 0111 87 (+87)
0100 1000 72 (+72)

0ч—0000 1110 15 + 15
38

Дополнительный код вычитаемого равен 1011 ,1000. Сложение его с умень­
шаемым дает:

, 0101 0111
+ 1011 1000

1ч---- 0000 1111
с = о, s = о, z = o, v = о

б) Уменьшаемое равно 0111 0111, вычитаемое равно 1011 0101. Допол­
нительный код вычитаемого равен 0100 1011 и при сложении его с уменьшае­
мым получим:

0111 0111 , 119 _ (+119)
0100 1011 181 (— 75)

г ____________ ______ __________
0ч---- 1100 0010 194(?) —62 (?)

х С = 1, S = 1, Z == 0, V = 1
При интерпретации операндов как целых беззнаковых чисел возник заем

(119<181), а если операнды считать знаковыми числами, возникло перепол­
нение.

в) Уменьшаемое равно 1000 1111, вычитаемое равно 1111 1111. Дополни­
тельный код вычитаемого равен 0000 0001. Сложив его с уменьшаемым, полу­
чим:

, 1000 1111 _ 143 _ (—113)
0000 0001 255 (—1)

0ч— 1001 0000 144 (?) —112

C=l, S = I, Z=0, V=0.
Когда длина операндов больше длины машинного слова, вычи­

тание, как и сложение, осуществляется в несколько приемов в
программном цикле. Операция начинается с младших частей опе­
рандов с последовательным переходом к старшим частям. При
этом необходимо учитывать заемы, которые фиксируются во
флажке переноса. Рассмотрим вычитание 24-битных чисел в мик­
ропроцессоре с длиной слова 8 бит.

Пример 1.27. Уменьшаемое равно 11001000 01110101 11101111, а вычитае­
мое 00010010 11111111 11001011. Сначала производится традиционное вычи­
тание:

1 0 ч-------межбайтные заемы
11001000 01110101 11101111
00010010 11111111 11001011

10110101 01110110 00100100ч— разность
В микропроцессоре эта операция выполняется следующим образом. Вычи­

таются младшие байты операндов, для чего находится дополнительный код бай­
та вычитаемого (00110101) и складывается с байтом уменьшаемого:

11101111
00110101

1ч----00100100 флажок С = 0
39

Вычитаются средние байты операндов; дополнительный код среднего бай­
та вычитаемого равен 00000001 и при сложении его со средним байтом умень­
шаемого имеем:

, 01110101
+ 00000001

0ч----01110110 флажок С = 1
,Флажок С будет установлен в 1 и заем необходимо учесть (т. е. вычесть)

при вычитании старших байтов операндов. Дополнительный код старшего бай­
та вычитаемого равен 11101110 и сложение его со старшим байтом уменьшае­
мого дает:

, 11001000
+ 11101110

1ч-—10110110 флажок С = 0
VТеперь необходимо учесть единицу заема, т. е. вычесть 1, которая в допол­

нительном коде имеет вид 11111111:

, 10110110
+ 11111111

1ч---- 10110101 флажок С = 0

Полученный результат совпадает с разностью, найденной выше прямым вы­
читанием.

Вычитание единицы заема можно осуществить и по-другому:
когда флажок переноса находится в состоянии 1, следует брать
не дополнительный код вычитаемого, а его обратный код, полу­
чающийся простым инвертированием всех битов. Поэтому при
сложении старших байтов уменьшаемого и обратного кода вычи­
таемого получим:

11001000
+ 11101Ю1

1ч----10110101 флажок С = 0

Рассмотренное показывает, что для вычитания чисел с длиной,
большей длины машинного слова, удобно иметь команду, которая
не просто вычитает два числа, но и автоматически учитывает со­
стояние флажка переноса (заема). Такая команда называется
вычитанием с заемом и имеет мнемонику SBB (SuBtract with
Borrow). Действие ее описываем следующим образом, полагая,
что разность замещает уменьшаемое:

уменьшаемое^о-уменьшаемое — вычитаемое — состояние заема
Команду SBB легко встраивать в программные циклы вычита­

ния. Она воздействует на арифметические флажки так же, как
команда вычитания SUB.

К. командам вычитания относится однооперандная команда
40

декремента (DECrement) с мнемоникой DEC и DCR. Она произ­
водит уменьшение на 1 значения своего единственного операнда.
Команда декремента воздействует на все арифметические флаж­
ки, за исключением флажка переноса, сохраняющего текущее со­
стояние. Объясняется эта особенность команды декремента тем,
что наиболее часто она применяется для модификации счетчиков
циклов и’указателей памяти. В таких применениях команды де­
кремента знать значение переноса (возник он или нет) не тре­
буется.

Еще одна команда, относящаяся к вычитанию, называется из­
менением знака (NEGate) и обычно имеет мнемонику NEG. По
существу она эквивалентна вычитанию из нуля значения своего
единственного операнда. При использовании дополнительного кода
эта команда может вызвать особый случай (обычно интерпрети­
руемый как перевыполнение), когда ее операнд имеет вид 100 ...00.
Такое отрицательное число —2п~1 не имеет равного по абсолют­
ному значению положительного числа.

К вычитанию обычно относится и двухоперапдная команда
сравнения (СОМраге) с мнемоникой СМР и СОМ. В этой команде
допускается такая же спецификация операндов, как и в команде
вычитания, и она повторяет все действия команды вычитания, за
исключением одного: результат вычитания не замещает уменьшае­
мое и вообще нигде не сохраняется. Следовательно, позитивным
итогом команды сравнения являются состояния арифметических
флажков, показывающие отношение между операндами, а ни один
из операндов не изменяется.

При использовании команды сравнения необходимо отчетливо
представлять, что ее операнды допускают интерпретацию как без­
знаковых, так и знаковых чисел в дополнительном коде, что влия­
ет на содержательный смысл состояний флажков. Наиболее про­
сто выявляется равенство (Z=l) и неравенство (Z=0) операн­
дов: об этом сигнализирует флажок нуля Z независимо от интер­
претации операндов. Отношение «больше — меньше» в случае
беззнаковых чисел показывает флажок переноса: если первый
операнд (уменьшаемое) больше второго (вычитаемого), то фла­
жок переноса устанавливается в состояние 0, и наоборот. Следую­
щие примеры показывают, что отношение «больше — меньше»
для знаковых чисел проверяется суммой по модулю 2 состояний
флажков S и V: если первый операнд больше второго, то S(BV—0.

Пример 1.28.
X Y —Y X-Y

а) 0010 0010 0000 0100 1111 1100 0010 6010
+ 34 +4 + 1111 1100

1-.-001 1110
С = 0, S = 0, Z = 0, V = 0, S Ф V =0

41

Оч---- 1ООО 0010

б) 0010 0010
+ 34

1111 1100
— 4

0000 0100 0010
+ 0000

0010
0100

С = 1, S = 0, Z = 0, V = 0,
0ч----0010

s®v = o
оно

в) 1111 1100
— 4

1101 1110
— 34

0010 0010 1111
+ 0010

1100
0010

С = 0, S = 0, Z = 0, V = 0,
1ч---- 0001
S®V= 0

1110

г) 0111 1111
+ 127

1111 1100
— 4

0000 0100 0111
+ 0000

1111
ООП

* С = 1, S = 1, Z = 0, V = 1,
0ч---- 1000
S ® V = 0

ООП

д) 0000 0100
+ 4

1000 0001
— 127

0111 1110 0000
0111

0100
1110

♦ c=i, s=i, z = o, v=i, s®v = o

Умножение. Если в системе команд микропроцессора имеется
команда умножения, никаких трудностей операция умножения,
естественно, не вызывает. Но если команда умножения отсутст­
вует или формат операндов не удовлетворяет требованиям имею­
щейся команды умножения, приходится разрабатывать програм­
мную реализацию умножения. Рассмотрим основные принципы
программирования умножения на примере беззнаковых чисел.
Пусть сомножителями X и Y являются /г-битные беззнаковые
числа:

множимое Х = %,г_1Хп-_2.. .XjXq,

множитель Y=y„_ii/n-2...«/iy0.
Представим множитель Y в развернутой форме:

Y= y„_ -ф... ф- у^ + у02°
и найдем произведение:

Z = XY^CX^-J 2«-> +(Ху„_2) 2"-2-ф... +(Х^) 21 +(Х%) 2°.
Произведение г<=(Хг/г)2' множимого на один бит множителя

называется частичным произведением, а сумма k первых или по­
следних частичных произведений называется k-к суммой частич­
ных произведений. При k=n сумма частичных произведений пре;
вращается в полное произведение Z. Произведение п-битных со­
множителей имеет длину 2п бит и уменьшить ее невозможно.

42

Нетрудно заметить, что частичное произведение Zi равно либо
нулю (когда i/i=0), либо множимому X с учетом веса 2г (когда
^=1)- Умножение реализуется циклическим процессом, на каж­
дом шаге которого:

анализируется очередной бит yi множителя;
в зависимости от его значения происходит (гд=1) или нет

(щ=0) прибавление множимого к предыдущей сумме частичных
произведений;

производится изменение взаимного положения множимого X
и суммы частичных произведений с учетом веса 21.

Сдвиг
множимого

а) S) Млаошими разрядами

Сдвиг суммы
частичных

произведений

Рис. 1.21. Варианты умножения целых двоичных чисел

В соответствии с выражением для произведения Z существует
четыре возможных варианта умножения, показанных на рис. 1.21.
Они различаются тем, с каких разрядов множителя Y (млад­
шего или старшего) начинается умножение и что сдвигается —
множимое или сумма частичных произведений. Вариант умноже­
ния, начиная с младших или старших разрядов множителя, на­
зывается еще умножением младшими или старшими разрядами
вперед.

Когда сомножители представлены в дополнительном коде, ни
один из приведенных вариантов не дает правильного произведе­
ния в дополнительном коде. В этом случае стандартный прием
выполнения операции заключается в реализации следующего ал­
горитма:

43

по знаковым битам сомножителей образовать (сложением по
модулю 2) и временно сохранить знак произведения;

образовать абсолютные значения сомножителей и умножить
их, пользуясь любым вариантом;

с учетом знака произведения представить результат в допол­
нительном коде.

Для сомножителей, представленных в дополнительном коде,
используется еще один алгоритм умножения:

проанализировать знак множителя и при Y<0 умножить со­
множители на —1, т. е. сделать Y положительным;

выполнить умножение по любому из вариантов с такими из­
менениями:

а) при сдвиге X вправо знаковый бит сохраняет свое значе­
ние и копируется в соседний правый бит (арифметический сдвиг
вправо); #

б) во всех битах старшей половины X первоначально должна
находиться копия знакового бита;

в) при суммировании множимого значение X должно быть до­
полнено старшими копиями знакового бита;

г) изменений нет.
При программировании операции умножения можно реализо­

вать любой вариант, но для получения эффективных программ
приходится учитывать особенности микропроцессора и системы
команд (см. гл. 2).

Деление. Операция деления является обратной по отношению
к умножению и реализуется похожими циклическими действиями.
Обозначим через X —делимое, Y — делитель и Z=X/Y — частное,
считая их целыми беззнаковыми числами. При делении целых
чисел принято как дополнительный результат формировать еще и
остаток R. Для операции деления характерен случай деления на
нуль (Y=0). Обычно он фиксируется как переполнение, но иногда
учитывается отдельно.

Рассматривают две разновидности операции деления:
делимое, делитель и частное имеют одну и ту же длину п,
делимое имеет двойную длину по сравнению с делителем и

частным.
Схема выполнения операции в обоих случаях одна и та же, но

в первом переполнение возможно только при нулевом делителе,
а во втором — кроме того, когда старшая половина делимого
больше делителя.

Если умножение, по существу, сводится к последовательности
сложений, то деление — к последовательности вычитаний делителя
вначале из делимого, а затем из остатков. Деление двоичных чи­
сел по сравнению с десятичными оказывается намного проще бла­
годаря тому, что цифрами частного могут быть только 0 и 1. Сле­
довательно, цифра zn-i частного определяется просто: если теку­
щий остаток fi-j больше или равен делителю, цифра частного рав­
44

на 1, а если то цифра частного равна 0. Сравнение в ком­
пьютерах приводится к вычитанию, поэтому общий алгоритм де­
ления включает в себя следующие шаги: z

вычесть делитель Y из остатка полученного на предыдущем
шаге (за начальный остаток г0 принимается делимое X), и обра­
зовать остаток ir<;

если л<0, то zn-i=0 и необходимо вернуться к Гг-i, прибавив
к г,- делитель (это действие называется восстановлением остатка);
если же то z„_i=l и за очередной остаток принимается г/,

скорректировать взаимное положение остатка г,- и делителя Y
(что-то одно сдвигается на один бит) и повторить действия по
определению следующей цифры гп-г-л частного.

Так как частное можно определить только со старших разря­
дов, то существует два варианта деления, показанных на рис. 1.22.
В первом варианте на каждом шаге производится сдвиг делителя
вправо, а во втором — сдвиг остатка влево.

Рис. 1.22. Варианты деления целых двоичных чисел

Двоичная система счисления обладает замечательным свойст­
вом,. позволяющим во втором варианте деления устранить действия
по восстановлению остатка. Пусть на i-м шаге получился отрица­
тельный остаток — г,. Восстановление его заключается в получении
предыдущего остатка Гг-1 =—п+У. После этого П-i сдвигается
влево с образованием 2Г{_1 = —2г< + 2У, а затем осуществляется
вычитание делителя Y: r£-+i= (2r, + 2Y)—Y=—2fi+Y. Таким обра­
зом, при получении отрицательного остатка г, необходимо сдви­
нуть г< влево и прибавить делитель Y. Этот прием легко реализу­
ется схемно, но его программное воплощение громоздко.

Когда делимое и делитель представлены в дополнительном
коде, можно применить алгоритм деления, в котором выбор на
каждом шаге сложения или вычитания основывается на анализе
знаков остатка и делителя. Однако его программная реализация
малоэффективна и обычно применяется такой же способ, как и в

45

умножении: отдельно определяется знак частного, затем произ­
водится деление абсолютных значений операндов и в заключение
образуется дополнительный код частного.

1.6.2. ОПЕРАЦИИ НАД ЧИСЛАМИ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Машинное представление числа с плавающей точкой состоит
из двух частей, имеющих совершенно различный смысл: мантисса,
являющаяся правильной дробью, содержит значащие разряды
числа, а порядок (целое знаковое число) показывает фактическое
положение двоичной точки в цифрах мантиссы. Следовательно, в
арифметических операциях обработка мантисс и порядков долж­
на производиться по разным правилам. В микропроцессорах ши­
рокого назначения нет команд, оперирующих числами с плаваю­
щей точкой. Поэтому при необходимости производства вычисле­
ний с такими числами приходится разрабатывать подпрограммы
соответствующих операций. В арифметическом сопроцессоре (см.
гл. 4) формат чисел с плавающей точкой является единственным
внутренним форматом.

Сложение. Предположим, что требуется сложить два числа X и
Y, представленных в формате с плавающей точкой:

Х-- = щхПх, У=туПу.
Поскольку порядки Пх и Пу показывают положение двоичной

точки, а складывать можно только одноименные разряды слагае­
мых, первым действием операции сложения должно быть так на­
зываемое выравнивание (или уравнивание) порядков. Другими сло­
вами, необходимо представить числа X и Y в такой форме, в ко­
торой их порядки одинаковы. В случае Пх=Пу выравнивать по­
рядки не нужно. Из двух исходных порядков Пж и Пу один будет
меньше другого. Пусть для определенности Пу<Пх и разность
порядков ДП=ПХ—Пу положительна.

Выравнивание порядков осуществляется двумя способами: либо
сделать общим порядком меньший из них' (Пу), либо считать об­
щим порядком больший из них (Пх). В любом случае для сохра­
нения значения числа придется трансформировать мантиссу того
числа, порядок которого будет изменяться. Для уменьшения боль­
шего порядка (Пх) до меньшего (Пг/) сдвигается мантисса тх на
ДП разрядов влево, т. е. в направлении старших разрядов. Такой
подход потребует для хранения мантисс регистров двойной длины,
так как ни один выдвигаемый слева бит отбросить нельзя из-за
его большой значимости. Поэтому остается только второй вариант,
который и принят во всех компьютерах: меньший порядок (Пу)
увеличивается до большего Пх. При этом для сохранения значе­
ния числа Y его мантисса сдвигается вправо на ДП разрядов. При
этом происходит выдвигание младших битов мантиссы ту, кото­
рые при ограниченной длине регистров мантисс теряются. Их по­
46

терн, однако, существенного значения не имеет, поскольку выдви­
гаются и теояются младшие биты мантиссы. Отсюда следует вы­
вод о том, что операция сложения, будучи абсолютно точной для
целых чисел, принципиально связана с ошибками (погрешностями)
для чисел с плавающей точкой.

Для выравнивания порядков необходимо найти разность ДП
порядков (как целых знаковых чисел), по ее знаку определить
больший из порядков Пж или Пу и сдвинуть мантиссу числа с
меньшим порядком на ДП разрядов вправо. Порядком результата
оказывается общий (болыший) порядок, а двоичная точка в пред­
ставлениях обеих мантисс будет в одном и том же месте.

Рассмотрим примеры выравнивания порядков для классиче­
ского формата с плавающей точкой (в дальнейшем покажем осо­
бенности этого процесса для чисел в форматах ЕС ЭВМ и СМ
ЭВМ). Предполагаем, что длина мантиссы п=5, а длина порядка
Р—3.

Пример 1.29. Даны числа
X: = 1 ПОП Пх = 0 101 (X = — 27)
Ч:ту = 0 ЮНО П„ = 0 010 (¥ = +2 3/4)

Разность порядков ДП = ПХ—П„= (+ 5) — (+ 2) = +3. Знак плюс пока­
зывает, что порядок Пх больше порядка Пу и, следовательно, мантиссу mv не­
обходимо сдвигать на три бита вправо:

/п„=0 .00010 (НО) Щ=0 101 (У=4-2).

При сдвиге выдвигаются и теряются младшие биты мантиссы ту, содержа­
щие ПО. Чтобы повысить точность операции сложения, обычно регистры ман­
тисс «удлиняют» вправо на несколько битов.

Пример 1.30. Даны числа:
Х:тх = 0 10011 Пх = 1 001 (X = +19/64)
\:ту=\ 11101 П„ = 0 ОН (У = —7 1/4)

Разность порядков ДП = ПХ— lls=(—1) — (+3) =—4 Знак минус пока­
зывает, что П„>ПХ, поэтому мантиссу тх потребуется сдвигать на 4 бита
вправо'

тх=0 00001 (000) Пх=0 011 (Х=4-1/4).
Общий порядок слагаемых стал равным 0 011, т. е. 4-3.

Очевидно, если |ДП| ~^п, где п — длина мантисс, мантисса
числа с меньшим порядком вся выдвинута вправо и сумма опре­
деляется сразу: она равна числу с большим порядком.

Второй этап сложения чисел с плавающей точкой заключается
в том, чтобы сложить мантиссы как числа с фиксированной точ­
кой, так как в обеих мантиссах двоичная точка находится в одном
месте. Для сложения мантисс можно применить те же способы,
что и рассмотренные в п. 1.6.1. Продолжим предыдущие примеры
1.28 и 1.29. Введем для удобства слева дополнительный бит.

Пример 1.31. Имеем тх—\ 11011, /пь = 0 00010.

47

Образуем дополнительные коды мантисс и сложим их:
тх . 11 00101
ту 00 00010

тг 11 00111
В результате получена отрицательная мантисса mz, которая представлена в

дополнительном коде. Прямой код: тх=\ 11001.
Результат сложения:

тг=1 11001 Пг = 0 101 (Z = —25)
Пример 1.32. Имеем /пх = 0 00001, ту = \ 11101.
Образуем дополнительные коды мантисс и складываем их:

и, , 00 00001
пгв 11 00011

тг 11 00100
Здесь также получена отрицательная мантисса, поэтому окончательный резуль­
тат равен

тг=\ 11100 Пг = 0 Oil (Z = —7)

При сложении мантисс может возникнуть нарушение норма­
лизации вправо и влево. Нарушение нормализации вправо проис­
ходит при сложении мантисс с разными знаками и близких по аб­
солютному значению; оно заключается в том, что старший бит
мантиссы результата оказывается нулевым. Такое нарушение нор­
мализации ликвидируется простым действием сдвига мантиссы
влево до тех пор, пока в ее старшем бите не будет 1. При каждом
сдвиге мантиссы для сохранения значения числа уменьшается по­
рядок на 1.

Пример 1.33. Даны числа:
X: = I 10011 Пх = 0 101 (X = —19)
Y: ту = 0 10001 П„ = 0 101 (Y = +17)

Выравнивать порядки не требуется, так как Па; = П!,. Складываем мантиссы:
/пх .11 01101
ту 00 10001

mz 11 11110
Мантисса результата mz— 1 00010 и имеет нарушение нормализации впра­

во. Для устранения его тг необходимо три раза сдвинуть влево и уменьшить
порядок nz на 3:

mz = 1 10000 П2 = 0 010 (Z = —2)

При ликвидации нарушения нормализации вправо может ока­
заться, что порядок результата достиг своего минимального зна­
чения (у нас оно равно 1 111), а процедура нормализации тре­
бует его дальнейшего уменьшения. Такая ситуация называется
исчезновением порядка или антипереполнением; она свидетельст­
вует о том, что результат меньше минимального представимого
нормализованного числа. Здесь можно предпринять два дейст­

48

вия. Простейшая и традиционно предпринимаемая реакция — воз­
вратить как результат операции нуль. Второй подход, обеспечи­
вающий большую точность,— оставить результат ненормализован­
ным и разрешить ему в таком виде участвовать в дальнейших вы­
числениях.

При сложении чисел с плавающей точкой следует учитывать
и случай, когда сложение мантисс дает нуль (мантиссы одина­
ковы по абсолютному значению, но имеют разные знаки). Этот
случай называется потерей значимости. Независимо от значения
порядка результат будет равен нулю (его иногда называют псев­
донулем), поэтому обычно предусматривается превращение такого
числа в истинный нуль.

При сложении мантисс с одинаковыми знаками может возник­
нуть и нарушение нормализации влево максимум на один разряд.
Оно устраняется путем сдвига мантиссы вправо и увеличения по­
рядка на 1.

Пример 1.34. Даны числа:
X: тх = 0 10010 ГД = 0 100 (X = +9)
Y: ту = 0 11001 ГД = 0 100 (Y=+12 1/2)

Выравнивать порядки не нужно,
мантиссы:

так как П^П^; суммируем

тх , 00 10010
ту 00 11001

mz 01 01011

Возникло нарушение нормализаций влево, поэтому сдвигаем мантиссу впра­
во и производим инкремент порядка:

mz = 0 10101 (1) Пх = 0 101 (Z = +21)

При нарушении нормализации влево с отрицательными мантис­
сами в знаковых битах будет комбинация 10. Старший бит пока­
зывает знак мантиссы результата (отрицательный) и его нужно
сохранить в окончательном результате. Младший бит после сдвига
вправо и преобразования в прямой код даст 1 в старшем бите
мантиссы.

Если порядок результата с нарушением нормализации влево
равен максимальному (в нашем случае 0 111), то возникло пере­
полнение. Обычно оно ведет к прекращению выполнения про­
граммы.

При сложении чисел с плавающей точкой в форматах ЕС ЭВМ
необходимо учитывать следующие обстоятельства. Во-первых,
вычитание характеристик автоматически убирает смещение и
разность характеристик ДХ равна разности порядков ДП. Во-вто­
рых, при получении ДП=Ы необходимо сдвигать мантиссу числа
с меньшим порядком на N 16-ричных разрядов, т. е. 4XN бит.

49

В третьих, о нарушении нормализации вправо свидетельствует
получение 0000 в четырех старших разрядах мантиссы. Сдвиг
мантиссы влево осуществляется на 4 бита с декрементом порядка
на 1. При нарушении нормализации влево приходится сдвигать
мантиссу на 4 бита вправо с инкрементом порядка на 1.

При использовании чисел с плавающей точкой в форматах СМ
ЭВМ собственно операция сложения дополняется двумя действия­
ми. Первое действие заключается в восстановлении скрытых еди­
ниц мантисс, а второе действие превращает «истинный» результат
в формат со скрытым битом мантиссы.

Вычитание. Операция вычитания чисел с плавающей точкой,
т. е. получение Z=X—Y, элементарно приводится к операции ал­
гебраического сложения: Z=X+(—Y). Следовательно, вычитание
реализуется изменением знака вычитаемого и последующего сло­
жения чисел со всеми особенностями операции сложения.

У множение.# Умножение чисел с плавающей точкой принципи­
альных трудностей не вызывает, так как из представления чисел
в форме

Х = тЛх2Ч Y=m^x2n«
следует, что

* Z=XxY=(mxxma)2n^+n</.
Другими словами, мантисса произведения равна произведению

мантисс сомножителей, а порядок произведения равен сумме их
порядков. Для умножения мантисс, как чисел с фиксированной
точкой, можно применить любой из рассмотренных в п. 1.6.1 ва­
риантов умножения. Знак произведения определяется отдельным
действием путем сложения по модулю 2 знаков сомножителей.

При умножении нормализованных мантисс может возникнуть
только нарушение нормализации вправо максимум на один раз­
ряд, так как произведение минимальных мантисс, равных 1/2, дает
1/4 (или 0.012). Оно устраняется обычным образом: мантисса
сдвигается влево на один бит, а порядок уменьшается на 1.

В операции умножения могут возникать как переполнение, так
и антипереполнение. Переполнение обнаруживается, когда сумма
порядков сомножителей больше максимального допустимого по­
рядка, а антипереполнение — после того, как произведен декре­
мент порядка при устранении нарушения нормализации вправо
и порядок оказался меньше минимального допустимого.

Когда умножаются числа с плавающей точкой в форматах ЕС
ЭВМ и СМ ЭВМ, учитывается, что сложение характеристик дает
результат с удвоенным смещением и для перехода к характери­
стике произведения из суммы характеристик необходимо вычесть
смещение. Кроме того, в формате СМ ЭВМ требуется учитывать
скрытый бит мантиссы.

Деление. Из представления делимого X и делителя Y в форме
50

X=mx2n*, Y=my2nu

следует, что частное Z равно
Z= X/Y={тх!ту) х 2П^-П».

Таким образом, мантисса частного равна результату деления
мантисс операндов как чисел с плавающей точкой, а порядок част­
ного равен разности их порядков. Для деления мантисс применим
любой вариант, но обычно применяется вариант со сдвигом остат­
ков влево. Если тх~>ту, деление мантисс дает целую часть, рав­
ную 1. Обычно такая ситуация при делении чисел с фиксирован­
ной точкой считается переполнением, но в данном случае этого
не происходит, так как результирующую мантиссу всегда можно
сдвинуть на один бит вправо и соответственно скорректировать
(инкремент) порядок. Нарушения нормализации вправо при деле­
нии нормализованных чисел не происходит.

В операции деления, как и при умножении, могут возникать
переполнение и антипереполнение. Переполнение имеет место, ког­
да после инкремента порядка (для устранения нарушения норма­
лизации влево) получается число, большее максимального допу­
стимого порядка, а антипереполнение — когда разность порядков
оказалась меньше минимального допустимого порядка.

При делении чисел с плавающей точкой в форматах ЕС ЭВМ
и СМ ЭВМ разность характеристик представляет собой истинный
порядок частного, так как смещение уничтожается. Поэтому для
получения характеристики частного к разности характеристик тре­
буется прибавить смещение. В формате СМ ЭВМ необходимо учи­
тывать скрытый бит мантиссы. Для операции деления в формате
ЕС ЭВМ характерна особенность, связанная с использованием ос­
нования 16. Максимальная мантисса делимого равна 1111 1111...
1111, а минимальная мантисса делителя равна 0001 0000... 0000.
Следовательно, при «обычном» делении частное имеет 4 бита це­
лой части и стандартный алгоритм деления не годится. В такой
ситуации (mxZ>my) целесообразно сдвинуть мантиссу делимого
вправо на 4 бита и произвести инкремент порядка частного.

1.6.3. ОПЕРАЦИИ НАД ДЕСЯТИЧНЫМИ ЧИСЛАМИ

Выше были рассмотрены два основных формата десятичных
чисел — упакованный и неупакованный. Как правило, в современ­
ных микропроцессорах нет команд, явно оперирующих числами,
представленными в этих форматах. Даже в сопроцессоре
К1810ВМ87 десятичная «арифметика» представлена всего двумя
командами: команда загрузки FBLD передает десятичное число
из памяти в регистр сопроцессора, преобразуя его в двоичный
формат с плавающей точкой, а команда запоминания FBSTP пе­
редает число из внутреннего регистра в память с преобразованием
его в десятичный упакованный формат.

51

В большинстве микропроцессоров ради упрощения их внутрен­
ней организации реализовано двухэтапное выполнение арифмети­
ческих операций с десятичными числами. На первом этапе опе­
ранды обрабатываются как целые двоичные числа командами дво­
ичной арифметики, а на втором этапе специальная команда кор­
рекции преобразует промежуточный двоичный результат в деся­
тичный формат. Наиболее полно команды коррекции для обоих
десятичных форматов представлены в микропроцессоре К1810ВМ86
(см. гл. 3).

Контрольные вопросы и упражнения

1. Сколько двоичных комбинаций можно представить в 8, 16, 24 и 32 бит?
2. Оцените десятичные эквиваленты следующих степеней двух: 224, 232, 240, 264
3. Найдите двоичные веса 2* для i=0, 1, 2,..., 15.
4. Определите десятичные эквиваленты чисел: 33334> 274s, 7777g, FFi6, ЮООи,

FFFF16.
5. Переведите следующие десятичные целые числа в двоичную, восьмерич­

ную и шестнадцатеричную системы счисления: 255, 512, 1023, 2049, 4000.
6. Преобразуйте следующие правильные десятичные дроби в двоичные, вось­

меричные и шестнадцатеричные: 0.125, 0.875, 17/64, 2/3, 4/19. Всегда ли в от­
вете периодическая двоичная дробь?

7. Найдите десятичные эквиваленты указанных двоичных чисел: 10110.1,
11111111, 101010101010, 0.11011, 111111111.111.

8. Найдите двоичные и десятичные эквиваленты шестнадцатеричных чисел:
АА, 100, FFF, 2000, FFFF.

9. Представьте в прямом коде (п=8) числа +'28, —28, +112, —112, +127,
—127, —128.

10. Представьте в дополнительном коде те же числа, что н в упражнени­
ях 9.

11. Байт содержит A0H. Дайте десятичные эквиваленты, рассматривая со­
держимое как беззнаковое число и как знаковое число в прямом и дополни­
тельном кодах. Повторите упражнение для содержимого байта ЮН, FFH 80Н.

12. Покажите кодирование чисел 375, 1024, 3825 в упакованном и неупако­
ванном десятичных форматах.

13. Какие десятичные числа представляют собой упакованные коды:
00110101, 10000011011001, 01140100001000010101?

14. Какие десятичные числа представляют собой неупакованные коды:
0011010100111001, 00111000001100100011010000110000?

15. Представьте десятичные числа 4.5, 31, 1023, 4096 в классическом фор­
мате с плавающей точкой (п=12, р = 5).

16. Представьте числа 8.25, 511.5, 1024, 4095 в форматах ЕС ЭВМ и СМ
ЭВМ (с одинарной и двоичной точностью).

17. Укажите все достоинства представления чисел с плавающей точкой в
нормализованной форме.

18. Укажите преимущества использования смещенных порядков дли чисел
с плавающей точкой.

19. Приведите достоинства и недостатки использования скрытого бита ман­
тиссы для чисел с плавающей точкой.

20. Для базовых форматов стандарта на арифметику с плавающей точкой:
найдите минимальные и максимальные представимые числа;
определите кодирование бесконечностей и ие-чисел; ,
определите минимальные представимые числа, если допускаются ненорма­

лизованные числа.

21. Пусть Х=01001010, Y=01110000, Z= 10000000. W=11110000. Выпол­
ните следующие операции в дополнительном коде и определите состояния флаж­
ков переноса, знака, нуля и переполнения: X-)-Y, Y—X, X—Z-f-W, Y-pW, X+Y-f-
+Z+W.

22. Разработайте граф-схемы программ сложения и вычитания многобайт­
ных чисел в дополнительном коде.

23. Выполните умножение чисел по всем вариантам умножения (п = 8): 5Х
Х7> 12X15, 200X30, 255X4 (сомножители преобразовать в двоичную форму).

24. Осуществите деление чисел по двум вариантам деления (л=8): 12/4,
200/30, 128/35.

25. Разработайте граф-схемы алгоритмов для всех арифметических опера­
ций над числами с плавающей точкой.

26. Какой из этапов сложения (вычитания) чисел с плавающей точкой в
наихудшем случае потребует максимума элементарных действий?

ГЛАВА 2

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ В МИКРОПРОЦЕССОРЕ
КР580ИК80
—

В этой главе подробно рассмотрено производство ариф­
метических операций в 8-битном однокристальном микро-
процессрре КР580ИК80. Вначале даны общие характе­
ристики микропроцессора и его программная (регистро­
вая) модель, содержащая доступные программисту
внутренние регистры. Специально выделен материал по

аппаратному стеку, который организуется в оперативной
памяти и служит удобным расширением внутренних ре­
гистров.* Приведены минимально необходимые сведения

по языку Ассемблер, который применяется для реализации
алгоритмов арифметических операций. Рассмотрена сис­
тема команд микропроцессора с классификацией их по
функциональному назначению.
Большую часть гл. 2 составляют программы арифме­
тических операций, операнды и результаты которых пред­
ставлены в различных форматах. Кроме того, затронуты
вопросы преобразований форматов чисел. Настоящая гла­
ва играет в пособии ключевую роль, потому что в ней
алгоритмы и программы арифметических операций изло­
жены наиболее подробно с приведением необходимого ил­

люстративного материала.

2.1. ОБЩАЯ ХАРАКТЕРИСТИКА МИКРОПРОЦЕССОРА

Микросхема КР580ИК.80 (далее сокращенно К580) представ­
ляет собой однокристальный центральный процессор с фиксиро­
ванными длиной машинного слова (8 бит) и системой команд.
Характеристика ее как центрального процессора предполагает, что
для разработки функционально законченного изделия — специали­
зированной микропроцессорной системы (микросистемы) или мик­
рокомпьютера широкого назначения к микропроцессору (МП)
необходимо подключить память и средства ввода-вывода (ВВ).
МП К580 рассчитан на разнообразные применения в качестве ядра
системы, выполняющего обработку цифровых данных. Он изготов­
ляется по NМОП-технологии и выпускается в 40-контактном кор-
64

пусе с двусторонним расположением выводов (типа DIP). На
кристалле МП располагается около 5000 транзисторов. Напряже­
ния питания равны +12 В+5%, +5 В+5% и —5 В+5%, потреб­
ляемая мощность не превышает 1 Вт, рабочий диапазон темпера­
тур составляет от —10 до + 70°С. МП синхронизируется двухфаз­
ными сигналами с частотой до 2 МГц от микросхемы генератора
КР580ГФ24.

При разработке прикладных программ в первую очередь ин­
тересуются ресурсами системы, находящимися в распоряжении
программиста. Внутренние ресурсы МП, входящие в состав его
программной или регистровой модели, рассматриваются в § 2.2.
Ниже кратко рассматриваются внешние ресурсы системы, пред­
ставленные подсистемами памяти (запоминающими устройствами)
и ввода-вывода.

Обычно память состоит из программного энергонезависимого
постоянного запоминающего уст­
ройства (ПЗУ), допускающего
только считывание хранимой ин­
формации, и полупроводниковой
энергозависимой оперативной па­
мяти (или запоминающего уст­
ройства с произвольной выбор­
кой— ЗУПВ), выполняющей опе­
рации считывания и записи. Если
тип операции не играет роли, го­
ворят об обращении к памяти
или о доступе к ней.

При обращении к памяти МП

Память

Рис. 2.1. Адресное пространство па
мяти микропроцессора КР580ИК80

выдает на внешнюю шину адреса
А15—АО 16-битный адрес и от­
дельный управляющий сигнал,
идентифицирующий тип операции.
Старшие 8 бит адреса А15—А8
часто называются адресом страницы, а младшие 8 бит А7—АО —
адресом в странице (или строкой). Следовательно, адресное про­
странство, или поле памяти, состоит из 64К ячеек (байт); оно по­
казано на рис. 2.1. Можно также считать, что адресное простран­
ство состоит из 256 страниц по 256 строк в каждой. Два любых
соседних байта образуют слово; адресом слова считается меньший
из двух адресов байта, причем по этому адресу хранится младший
байт слова. В системах на базе МП К580 понятия логического и
физического адресов совпадают, а в других микропроцессорах они
могут различаться.

Различные области адресного пространства группируются в
блоки из последовательных ячеек, образующие так называемую
карту памяти. Блоки относятся к аппаратным устройствам (блоки
ПЗУ и ЗУПВ) или к программным элементам, например основной

55

программе, процедуре обработки прерываний или драйверам (под­
программам) ввода-вывода.

Подсистема ВВ представлена входными портами (портами вво­
да) и выходными портами (портами вывода). Данные от устройств
ввода подаются во входные порты и считываются микропроцессо­
ром по шине данных D7—DO. Передача данных в МП называется
вводом или считыванием (загрузкой). Выходные порты воспри­
нимают данные от МП (с шины данных) и передают их в устрой­
ства вывода. Передача данных из МП называется выводом или
записью. В простейшем случае входные и выходные порты пред­
ставляют собой буферные регистры с конкретными номерами (ад­
ресами) и осуществляют взаимодействие с периферийными уст­
ройствами. Многие микросхемы программируемых контроллеров
периферийных устройств для программиста выглядят как набор
входных/выходных портов.

В системах на базе МП К580 можно организовать один из
двух основных способов ВВ.

Первый способ, называемый изолированным ВВ, пред­
полагает наличие специальных команд IN ввода и OUT вывода.
Эти команды содержат прямой адрес входного или выходного пор­
та, к которому производится обращение. Длина адреса составляет
один байт, поэтому пространство ВВ, показанное на рис. 2.2, со-

«« порты Выходные порты стоит из 256 вводных и 256
выходных портов. Оно изо­
лировано от пространства
памяти в том смысле, что в
системе может быть ячейка
памяти с адресом А, а так­
же входной и выходной пор­
ты с этим же адресом А. Об­
ращения к пространствам
памяти и ВВ идентифициру­
ют различные управляющие
сигналы. В самом МП для
вводимых и выводимых дан­
ных выделен специальный
регистр (аккумулятор А),

Рис. 2.2. Адресное пространство ввода-вы- поэтому изолированный ВВ
вода микропроцессора КР580ПК80 называется также аккумуля­

торным.
Второй способ, называемый ВВ, отображенным на память,

не требует специальных команд и управляющих сигналов, пред­
назначенных для ВВ. Входные и выходные порты считаются ячей­
ками адресного пространства памяти. Следовательно, все команды
с обращением к памяти, содержащие адреса портов, превращают­
ся в команды ВВ: команды загрузки осуществляют ввод, а коман­
ды запоминания — вывод.
56

При детальном анализе способов ВВ оказывается, что ни один
из них не имеет явных преимуществ по сравнению с другим, од­
нако ВВ, отображенный на память, считается более гибким и
универсальным. К его достоинствам относят большой набор команд
для ВВ (причем некоторые из них могут совмещать ВВ с преоб­
разованием данных), почти неограниченное число входных и вы­
ходных портов (конечно, за счет сокращения рабочей памяти) и
отсутствие специальных управляющих сигналов ВВ.

2.2. ПРОГРАММНАЯ МОДЕЛЬ МИКРОПРОЦЕССОРА

На кристалле МП расположена очень сложная схема из не­
скольких тысяч транзисторов с многочисленными буферными эле­
ментами, арифметико-логическим устройством, блоками синхрони­
зации, схемами реакции на прерывания и т. д. Знать подробное
внутреннее устройство МП (его микроархитектуру) пользователям
не обязательно. Во-первых, оно является недоступным и, во-вто­
рых, по мере увеличения степени интеграции становится чрезмер­
но сложным. Для программиста достаточно знать программную
модель МП, показывающую его ресурсы, которые доступны на
уровне машинных команд. Другими словами, программная модель
показывает, чем может распоряжаться программист. Ответ на
вопрос о том, как можно распоряжаться ресурсами МП, дают ре­
жимы адресации операндов и система команд. Разработчику ап­
паратных средств микропроцессорных систем необходимо знать
функциональное назначение всех входных и выходных сигналов
МП, их нагрузочную способность, многочисленные временные ха­
рактеристики и временную диаграмму работы. Все это объединя­
ется в понятие внешнего интерфейса и учитывается при объеди­
нении отдельных компонентов в законченную систему.

Основу программной модели любого МП образуют регистры,
поэтому иногда ее называют регистровой моделью. Такая модель
МП К580 показана на рис. 2.3. Часто при разработке программ
привлекаются регистры данных или регистры общего назначения
(РОН), находящиеся в полном распоряжении программиста. В эту
группу входит 7 регистров с мнемоническими обозначениями А, В,
С, D, Е, Н, L; эти обозначения применяются для идентификации
регистров в командах при программировании на языке Ассемблер.
Если говорить об «идеальных» РОН, все эти регистры должны об­
ладать одинаковыми функциональными возможностями. Однако
в МП К580 этого нет и РОН оказываются довольно специализи­
рованными, что приходится учитывать при программировании.

Наиболее важным и интенсивно используемым в программах
является регистр А, называемый аккумулятором. Особая роль ак­
кумулятора заключается в том, что команды МП позволяют при­
бавить операнд только к содержимому аккумулятора, вычесть зна­
чение только из содержимого аккумулятора, осуществить ввод

57

и вывод только через аккумулятор и т. д. При программировании
очень быстро выясняется, что аккумулятор оказывается «узким
местом» в МП.

Функциональные возможности регистров В, С, D, Е примерно
одинаковы, но регистры D и Е обладают большей гибкостью бла­
годаря команде XCHG, осуществляющей обмен содержимого ре­
гистров HL и DE. Об особой роли регистров Н и L, считающихся
основным указателем памяти в МП, говорится ниже.

Особенность МП К580 заключается в том, что РОН допуска­
ется программно объединять в так называемые регистровые пары

Регистры адреса

В-пара
15 S 7 о
Г В ;с□

L____
D-napa

Н-пара

Программный счетчик
PC

Указатель стека
SP

pTw

Н

А

СлоВо состояния процессора

Рис. 2.3. Программная модель микропроцессора КР580ИК80

(register pair), что показано на рис. 2.3 пунктиром. При таком
объединении (его называют также сцеплением и конкатенацией)
из 8-битных регистров образуются 16-битные регистры, которые
можно привлекать для адресации памяти, а также хранения
16-битных данных. Таким образом, содержимое регистровой пары
допускает двойную интерпретацию: адрес памяти и 16-битные
данные, формат которых определяет программист. Если регистр
или, как в данном случае, регистровая пара применяются для ад­
ресации памяти, их называют указателями памяти.

Наиболее гибкой из всех регистровых пар является Н-пара.
Объясняется это тем, что адресуемый ею байт в памяти считается
«регистром» М микропроцессора (от Memory — память). «Регистр»
М имеет трехбитный номер (адрес) ПО, и все команды (в которых
58

фигурируют явные регистры МП) допускают и указание «регист­
ра» М. Например, его содержимое можно передать в любой дру­
гой регистр МП, прибавить к аккумулятору или загрузить в «ре­
гистр» М константу и т. д. Регистровые пары DE и ВС использу­
ются для косвенной адресации памяти, но при этом допускаются
только операции загрузки (из памяти) и сохранения (в памяти)
аккумулятора. Косвенная адресация памяти имеет несколько пре­
имуществ. Во-первых, команды с обращением к памяти становятся
короткими и, во-вторых, изменение содержимого регистровой пары
позволяет одной и той же командой обращаться к различным
ячейкам памяти, что очень удобно для обработки регулярных
структур данных.

Как видно из программной модели, в МП есть еще три специа­
лизированных регистра. Два из них —программный счетчик PC
и указатель стека SP — имеют длину 16 бит и функционируют
только как указатели памяти, а 8-битный регистр флажков (F-pe-
гистр) предназначен для регистрации некоторых особенностей или
признаков результатов операций. Остановимся вкратце на функ­
циях этих регистров.

При выполнении программы необходимо «следить» за ее от­
дельными командами так, чтобы к моменту окончания текущей
команды в специальном регистре МП был образован адрес сле­
дующей команды. Такую функцию «слежения» за командами и
выполняет программный счетчик PC, называемый также счетчи­
ком команд и счетчиком адреса команды. Всякий раз, когда МП
считывает из памяти очередной байт команды, производится уве­
личение содержимого PC на 1 (эту операцию называют инкремен­
том). Следовательно, к окончанию выборки из памяти всей теку­
щей команды, т. е. даже до начала собственно ее выполнения, в
PC образуется адрес следующей по порядку команды. Если МП
после окончания текущей команды обращается за очередной
командой именно по этому адре­
су, то говорят, что реализуется
естественный порядок выполнения
команд. Однако время от времени
по логике программы необходимо
нарушать естественный порядок.
Такую функцию выполняют специ­

7 О
5 Z X АС . X р X с

|| Неитльзутя

Рис. 2.4. Формат регистра флажков
микропроцессора КР580ИК80

альные команды передачи управ­
ления (их иногда образно называют командами управления про­
граммой), которые сами задают адрес очередной команды, назы­
ваемый адресом перехода. Все команды передачи управления в
МП К580 определяют полный 16-битный адрес перехода. Очевид­
но, для передачи управления команда должна просто загрузить
адрес перехода в PC и МП обратится за следующей командой по
этому адресу.

Регистр флажков, формат которого показан на рис. 2.4, имеет
59

длину 8 бит, но используются в нем только 5 бит. Команды воз­
действуют на флажки по-разному, но, в общем, они показывают
следующие признаки результата:

С — флажок переноса (Carry) в операции сложения (вычита­
ния) устанавливается в 1 при наличии переноса (заема) из стар­
шего бита результата; по существу, этот флажок можно считать
расширением результата на один бит влево;

S — флажок знака (Sign) своим состоянием повторяет значе­
ние старшего (знакового) бита результата;

Z — флажок нуля (Zero) устанавливается в 1 при получении
нулевого результата 00000000;

Р — флажок паритета (Parity), или четности, устанавливает­
ся в 1, если результат содержит четное число единиц;

АС — флажок вспомогательного, или дополнительного, переноса
(Auxiliary Carry) устанавливается в 1 при наличии переноса (зае­
ма) из младшей тетрады результата в старшую.

Как будет видно далее, наиболее интенсивно в вычислитель­
ных алгоритмах используется флажок С. Именно благодаря ему
малоразрядный МП может оперировать числами произвольной
разрядности. Флажок Р в основном предназначен для связных
применений МП, а флажок АС позволяет работать с десятичными
числами. ♦

В МП К580 — обширный набор команд условных передач уп­
равления, осуществляющих выбор одного из двух направлений
в ходе программы по состоянию проверяемого флажка. Выполне­
ние таких команд часто называют принятием решения или развет­
влением.

Регистр флажков и аккумулятор объединяются в регистровую
пару, содержащую слово состояния процессора PSW (Processor
Status Word) только в двух стековых командах: PUSH PSW и POP
PSW.

Указатель стека SP (Stack Pointer) ’предназначен для адреса­
ции так называемой вершины стека TOS (Top Of Stack) или ST
(Stack Тор). Стек играет важную роль в функционировании МП
и в разработке программ. Рассмотрим работу стека подробнее.

Стек. Стек, называемый также буфером LIFO (Last In — First Out: послед­
ний пришел — первый ушел), обратной магазинной памятью и даже пуш-даун
списком, представляет собой область оперативной памяти (ЗУПВ) со своеобраз­
ной дисциплиной работы. По существу он, как это будет видно далее, как бы
расширяет регистры МП в память, т. е. намного (практически неограниченно,
но, разумеется, в пределах выделенной ему области) увеличивает их число.

■Содержимое любого регистра МП можно поместить в стек с помощью опе­
рации включения (push), а из стека можно извлечь (pop) последние включен­
ные в него данные в регистр МП. При включении данные как бы «кладутся»
сверху ранее занятых ячеек стека, а при извлечении «берутся» из верхней ячей­
ки стека TOS. Операции push и pop в литературе называются еще «проталки­
ванием» и «выталкиванием», но эти термины оказываются неточными, так как
они подразумевают «движение» всех элементов стека, чего на самом деле нет.

В МП К580 обе стековые операции выполняются с 16-битными словами,
60

т. е. в стек можно включать только содержимое регистровых пар и извлекать из
стека можно только в регистровые пары. Например, команда PUSH Н вклю­
чает в стек содержимое регистров Н и L, а команда POP PSW извлекает из
стека данные в регистр флажков и аккумулятор. На рис. 2.5 показано состоя­
ние стека при выполнении нескольких команд. Из рисунка нетрудно составить
реальную последовательность действий МП при выполнении команды PUSH Н
(учитывая, что МП может передавать только байты):

Рнс. 2.5. Принцип действия стека

произвести уменьшение на 1 (декремент) указателя стека: SP-e (SP)—1,
записать в TOS содержимое регистра Н: TOS-e-(H),
произвести декремент SP: SP-«-(SP) — 1,
записать в TOS содержимое регистра L: TOS-«-(L).
Аналогичные действия реализуются и при выполнении команды PUSH В,

которая включает в стек содержимое регистров В и С. Таким образом, заня­
тые элементы стека по мере включения «продвигаются» в область меньших
адресов памяти или, как еще говорят, стек «растет» вверх.

Команда POP D извлечения из стека в D-пару, т. е. регистры D и Е, со­
стоит из следующих действий:

считать содержимое TOS и передать его. в регистр Е: E*«-(TOS),
произвести инкремент указателя стека: SP-«— (SP)H-l,
считать содержимое TOS и передать его в регистр D: D-<-(TOS),
произвести инкремент указателя стека: SP-<-(SP)+l.
Извлечение из стека не разрушает в памяти считываемые данные и, про*

изведя специальными командами декремент SP на 2, можно вновь извлечь из
стека ранее считанные данные. Такой прием иногда используется при програм­
мировании.

Необходимо до выполнения первой стековой операции правильно инициали­
зировать указатель стека. Если, например, для стека выделяется область ЗУПВ
с конечным адресом STACK, то в указатель стека необходимо загрузить значе­
ние STACK4-1 (напомним, что первое действие при включении в стек — декре­
мент SP). При программировании следует тщательно следить за использова­
нием стека, в частности, каждой команде PUSH должна соответствовать коман­
да POP. Микропроцессор К580 не имеет никаких средств аппаратного контро­
ля за поведением стека. Ошибки при работе со стеком приводят к двум осо­
бым ситуациям. Первая из них, называемая переполнением (overlow) стека,
возникает, когда SP достиг верхней границы области стека и делается попыт­
ка произвести дополнительное включение в стек. МП «послушно» выполнит
команду включения в стек, хотя за верхней границей ЗУПВ может не быть
или оно есть, но занято нужными данными. Ошибочная запись на нужные дан­

61

ные обычно называется «перезаписью» (overwrite). Вторая ошибочная ситуация
называется антипереполнением (underflow) стека; она возникает, когда указа­
тель стека находится на нижней границе области стека и делается еще одна
попытка извлечения из стека. МП выполнит команду POP, но при этом считы­
ваются не те предполагаемые данные, которые планировал получить програм­
мист. За нижней границей области стека ЗУПВ может отсутствовать, но МП
этого не заметит. Как видно, возникновение любой особой ситуации ведет к
тому, что поведение системы становится непредсказуемым (говорят, что воз­
никла «фатальная» ошибка).

Стек наиболее часто применяется для автоматического запоминания адре­
сов возврата при вызовах подпрограмм и для передачи параметров подпрог­
раммам. Передача параметров через стек принята практически во всех языках
высокого уровня. Перед вызовом параметры включаются в стек, а затем вызы­
вается подпрограмма. Она может обращаться к переданным параметрам, ис­
пользуя смещения относительно SP. При возврате из подпрограммы парамет­
ры удаляются из стека путем соответствующего (числу параметров) инкре­
мента SP. Стек действует при этом как динамическая область памяти, которая
выделяется для каждой подпрограммы, а по окончании подпрограммы осво­
бождается.

К стеку удобно прибегать и для временного сохранения любых данных при
нехватке внутренних регистров МП. Если, например, при программировании по­
требовались регистры Н и L, а в них находятся нужные данные, содержимое
HL следует включить в стек, т. е. «освободить» эти регистры для использо­
вания. Через некоторое время сохраненные данные можно вернуть в регистры
Н и L командой POP Н. С помощью стека упрощается решение многих «мел­
ких» задач, встречающихся при программировании. Например, командами

push н
pop в

; Включить содержимое Н1_ * стек

: Извлечь из стек* в ВС

содержимое HL передается в регистры ВС.
В МП К.580 есть специфическая команда XTHL, которая производит обмен

содержимого регистра HL и двух верхних ячеек стека, т. е. последних вклю­
ченных в стек данных; прн этом указатель стека не изменяется. С помощью
команд

PUSH В । Включить содержимое ВС в стек

XTHL ; Обменять TOS и HL
POP В । Извлечь ио стек* в ВС

осуществляется обмен содержимого регистров HL н ВС.
Стек играет огромную роль при обработке прерываний. Реагируя на внеш­

ние или внутренние прерывания, МП должен переключиться с текущей про­
граммы на другую программу, называемую обработчиком прерывания (interrupt
handler). Такое контекстное переключение необходимо осуществить так, что­
бы после обслуживания прерывания возобновить прерванную программу «как
ни в чем не бывало». Для этого требуется где-то временно сохранить содер­
жимое используемых обработчиком прерывания регистров МП (в предельном
случае — содержимое всех регистров МП) на время его работы. Удобным вре­
менным «хранилищем» состояния МП является стек.

Формат программ на языке Ассемблер. Далее приводятся фрагменты прог­
рамм на языке Ассемблер, поэтому необходимо иметь минимальные сведения об
этом языке.

Исходная программа на языке Ассемблер выглядит как последовательность
строк (называемых операторами), допускающих несколько интерпретаций. Стро­
ка может быть преобразована в машинную команду, использована для разме­
щения данных в памяти или содержать указания (директивы) только для
программы-ассемблера.
62

Независимо от функций строк исходной программы формат их представле­
ния неформально стандартизован и состоит из четырех частей или полей:

[Метка:] Операция [Операнды] [; Комментарий]
Здесь квадратные скобки показывают поля, содержимое которых может

быть пустым; (другими словами, в каждой строке (за естественным исключением
целой строки-комментария) только поле операции должно что-то содержать.

Каждое иоле состоит из одной или нескольких лексем. Под лексемой по­
нимается наименьшая осмысленная единица информации, используемая прог­
раммой-ассемблером. В качестве лексем выступают идентификаторы (имена) и
числовые константы. Примерами идентификаторов служат символические име­
на (мнемоники) машинных команд. Для указания конца лексемы применяется
разделитель, которым чаще всего является пробел, но может применяться и
табуляция. Кроме того, разделитель отмечает конец одного поля и начало сле­
дующего. Обычно ассемблер допускает использование любого числа пробелов
в тех местах, где разрешен один пробел (так называемый свободный формат
строки).

; Программа вводит 10 чисел, выбирает среди них

; наибольшее и выводит его на дисплей.

COUNT EDV 10 ; Количество вводимых чисел

5
MOV CX,COUNT ; Инициализировать цикл

MOV MAX,0 ; Начальное значение максимума

NEXT; CALL INDEC ; Ввести число в регистр АХ

CMP AX,MAX ; Сравнить с максимумом

JLE LESS ; Оно меньше или равно максимуму

MOV MAX,AX ; Число больше*текущего максимума

LESSe LOOP NEXT ; Повторять до завершения

MOV AX,MAX ; Передать» максимум для вывода

CALL OUTDEC ; Вывести максимальное число

HLT ; Остановить микропроцессор

INDECl Подпрограмма вБОда

OUTDECI ; Подпрограмма вывода

MAX DW О ; Ячейка для максимума

Ограничителями называются специальные символы, которые могут отмечать
конец лексем. Примерами ограничителей служат такие знаки пунктуации, как
запятая, точка, двоеточие и др. В большинстве случаев для улучшения чита­
бельности программы вместе с ограничителем можно использовать разделитель.

Рассмотрим типичный фрагмент ассемблерной программы для микропро­
цессора К1810ВМ86, который позволит разобраться в формате строк. Эта прог­
рамма осуществляет последовательный ввод десяти чисел, выбирает из них
наибольшее и выводит его, например, на дисплей. Ввод чисел производится
подпрограммой INDEC, а вывод — подпрограммой OUTDEC.

63

Как видно, программа состоит, в основном, из символьных последователь­
ностей, которые напоминают английские слова, разделенные знаками пунктуа­
ции. Такие последовательности называются идентификаторами или символиче­
скими именами. Образование идентификаторов обычно подчиняется следующим
правилам:

первым символом должна быть буква;
остальными символами могут быть буквы и цифры, а также некоторые

специальные символы, например знак подчеркивания (_);
ассемблер распознает первые 6, 8 или 31 символов (число зависит от кон­

кретной реализации), а остальные игнорирует.
Поле метки. В поле метки находится символическое имя, которое опреде­

ляет программист. Метка применяется для ассоциирования имени с некоторым
численным значением, которое может представлять собой адрес переменной в
памяти (строка с меткой МАХ), константу (строка с меткой COUNT) или ад­
рес команды (строки с метками NEXT и LESS). В последнем случае мы име­
ем дело с истинной меткой, которая используется в командах передачи управ­
ления и освобождает программиста от необходимости работать с численными
адресами команд. Такие метки должны заканчиваться двоеточием.

Поле операции. В поле операции содержится мнемоника либо машинной
команды, либо (.директивы ассемблера. Каждая машинная команда имеет уни­
кальную мнемонику, передающую основную функцию команды, например,
ADD — сложить, SUB (tract) — вычесть и т. д. Мнемоники считаются зарезер­
вированными или ключевыми словами ассемблера и программистам не разре­
шается использовать их для других целей. Ассемблер заменяет мнемоники бай-
тамц машинных команд, привлекая для этого встроенную таблицу. Директивы
ассемблера служат для распределения и инициализации памяти, определения
символических имен, управления листингом ассемблирования и т. д.

Поле операнда. Большинство машинных команд и директив ассемблера тре­
буют задания одного или нескольких операндов, разделяемых запятыми. От­
дельные операнды могут быть представлены константами, переменными или
специальными символическими именами, обозначающими, например, регистры
микропроцессора. Кроме того, из них можно образовывать выражения. Ниже
используются только простые арифметические выражения вида COUNT-J-5,
ADDR— NUM и т. п. Поле операнда является наиболее сложным полем ассемб­
лерных строк и синтаксис его зависит от особенностей реализации конкретного
ассемблера.

Поле комментария. Это поле, начинающееся точкой с запятой, предназна­
чено только для пояснений в программе и полностью игнорируется ассембле­
ром. Комментарии должны отражать не общие функции команд (их описывают
мнемоники), а действия команд в контексте конкретной программы. Коммента­
рием может быть целая строка, начинающаяся точкой с запятой.

2.3. СИСТЕМА КОМАНД МИКРОПРОЦЕССОРА

Из 79 базовых команд МП К580 наибольший интерес пред­
ставляют команды арифметических операций, показывающие его
вычислительные возможности. Вместе с тем придется вкратце
рассмотреть и остальные команды, так как для успешного прог­
раммирования на языке Ассемблер необходимо знать всю систе­
му команд. Далее применяются следующие условные обозначе­
ния:

Л П, г2 — регистры микропроцессора А, В, С, D, Е, Н, L, М;
гр — регистровые пары В, D, Н, SP, PSW;
data8 — байт непосредственных данных в команде (константа);

64

datal6 — слово непосредственных данных в команде (констан­
та) ;

addr—16-битный адрес памяти в команде;
port — 8-битный номер (адрес) входного или выходного порта

(константа);
src — источник (source); операнд, который не изменяется при

выполнении команды;
dst — получать (destination); операнд, который изменяется при

выполнении команды, так как он замещается результатом.
Форматы команд, В МП К580 имеются команды длиной один,

два или три байта; их форматы показаны на рис. 2.6.

Однобайтные команды

Рис. 2.6. Форматы команд микропроцессора КР580ИК80

Однобайтные команды отличаются наибольшим разно­
образием. В простейшем случае байт команды состоит из одного
кода операции, который неявно определяет операнд команды.
В следующих двух форматах байт содержит поле (возможно, раз­
деленное) кода операции и номер регистра г. Здесь неявным по-
3—1021 65

лучателем (dst) в двухоперандных командах, например сложения,
выступает аккумулятор А.

Такой же формат имеют унарные команды, выполняющие, на­
пример, инкремент или декремент регистра. В командах с косвен­
ной адресацией памяти байт содержит поле гр, определяющее ис­
пользуемый указатель памяти. Наконец, команда MOV передачи
данных между регистрами содержит два трехбитных поля и и г2,
определяющих получатель dst и источник src. В языке Ассемблер
МП-К580 первым указывается получатель, а вторым — источ­
ник; например, команда MOV В, Е передает содержимое регист­
ра Е в регистр В. В некоторых других МП принят обратный по­
рядок: первым указывается источник, а вторым — получатель.

В двухбайтных командах первый байт содержит код
операции и, возможно, операнд-получатель dst, представленный
регистром г. Вторым байтом является либо непосредственный опе­
ранд data8, либо адрес входного/выходного порта port.

В трехбайтных командах первый байт отведен для ко­
да операции, а второй и третий байты содержат либо непосредст­
венный операнд data!6, либо абсолютный адрес памяти addr.
В этих командах 16-битное слово размещено «наоборот» — снача­
ла младший, д затем старший байт, что соответствует общему
принципу «младшее — по меньшему адресу».

Команды арифметических операций. Команды, образующие
группу команд арифметических операций, приведены в табл. 2.1.

Как видно из этой таблицы, вычислительные возможности МП
К580 определяют команды сложения ADD, ADC, ADI, ACI и со­
ответствующие им команды вычитания SUB, SBB, SUI, SBI. Во
всех командах допускается двойная интерпретация 8-битных опе­
рандов: как беззнаковых целых и как знаковых целых чисел в
дополнительном коде. Все восемь команд воздействуют на флаж­
ки, причем в командах вычитания флад<ок переноса превращается
во флажок заема, т. е. он устанавливается в 1, если уменьшаемое
меньше вычитаемого (операнды считаются беззнаковыми целы­
ми). Команды ADC сложения с переносом и SBB вычитания с
заемом удобны для операций с многобайтными числами: сначала
складываются (вычитаются) их младшие байты (это можно сде­
лать командой ADC или SBB, обеспечив нулевое состояние флаж­
ка переноса С), а затем — последующие байты с учетом меж­
байтных переносов (заемов).

В командах ADI, ACI, SUI, SBI с непосредственной адресаци­
ей операндом-источником служит второй байт команды, содержа­
щий константу dataB.

Команды инкремента INR и декремента DCR увеличивают
(уменьшают) содержимое адресуемого регистра на 1. Отличитель­
ная особенность этих команд заключается в том, что они не влия­
ют на состояние флажка переноса С, т. е. он сохраняет свое преж­
нее состояние.
ни

Таблица 2.1. Команды арифметических операций

Название Мнемоника Функция Примечание

Команды
сложения

Сложение ADD г A^(A) + (r) Воздействует па все

Сложение с пе- ADC г A^(A) + (r) + (C)
флажки

Воздействует на все
реносом

Сложение с не- ADI data8 K^(K)-\-data8
флажки

То же
посредственным
операндом

Сложение с не- ACI data8 A-«-(A) -\-data8± (C) »
посредственным
операндом и пере­
носом

Инкремент ре- INR r r^-(r) + l Не модифицирует
гистра

Двойное сложение DAD rp IIL^(HL) + (rp)

флажок переноса

Воздействует толь-

Инкремент ре- I NX rp

rp=B, D, H, SP

i-p^-(rp) + 1

ко на флажок пере­
носа

Не воздействует на
гистровой пары

Десятичная кор- DAA Двоичное число в
флажки

аккумуляторе преобра-
рекция аккумуля­
тора

Команды
вычитания

Вычитание SUB r

зуется в упакованно
вует на флажок пе|

А^-(А)—(г)

е десятичное. Воздейст-
)еноса

Воздействует на все

Вычитание с зае- SBB r А^(А)-(г)-(С)
флажки

То же
МОМ

Вычитание с не- SUI data8 А-<-(А)—data8
посредственным
операндом

Вычитание с не- SBI data8 —data8—(С)
посредственным
операндом и зае-
мом

Декремент ре- DCR r Не модифицирует
гистра

Декремент ре- DCX rp гр-<-(гр)—1
флажок переноса

Не воздействует на
гистровой пары

Команды
сравнения

Сравнение CMP r

rp=B, D, Н, SP

(А)-(г)

флажкн

Воздействует на все

Сравнение с не- CPI data8 (А)—data8
флажки

То же
посредственным
операндом

3* 67

Команды арифметического сравнения СМР и CPI вычитают из
содержимого аккумулятора значение адресуемого операнда, мо­
дифицируют по результату все флажки, но не изменяют содержи­
мое аккумулятора. Такая операция называется неразрушающим
сравнением.

МП К580 выполняет простейшие операции с 16-битными опе­
рандами, считающимися беззнаковыми целыми. Команды инкре­
мента INX и декремента DCX регистровой пары, не влияющие на
флажки, очень удобны для продвижения указателей регулярных
структур данных. При выполнении команды двойного сложения
DAD в соответствии с результатом модифицируется состояние
флажка переноса С. Отметим, что команда DAD Н удваивает со­
держимое Н-пары.

В группу арифметических команд включена команда десятич­
ной коррекции аккумулятора DAA. Она рассчитана на то, что в
аккумуляторе находится двоичная сумма упакованных десятич­
ных операндов, полученная любой из команд: ADD, ADC, ADI,
ACI. Команда DAA анализирует содержимое тетрад аккумулято­
ра и состояния флажков С и АС. Как итог этого анализа, в ак­
кумуляторе формируется правильный десятичный результат, а
флажок С отражает значение десятичного переноса. Команда DAA
не корректирует результат двоичного вычитания упакованных де­
сятичных операндов.

Команды передач данных. Обычно в самую многочисленную
группу команд передач данных входят те команды, которые прос­
то передают данные из источника src в получатель dst: dst^(src).
На них в прикладных программах приходится до трети всех ко­
манд. Команды передач данных МП К580, показанные в табл. 2.2,
не модифицируют состояний флажков (за единственным и естест­
венным исключением команды POP PSW), т. е. они не проверяют
Таблица 2.2. Команды передач данных

Название Мнемоника Функция Примечание

Межрегистровая пе­
редача

MOV Г1, г2 Гг«-(Г2) Команда MOV
M, M запрещена

Передача непосред­
ственного операнда

MVI г, data8 r-t-d at a8

Загрузка непосред­
ственного 16-битного
операнда

LXI гр, datal6 rp+-datal6 rp=B, D, H, SP

Загрузка аккумуля­
тора из памяти

LDA addr A-t-(addr)

Сохранение акку­
мулятора в памяти

STA addr addr+-(K)

Косвенная загрузка
аккумулятора из па­
мяти

LDAX rp A-*-((rp)) rp=B, D

68

Продолжение табл. 2 2

Название Мнемоника Функция Примечание

Косвенное сохране- STAX гр (rp)^-(A) rp=B, D
ние аккумулятора в
памяти

Загрузка Н-пары из
памяти

Сохранение Н-пары
в памяти

Обмен регистровых
пар

Передача из HL в
SP

Включение в стек

LHLD addr

SHLD addr

XCHG

SPHL

PUSH rp

n+-(addr)
H*-(a<Mr-H) arfc/r-<-(L)
addr-j-l-t-(H)
(HL) —(DE)

SP-t-(HL)

TOS*- (rp) rp=B, D, H, PSW
Извлечение из сте- POP rp rp-e-(TOS) rp=B, D, H, PSW

ка
Обмен вершины

стека и HL
Ввод из входного

порта
Вывод в выходной

порт

XTHL

IN port

OUT port

(HL) —(TOS)

A-e-((port))

porL«-(A)

особенностей передаваемых данных. Если все же передаваемый
операнд необходимо проверить, приходится применять специаль­
ную команду.

Наиболее интенсивно в командах передач данных привлекают­
ся аккумулятор А и регистровая пара HL. В частности, только
аккумулятор фигурирует в командах загрузки и запоминания
(сохранения) с абсолютной адресацией (LDA и STA) и с косвен­
ной адресацией (LDAX и STAX), а Н-пара участвует в командах
LHLD, SHLD, XCHG, SPHL и XTHL. Кроме того, ввод и вывод
осуществляются командами IN и OUT чеерз аккумулятор.

Целесообразно обратить особое внимание на команды передач
между внутренними регистрами МП, так как они часто встреча­
ются в программах. Пусть, например, потребовалось передать со­
держимое D-пары в указатель стека: SP—(DE). Специальная ко­
манда такой передачи отсутствует. Нетрудно убедиться, однако,
что требуемую передачу осуществляет последовательность из трех
команд: XCHG, SPHL, XCHG.

Команды логических операций. Команды этой группы являют­
ся поразрядными, т. е. выполняются независимо для отдельных
битов операндов. Неадресумый операнд находится в аккумуляторе,
куда загружается и результат операции. Флажки С и АС никогда
не могут быть установлены в 1, поэтому они принудительно сбра­
сываются в 0. Команды логических операций МП К580 приведены
в табл. 2.3.

69

Таблица 2.3. Команды логических операций

Название Мнемоника Функция

Логическое И ANA г A-*-(A)A(r)
Логическое ИЛИ ORA г A^-(A)VR)
Логическое исключающее

ИЛИ (сложение по моду­
лю 2)

XRA г А-*~(А)Ф(г)

Логическое И с непосред­
ственным операндом

ANI data8 A-<-(A) /\data8

Логическое ИЛИ с непо­
средственным операндом

ORI data8 data8

Логическое исключаю­
щее ИЛИ с непосредст­
венным операндом

XRI data8 A-<-(A) ®data8

Ипвентирование аккуму­
лятора

CMA A-f-A

Команды логических операций применяются для проверки от­
дельных битов операнда, установки их в 1 и сброса в 0, инверти­
рования битов, объединения-нескольких полей в одно и т. д. На­
пример, команды ORA А и ANA А часто применяются только для
сброса флажка переноса, так как специальной такой команды
нет. Команда XRAA осуществляет сброс аккумулятора и флажка
переноса.

В настоящую группу традиционно включаются команды сдви­
гов, принцип действия которых показан на рис. 2.7. Эти команды

70

сдвигают только содержимое аккумулятора и только на один бит
влево или вправо. Все команды реализуют циклический сдвиг,
причем первые две RAL и RAR— через флажок переноса. Вы­
двинутый из аккумулятора бит всегда находится во флажке пе­
реноса.

Команды передачи управления. Все команды передачи управ­
ления в МП К580 содержат во втором и третьем байтах адрес
перехода, который загружается в программный счетчик. Исклю­
чение составляет только однобайтная команда возврата из под­
программы, в которой адрес перехода автоматически берется из
двух верхних ячеек стека, и команда PCHL, в которой адресом
перехода служит содержимое Н-пары. Команды безусловной пе­
редачи управления МП К580 приведены в табл. 2.4.
Таблица 2.4. Команды безусловной передачи управления

Название Мнемоника Функция Примечание

Безусловный пе­
реход

JMP addr PC-t-addr

Вызов подпрог- CALL addr TOS-e-(PC) Адрес воз-
раммы PC/-ua'a'r врата со­

храняется в
стеке

Возврат из под­
программы

RET PC-<-(TOS)

Переход по Н-
паре

PCHL PC-e-(HL)

Рестарт RST n TOS-<-(PC)
PC*-0000000000nnn000

Кроме приведенных в табл. 2.4 команд, имеются также коман­
ды условных переходов, вызовов подпрограммы и возвратов из
подпрограммы (см. табл. 2.5). Каждая из них проверяет заданное

Таблица 2.5. Команды условной передачи управления

Команда

Проверяемый флажок

с Z S Р

Условные передачи управления

0 1 0 1 0 1 0 1

Переход
Вызов подпрограммы
Возврат из подпрог­

раммы

JNC
CNC
RNC

JC
сс
RC

JNZ
CNZ
RN

JZ
CZ
RZ

JP
СР
RP

JM
см
RM

JPO
СРО
RPO

JPE
СРЕ
RPE

71

условие, представленное состоянием конкретного флажка, и, если
условие удовлетворяется, осуществляет передачу управления. Ес­
ли же условие не удовлетворяется, передача управления не про­
изводится, а выполняется следующая по порядку команда.

Команды управления микропроцессором. Последнюю, самую
немногочисленную, группу образуют команды управления микро­
процессором, показанные в табл. 2.6. Команды EI и DI разреша-

Таблица 2.6. Команды управления микропроцессором

Название Мнемоника Функция

Разрешение прерываний EI IFF-s-1
Запрещение прерываний DI IFF-i-0
Пустая команда NOP Никаких действий
Останов HLT Состояние останова
Установка флажка переноса STC С^-1
Дополнение (инвертирование) флаж-

ка переноса СМС С^(С)

ют и запрещают восприятие внешних прерываний по входу 1NT
посредством установки в 1 и сброса в 0 внутреннего триггера
IFF разрешения прерываний. Пустая, или холостая, команда NOP
не производит никаких действий, а команда останова HLT пере­
водит МП в состояние останова, в котором он прекращает выпол­
нение программы, ожидая сигнала прерывания. Две последние
команды STC и СМС управляют состоянием флажка переноса.

Длина и время выполнения программы. При разработке при­
кладных программ возникает необходимость оценить их длину и
время выполнения. Длина программы определяется просто — каж­
дая из команд имеет фиксированную ’длину (один, два или три
байта), следовательно, длина программы в байтах равна сумме
длин составляющих ее команд.

Время выполнения программы определяется несложными рас­
четами. В отличие от средних и больших компьютеров в микро­
процессорах время выполнения большинства команд фиксирова­
но, т. е. не зависит от значений операндов. Оно измеряется в чис­
ле тактов (периодов) синхронизации и приводится в справочной
литературе. Просуммировав такты выполнения отдельных команд,
можно найти число тактов К, приходящееся как на отдельные
фрагменты программы, так и на всю программу. Зная частоту
синхронизации [, нетрудно получить и время Т выполнения прог­
раммы: т=к/д

Необходимо учитывать, что в МП К580 для команд условных
вызовов подпрограммы (СС, CNC, CZ и др.) и условных возвра­
тов из подпрограммы (RC, RNC, RZ и др.) указываются два чис-
72

ла тактов: 11/17 и 5/11 соответственно. Одно из них (меньшее)
получаете^, когда проверяемое в команде условие не удовлетво­
ряется и передачи управления не происходит, т. е. включения в
стек адреса возврата и извлечения из стека адреса возврата нет.
Второе значение получается, когда проверяемое условие удовлет­
воряется и происходит передача управления.

Для примера расчета длины и времени выполнения рассмот­
рим элементарную подпрограмму, осуществляющую суммирование
N-байтных двоичных целых беззнаковых чисел (она подробно рас­
смотрена в п. 2.4.1).

Длина команды Время выполнения

(байт) (тактов)
ADDRNDi XRA А 1 4

LOOP: LDAX D 1 7
ADC M 1 7
STAX D 1 7
INX H 1 3
INX D 1 3
DCR В 1 3
JNZ LOOP 3 10
RET 1 ю

Длина программы, равная сумме длин отдельных команд, со­
ставляет 11 байт.

Подпрограмма представляет собой простой цикл, число повто­
рений которого N определяется содержимым регистра В, дейст­
вующим как счетчик цикла. Каждая из команд цикла (от коман­
ды LDAX D до команды JNZ LOOP) выполняется N раз. Поэто­
му общее время выполнения подпрограммы в тактах синхрониза­
ции равно

K=4+(7 + 7 + 7+5 + 5 + 5 + 10)xN + 10—14+46xN.
Если, например, N=8 и частота синхронизации f— 1 МГц, время
выполнения подпрограммы составит 382 мкс.

Время выполнения сложной программы, например оперирую­
щей числами с плавающей точкой, зависит от значений исходных
данных. Так, при выравнивании порядков требуется сдвигать ман­
тиссу меньшего числа вправо и количество сдвигов варьируется
от 0 (порядки равны) до т—1, где т — длина мантиссы. Для та­
ких программ обычно рассчитываются минимальное и максималь­
ное время выполнения.

2.4. АЛГОРИТМЫ И ПРОГРАММЫ АРИФМЕТИЧЕСКИХ
ОПЕРАЦИЙ

Как показано в гл. 1, содержимое 8-битного регистра допус­
кает несколько численных интерпретаций: двоичное целое беззна­

73

ковое число, двоичное целое знаковое число (в дополнительном
коде), упакованное целое десятичное число, неупакованное целое
десятичное число (цифра). Команды арифметических операций
МП К580 обеспечивают сложение и вычитание однобайтных чи­
сел в первых двух форматах. Установленный в 1 флажок перено­
са С показывает переполнение при сложении целых беззнаковых
чисел или получение отрицательной разности (она представлена
в дополнительном коде) при вычитании таких же чисел. Пере­
полнение в случае целых знаковых чисел не фиксируется. Благо­
даря команде DAA можно складывать (но не вычитать!) упако­
ванные десятичные числа с правильной («десятичной») установ­
кой флажка переноса. Все остальные операции (т. е. умножение
и деление), а также все операции с числами в других форматах
необходимо программировать.

Разрешающей способности (точности) однобайтных чисел обыч­
но недостаточно и приходится вводить многобайтные целые числа
и числа с плавающей точкой. В случае 16-битных операндов го­
ворят о двойной точности, а когда длина операндов превышает
16 бит, говорят о многократной точности. Многобайтные числа
хранятся в смежных ячейках памяти, а операции над ними выпол­
няются последовательно, отдельными байтами. При хранении мно­
гобайтных чисел в памяти действует принцип «младшее — по мень­
шему адресу» и адресом всего числа считается адрес его млад­
шего байта. На рис. 2.8 показано размещение четырехбайтного

целого знакового числа в памяти. Выборка его осуществляется по­
байтно путем инициализации указателя памяти на BNUM и ин­
кремента указателя по мере обработки каждого байта. Переход
от стандартного формата МП к более сложным форматам резко
уменьшает его производительность.

Ниже рассматривается несколько алгоритмов и программ опе­
раций над многобайтными числами в различных форматах.
74

2.4.1. ОПЕРАЦИИ НАД ДВОИЧНЫМИ ЦЕЛЫМИ ЧИСЛАМИ

Сложение и вычитание. Операции сложения и вычитания очень
похожи друг на друга, поэтому они рассматриваются вместе, тем
более что флажок переноса С при вычитании автоматически ста­
новится флажком заема, позволяя правильно учитывать межбайт­
ные связи.

Подпрограммы сложения и вычитания удобно разделить на
две части. Одна из них заключается в выполнении необходимой
операции над текущими байтами операндов, начиная с младшего
байта. Выборка текущих байтов осуществляется с помощью двух
указателей памяти. В качестве указателя памяти можно пользо­
ваться любой из регистровых пар МП, ио рекомендуется макси­
мально привлекать регистр HL, затем регистр DE (из-за наличия
команды XCHG) и в последнюю очередь регистр ВС.

Вторая часть подпрограммы заключается в модификации ука­
зателей памяти для перехода к соседним старшим байтам опе­
рандов и в определении окончания операции после обработки всех
байтов. Учет межбайтных переносов (заемов) легко осуществля­
ется командами ADC и SBB. Практически во всех подпрограммах
очень важную роль играет тот факт, что команды передач дан­
ных, инкремента и декремента регистров не воздействуют на фла­
жок переноса (заема).

Таким образом, в подпрограмме требуются два указателя па­
мяти и регистр-счетчик оставшихся для обработки операндов, а
сама подпрограмма приобретает циклическую структуру. В нача­
ле подпрограммы следует произвести начальную установку (ини­
циализацию) указателей памяти и счетчика, если этого не дела­
ется в вызывающей программе. Для сокращения длины листингов
далее предполагается, что инициализацию выполняет вызываю­
щая программа. В заголовках подпрограмм всегда указывается
исходное размещение операндов и местонахождение результата
при возврате.

Сложение (вычитание) многобайтных чисел начинается с млад­
ших байтов, затем суммируются (вычитаются) следующие байты
с учетом состояния флажка переноса от предыдущего сложения
(вычитания) и т. д. до завершения операции. В приводимой ниже
подпрограмме 2.1 предполагается, что операнды находятся в об­
ластях памяти, начальные адреса которых передаются в регист­
рах HL и DE. Сумма замещает операнд, адресуемый регистром
DE. Длина операндов в байтах содержится в регистре В, и для
простоты нулевая длина операндов исключается.

Отметим для программы 2.1 следующие особенности.
1. Команда XRA А предназначена для сброса флажка перено­

са (при сложении младших' байтов он должен содержать нуль).
2. Ни одна из команд цикла, за исключением команды ADCM,

не модифицирует состояния флажка переноса. Следовательно, зна-
75

■Программа 2.1. Сложение целых беззнаковых чисел произволь­
ной длины:

; Начальные адреса операндов в регистрах DE И HL,
; длина в регистре В. Сумма замещает операнд,

j адресуемый DE-

ADDRND: XRA a ; Вначале перенос должен Быть сброшен

LOOP: LDAX d ; Текущий байт первого операнда

ADC M ; Прибавить байт второго операнда

STAX d ; Сохранить текущий байт суммы

INX н ; Продвинуть указатели

I NX d ; на следующие байты слагаемых

DCR в : Декремент счетчика байт

JN2 LOOP 5 Повторять до завершения

RET i Возврат

чение переноса от сложения текущих байтов операндов сохрани-
ется до сложения следующих байтов.

3. Перевыполнение после выхода из этой подпрограммы отме­
чается установленным в 1 флажком переноса.

4. Для превращения рассмотренной программы 2.1 в подпрог­
рамму вычитания целых беззнаковых чисел необходимо заменить
команду ADC на команду SBB. Если после возврата флажок пе­
реноса установлен в 1, то получена отрицательная разность, пред­
ставленная в дополнительном коде.

5. Замечательная особенность дополнительного кода заключа­
ется в том, что если двоичные операнды представлены в допол­
нительном коде, то соответствующие подпрограммы применимы
для сложения и вычитания целых знаковых чисел. Результат бу­
дет представлен также в дополнительном коде. Это утверждение
справедливо только при отсутствии переполнения. Необходимость
анализа возникновения переполнения несколько усложняет под­
программы. Обычно для обнаружения переполнения применяется
следующее правило: переполнение произошло, если знак суммы
отличается от общего знака слагаемых, а знак разности не сов­
падает со знаком уменьшаемого в случае разных знаков операн­
дов.

В программе 2.1 сумма (или разность) замещает один из опе­
рандов. Иногда требуется сложить (вычесть) два многобайтных
числа без их разрушения, т. е. здесь приходится размещать ре­
зультат в третьей области памяти. Для адресации текущих бай­
тов двух операндов и результата потребуются три указателя па­
мяти — регистры HL, DE и ВС. Кроме того, аккумулятор необхо­
дим для собственно выполнения операции и все регистры МП ока­
зываются занятыми. Для организации счетчика приходится «вы­
ходить» в память. Удобно привлечь для временного хранения счет­
чика стек и использовать специфическую команду XTHL, которая
76

передает счетчик в регистр Н, а вторая команда XTHL возвра­
щает счетчик в стек.

Программа 2.2. Сложение многобайтных целых беззнаковых чи­
сел с тремя указателями:

S Адрес первого операнда в HL, адрес второго операнда

; в DE, адрес результата в ВС. Число байт операндов
; в аккумуляторе А.

ADDM: PUSH
XRA

PSW
A

: Включить счетчик в стек
; Сбросить флажок переноса

LOOP: LDAX D : Сложить текущие байты
ADC M ; операндов и запомнить
STAX В 5 результат
INX D ; Продвинуть указатели
INX H
INX В
XTHL ; Счетчик в регистре Н
DCR H ; Декремент счетчика байт
XTHL ! Вернуть счетчик в стек
JNZ LOOP ; Повторять до завершения
POP PSW ■ Очистить стек
RET ; Возврат

Для этой программы справедливы все примечания к програм­
ме 2.1, за исключением того, что здесь флажок'переноса сохраня­
ет то состояние, в котором он находился при вызове подпрограм­
мы. Заключительная команда POP PSW «очищает» стек.

Рассмотрим две простые подпрограммы 2.3 и 2.4, показываю­
щие особенности работы с двоичными знаковыми числами. Пред­
положим, что в регистрах HL и DE находятся два 16-битных чис­
ла в дополнительном коде. Необходимо образовать в регистре HL
их сумму, причем флажки знака S и нуля Z должны показывать
соответствующие признаки 16-битного результата и должно фикси­
роваться переполнение.

Собственно сложение операндов выполняет команда DAD D,
а все остальные команды осуществляют проверку возникновения
переполнения и правильную установку флажков S и Z. Перепол­
нение фиксируется в том случае, если значение переноса при сло­
жении и знак результата не совпадают.

В подпрограмме вычитания целых знаковых чисел с аналогич­
ными начальными условиями (в регистре HL находится умень­
шаемое, в регистре DE — вычитаемое, разность возвращается в ре­
гистр HL) необходимо изменить знак вычитаемого и вызвать под­
программу сложения. При изменении знака вычитаемого возни­
кает особый случай: минимальное отрицательное число 8000Н
(оно равно —32 768) не имеет равного по модулю положительно­
го числа. При попытке образовать дополнительный код числа

Программа 2.3. Сложение чисел в дополнительном коде с уста­
новкой флажков:

Слагаемые в регистрах HL и DE, сумма в регистре HL.
Флажки S и Z показывают признаки 16-битного результата,
а флажок переноса С сброшен в О. При переполнении

вызывается подпрограмма OVER.

ADDCOM: MOV A,H ; Проверить, одинаковы или нет

XRA d ; знаки операндов

AN I BOH ; Выделить знаковый бит

DAD d ; Сложить операнды

JNZ
RAR

DIFF ; Знаки различны, переполнения нет
Перенос от сложения в старшем бите А

XRA

RAL

H : Сравнить со знаком суммы

Признак переполнения

cc OVER ; во флажке переноса

; Установить флажки по результату

DIFF: XRA A : Сбросить аккумулятор

ADD

RNZ

H ; Установить флажки по старшему байту

Возврат, старший байт не равен О

ADD

RZ
L ; Проверить младший байт

Результат равен нулю

XRA a ; Отразить положительный

I NR

RET
A ; ненулевой результат

Возврат

8000Н обычно фиксируется переполнение. Для упрощения под­
программы исключается это единственное значение вычитаемого
и считается его минимальное значение —32767.

Программа 2.4. Вычитание чисел в дополнительном коде:
; Уменьшаемое в HL, вычитаемое в DE, разность d HL.

; флажки S и Z показывают признаки 16—битного результата,

; а Флажок переноса С сброшен в О- При переполнении
; вызывается подпрограмма OVER.

SUB COM:’ PUSH D ; Сохранить вычитаемое в стеке

MOV A,D ; Образовать в регистрах DE
СМА ; дополнительный код вычитаемого
MOV D,A ; (изменить знак вычитаемого)
MOV A,E

СМА

MOV E,A

I NX D

CALL ADDCOM ; Теперь можно складывать
POP D ; Вернуть вычитаемое в DE
RET ; Возврат

78

Умножение. Умножение двоичных беззнаковых
целых чисел в простейшем случае заключается в суммирова­
нии множимого с накоплением, которое производится количест­
во раз, равное значению множителя. Этот способ реализуется эле­
ментарной программой 2.5.

Программа 2.5. Умножение по способу накопления:

Множитель находится в аккумуляторе А, множимое

; в регистре Е. Произведений возвращается в регистр HL-

MULT: MVI D,0 ; Подготовить регистры

LXI Н,0 ; для умножения

MULT 1: DCR А
RM

; Декремент множителя
; Возврат, если умножение закончено

DAD D ; Прибавить множимое

JMP MULTI

RET

; Повторять до завершения

: Возврат

Основной недостаток этого способа, исключающий его прак­
тическое применение, заключается в невысоком быстродействии.

Имеются четыре способа умножения с анализом отдельных би­
тов множителя с последующим накапливающим суммированием
множимого и сдвигом множимого или суммы частичных произве­
дений. Они различаются тем, как анализируются биты множите­
ля (начиная со старших или младших битов) и что сдвигается
(множимое или сумма частичных произведений). При желании
нетрудно запрограммировать любой вариант умножения, но стрем­
ление уменьшить длину программы и (или) время выполнения опе­
рации заставляет максимально использовать при программирова­
нии особенности программной модели МП и возможности его си­
стемы команд.

В любом варианте умножения приходится учитывать, что про­
изведение «-битных целых чисел имеет длину 2п бит и отбрасы­
вать младшие биты нельзя. При этом переполнение в операции
умножения невозможно, но приходится сдвигать числа двойной
длины. В МП К580 сдвиг вправо и 8-битное сложение можно
производить только в аккумуляторе. Однако команда DAD гр вы­
полняет 16-битное сложение, а ее форма DAD Н эквивалентна
сдвигу содержимого регистра HL влево на один бит с передачей
выдвигаемого старшего бита во флажок переноса. Поэтому наи­
более эффективными оказываются алгоритмы умножения, в ко­
торых множимое или сумма частичных произведений сдвигается
влево. Анализ последовательных битов множителя, как правило,
осуществляется путем передачи их во флажок переноса. Из м но­

79

гочисленных известных программ умножения для МП К580 при­
ведем наиболее оригинальные.

В первой из них (программа 2.6) умножение целых беззнако­
вых чисел осуществляется младшими разрядами вперед со сдви­
гом множимого влево. Множитель должен находиться в аккуму­
ляторе А, множимое — в регистре Е, а произведение формируется
в регистре HL.

Программа 2.6. Умножение 8-битных беззнаковых целых чисел:

; Множитель в аккумуляторе А, множимое в регистре Е-

; Произведение возвращается в регистр HL-

MULS8: LXI H,0 ; Подготовить место для произведения

MVI D,0 : и сдвига множимого т}лево

LOOP: DRA

RZ

RAR

A : Умножение закончено?

; fl, а, возврат

; Бит множителя во флажке переноса

JNC NOADD ; Он равен О

DAD D ; Он равен 1, прибавить множимое

NOADD: XCHG ; Множимое в регистре HL

DAD
XCHG

H ; Сдвинуть его влево на один Бит

; Вернуть множимое в DE

J MP LOOP ; Повторять до завершения

В этой подпрограмме используются два интересных приема.
Во-первых, анализируемый бит множителя командой RAR пере­
дается во флажок переноса. При этом в освобождающийся стар­
ший бит аккумулятора «вдвигается» нуль из флажка переноса,
сброшенного командой ORA А. Следовательно, об окончании ум­
ножения можно судить по нулевому Содержимому аккумулятора
А и счетчик битов здесь не нужен. Во-вторых, для сдвига множимо­
го влево оно командой обмена XCHG передается в регистр HL и
удваивается командой DAD Н, а затем еще одной командой XCHG
множимое возвращается в регистр DE. Если в подпрограмме
MUL88 убрать команду LXI Н, 0 (т. е. не сбрасывать регистр
HL), то по окончании умножения в регистре HL будет обра­
зована сумма первоначального содержимого и произведения
(Е)Х(А).

В программе 2.7 с помощью команды DAD гр в МП К580
можно очень короткой подпрограммой осуществить умножение
16-битного множимого на 8-битный множитель. Множимое раз­
мещается в регистре DE, а множитель — в аккумуляторе А; операн­
ды считаются целыми беззнаковыми числами. Старшие 8 бит про­
изведения образуются в аккумуляторе, а младшие 16 битов в ре­
гистре HL. Регистр В используется в качестве счетчика битов.
80

В отличие от программы 2.6 здесь умножение выполняется
старшими разрядами вперед с «неподвижным» множимым. Сдвиг
суммы частичных произведений влево реализуется командой
DAD Н. Выдвигаемый при этом старший бит через флажок пе­
реноса командой RAL передается в младший бит аккумулятора.

Программа 2.7. Умножение 16-битного множимого на 8-битный
множитель:

; Множимое в регистре DE, множитель в аккумуляторе А,

DMULT:

; проиоведение образуется в регистрах A“HL.

»
Х-Л Л.

MVI B,8
j UТОВИ lb rjtL 1 U ДЛЯ 1 ipиИИиНДЕНИН

; Образовать счетчик бит
LOOP: DAD H ; Сдвинуть произведение влево

RAL ; Сдвинуть множитель влево

JNC NOADD ; Бит множителя равен нулю

DAD D ; Прибавить множимое
ACI О ; Прибавить перенос в■младший бит А

NOADDх DCR В ; Декремент счетчика бит

JNZ LOOP ; Повторять до завершения
RET ; Возврат

Одновременно команда RAL сдвигает очередной бит множителя
во флажок переноса.’ Возникающий при сложении множимого и
суммы частичных произведений перенос прибавляется к старшим
битам произведения с помощью команды ACI 0.

Рис. 2.9. Табличное умножение

Программа 2.8. Табличное умножение:
; Множимое в регистре D. множитель в реометре Е,

; произведение возвращается в регистр нс.

MULTs LXI H,OFOOFH Маски к регистре HL

MOV A,D Передать множимое в аккумулятор

ANA 1_ Выделить Х2

MOV C,A Передать Х2 в регистр С

MOV A,D Передать множимое в аккумулятор

ANA H Выделить XI

MOV B,A :: Передало XI в регистр В

MOV A,E Передать множитель в аккумулятор

ANA H Выделить Y1

ORA C 5 Образовать в регистре D

MOV D,A СY1>.(Х2)

MOV A,E Передать множитель в аккумулятор

ANA L Выделить у2

ORA В Образовать в регистре L

MOV L.A - (XI).(Y2)

MOV. A,E Передать множитель в аккумулятор

R$C произвести обмен тетрад

RRC И сохранить вновь в регистре

RRC
RRC

MOV E.A

AN I OFH Выделить Y1

ORA В Образовать в регистре В

MOV В,A (XI).(Y1)

MOV A,E Передать множитель в аккумулятор

ANA H Выделить Y2

ORA C Образовать! в регистре Е

MOV E, A (Y2).(Х2)

MV I H,BASE Базовый адрес таблицы

; Выполнить обращения к таблице
MOV C,M Считать X1*Y2 в регистр С

MOV L,B Передать (XI).(Y1) в регисто L

MOV B.M Считать X1*Y1 в регистр В
mov L,E Передать (Y2).(X2) в регистр 1_
MOV E,M 5 Считать Y2*X2 в регистр Е
MOV L,D Передать (Y1).(X2) в регистр L

MOV L,M Считать Yi*X2 в регистр

; Обращения к таблице закончены

MOV D,B Передать X1*Y1 в регистр D
SUB A Сбросить аккумулятор,
MOV HjA ? регистр Н

82

MOV L,M 1 Считать Y1*X2 в регистр

f Обращения к таблице закончены

MOV D,B Передать X1*Y1 в регистр

SUB A Сбросить аккумулятор,

MOV H,A регистр Н

MOV B,A и регистр В

DAD В Сложить X1*Y2 и X2*Y1

DAD H Сдвинуть регистр HL

DAD H на одну тетраду влево

DAD H

DAD H

DAD D 5 Образовать произведение

RET I Возврат

Как пример, показывающий возможность ускорения операции
умножения за счет увеличения объема используемой памяти, рас­
смотрим подпрограмму FMULT, опирающуюся на табличную реа­
лизацию умножения. Разделим 8-битные множимое X и множи­
тель Y на две тетрады: X=(Xi).(X2), Y=(Yj).(Y2). Тогда про­
изведение равно

X х Y—(XJ.CXjj) x(Yt).(Y2)= W X&V + Х2^+X2Y2.

Если использовать каждую пару тетрад (Xj).(Y3) в качестве
индекса таблицы, хранящей произведения тетрад, умножение двух
тетрад реализуется с помощью одного обращения к таблице. Эле­
мент таблицы с индексом (X,. Y3) содержит 8-битное произведе­
ние XiXYj, и общий объем таблицы составляет 256 байт. В опе­
рации умножения необходимы четыре обращения к таблице и сум­
мирование считываемых из нее данных с учетом их положения в
полном произведении (рис. 2.9).

Перед вызовом подпрограммы FMULT множимое размещается
в регистре D, множитель — в регистре Е. Произведение образуется
в регистре HL. Базовый адрес BASE таблицы имеет вид ХХООН.

Эта программа примерно в три раза длиннее программы 2.6,
но выполняется она в два раза быстрее.

Когда длина сомножителей составляет 16 бит,- а произведе­
ния— 32 бит, регистров МП начинает не хватать. Рассмотрим
подпрограмму такого умножения, показывающую, как можно «рас­
ширить» число регистров МП с привлечением стека. Предполага­
ется, что множитель размещается в регистре DE, множимое — в
регистре ВС, а произведение образуется в регистрах DE—HL. Ак­
кумулятор А выступает счетчиком битов. Формат сомножителей —
целые беззнаковые числа.

83

В этой подпрограмме младшая часть произведения находится
в регистре HL, а «регистром» для старшей части произведения
служит вершина стека TOS. Перед входом в цикл умножения, ко­
торый начинается с метки LOOP, оба регистра произведения очи­
щаются.

Программа 2.9. Умножение 16-битных сомножителей:
; Множитель в регистр® DE, множимое в регистре ВС,

; произведение возвращается в регистрах DE — HL.

MULlfez
р

MV I

LX I
PUSH

A, 16

H,O

H

; Образовать счетчик бит
; Инициализировать регистр HL

5 и стен

LOOPS XCHG J

5

Множитель в HL, младшая часть

произведения в DE

^)AD

XCHG

H i

5

Сдвинуть множитель влево

Вернуть множитель и происзведенир

JNC NOADD ? Бит множителя равен нулю

DAD В ; Прибавить множимое

JNC

XTHL

NOADD г Переноса не возникло
Старшая часть произведения в HL

I NX

XTHL

H J Передать 1 и HL

Младшая часть произведения в HL

NOADD: DCR A ? Декремент счетчика би

JNZ MORE ; Продолжать умножение
POP

RET
D P

j

Старшая часть произведения в DE

Возврат

MORE: DAD

XTHL

H Сдвинуть младшую часть произведения

Старшая часть произведения в HL

PUSH PSW Сохранить флажок переноса в стеке
DAD H Сдвинуть старшую часть произведения

POP PSW 5 Вернуть ф’лажок переноса
JNC NOC 9 Единицы в старшую часть не было
INX H » Передать 1 из младшей части

NOC: XTHL Обменять части произведения
J MP LOOP Повторять умножение

В начале цикла старший бит множителя сдвигается во фла­
жок переноса и, если он равен единице, множимое прибавляется
к содержимому регистра HL. Чтобы учесть возникающий при этом
перенос в старшую половину произведения, командой XTHL она
передается в регистр HL и производится его инкремент. Затем
обе части произведения возвращаются на свои места. После про­
верки окончания цикла необходимо сдвигать влево обе части про­
изведения; это действие осуществляется командами, находящи­
мися после метки MORE. При сдвиге командой DAD Н младшей
части произведения ее старший бит попадает во флажок перено-
84

са. После передачи старшей части произведения в регистр HL
(для этого вновь применяется команда XTHL) состояние флаж­
ка переноса приходится временно сохранять в стеке командой
PUSH PSW, так как при сдвиге старшей части произведения ко­
мандой DAD Н флажок переноса будет сброшен. Затем запомнен­
ное состояние флажка переноса восстанавливается и передается
в младший бит сдвинутой старшей части произведения. Коман­
дой XTHL обе части произведения возвращаются на свои места
и осуществляется переход в начало цикла.

В программе 2.10 умножения целых беззнаковых
чисел длиной 16 бит с получением 32-битного произведения
применяется тот же способ умножения, что и в предыдущей под­
программе. Однако вместо использования для старшей части про­
изведения стека последовательно образуемые биты ее сдвигают­
ся в освобождающиеся младшие биты множителя. Здесь умноже­
ние выполняется без «выхода» в память, что значительно ускоря­
ет выполнение операции. Предполагается, что множимое находит­
ся в регистре ВС, множитель — в регистре DE, а произведение об­
разуется в регистрах DE—HL. Аккумулятор А по-прежнему дей­
ствует как счетчик цикла. Благодаря команде обмена XCHG ре­
гистр HL попеременно используется для хранения множителя и
суммы частичных произведений, а команда DAD Н осуществляет
сдвиг его содержимого влево.

Программа 2.10. Умножение 16-битных чисел в регистрах:

; Множимое в регистре ВС, множитель а регистре DE,

; произведение возвращается в регистрах DE — HL.

MUL16: LX I

MV I

H,O

A,16

; Подготовить младшую масть произведения

; Образовать счетчик бит

LOOP: XCHG ; Множитель в HL, произведение и DE

DAD H j Сдвинуть множитель влево

MULls XCHG : Множитель в DE, произведение в HL

JNC NOADD ; Бит множителя равен нулю

DAD В ; Прибавить множимое

JNC NDADD ; Переноса в старшую часть нет

INX D ; Передать 1 в младший бит множителя

NDADDi DCR

RZ

A ; Декремент счетчика бит

; Умножение закончено

DAD H 5 Сдвинуть младшую часть произведения

JNC

XCHG

LOOP ; Переноса нет

j Множитель в HL, произведение в DE

DAD H 5 Сдвинуть множитель влево

INX H ; Передать 1 в младший бит множителя .

J MP MUL1 ; Повторять умножение

85

Как было показано выше, программирование операций сложе­
ния и вычитания целых чисел произвольной длины не вызывает
принципиальных трудностей и реализуется простыми циклами.
Умножение аналогичных чисел связано с определенными слож­
ностями, а длина подпрограммы значительно увеличивается.

Произведение

(MPCND)

Рис. 2.10. Общая схема умножения чисел произвольной длины

Рассмотрим умножение двоичных целых беззнако­
вых чисел, имеющих произвольную длину (програм­
ма 2.11). Предположим, что начальный адрес (т. е. адрес млад­
шего байта) множителя находится в регистре HL, начальный ад­
рес множимого — в регистре DE, а длина сомножителей — в ре­
гистре В. Примем общую схему умножения младшими разряда­
ми вперед со сдвигом суммы частичных произведений вправо. При
этом выдвигаемый младший бит передается в старший бит мно­
жителя, который также сдвигается вправо (рис. 2.10). Для стар­
шей половины произведения резервиру’ется область памяти, начи­
ная с адреса HIGH. Схема подпрограммы умножения показана
на рис. 2.11.

Подпрограмма начинается с проверки длины сомножителей и
сразу осуществляет возврат, если она равна нулю. Затем форми­
руются конечные адреса множителя и старшей половины произве­
дения, причем конечный адрес множителя помещается в регистр
DE, а конечный адрес старшей половины произведения запомина­
ется в слове ENDHP. Вычисление двух конечных адресов объяс­
няется необходимостью сдвига вправо, а такой сдвиг начинается
со старших байтов. Кроме того, начальный адрес множимого со­
храняется в слове MPCND. После этого число байтов сомножите­
лей путем умножения на 8 превращается в счетчик битов, кото­
рый сохраняется в слове COUNT, так как для него регистров МП
не хватает. В старшую половину произведения загружаются ну­
ли, подготавливая ее для накопления частичных произведений.
86

Начиная с метки LOOP,
реализован цикл умножения
на последовательные биты
множителя. Первое действие
в цикле заключается в сдви­
ге старшей половины произ­
ведения вправо на один бит.
При входе в цикл флажок
переноса сбрасывается в О,
а затем он будет показывать
перенос, возникший при сло­
жении суммы частичных
произведений и множимого.
Поэтому при сдвиге состоя­
ние флажка переноса пере­
дается в левый бит старшей
половины произведения. Сле­
дующее действие заключа­
ется в сдвиге множителя
вправо с передачей в его ос­
вобождающийся старший
бит через флажок переноса
выдвинутого младшего бита
старшей половины произве­
дения. Очередной бит мно­
жителя попадает во флажок
переноса. Если этот бит со­
держит 1, происходит сумми­
рование множимого со стар­
шей половиной произведе­
ния, а если он содержит О,
сложение ие производится.
Заключительное действие
цикла — декремент счетчи­
ка битов и выход из цикла,
когда он исчерпывается до
нуля. Таким образом, в этой
подпрограмме имеется четы­

Рис. 2.11. Граф-схема алгоритма умно­
жения чисел произвольной длины

ре цикла:
1. «Глобальный» цикл (с

метки LOOP) умножения на
все биты множителя с числом повторений, равным числу битов в
сомножителях. Этот цикл включает в себя все остальные циклы,
а счетчик его находится в слове памяти COUNT.

Программа 2.11. Умножение беззнаковых целых чисел произ­
вольной длины:

87

t Начальный адрес множителя в HL. начальный адрес множимого

। в DE, длин* сомножителей в регистре В. Старшая половина

; произведения начинается г адреса HIGH, а младшая

; находится на месте множителя.

MPRNDs
5
; Проверить нулевую длину сомножителей»

MOV А,В ; Передать длину В аккумулятор

DRA А
RZ ; Возврат, если она равна нулю

; Образовать конечные адреса старшей половины

; произведения и множителей.
MOV С,В ; Длина в регистрам В и С

MVI В,О
DAD В : Конечный адрес множителя в HL

MVI в,О

DAD В ; Конечный адрес множителя в HL

XCHG : В HL — начальный г-Дрес множимого
SHLD MPCND ; Сохранить его в слове MPCND

LXI Н,Н1БН ; Начальный адрес старшего произведения

DAD В ; Конечный адрес старшего произведения

SHLD ENDHP ; Сохранить его в слове ENDHP

: Образовать счетчик бит.

MOV L,C : Длина сомножителей в HL

MOV Н,В

DAD Н : Умножить ее на В
DAD Н
DAD Н

SHI D COUNT ; Сохранить счетчик бит в COUNT

; Очистить старшую половину произведения

MOV В,С ; Счетчик байт в регистре В

LXI Н,Н1БН ; Начальный <^дрес старшего произведения
ZERO: MVI М,О 5 Очистить старшую

INX Н ; половину произведения
DCR В

JNZ ZERO

; Подготовка к умножении закончена.

ANA А ; флажок переноса должен быть сброшен
LOOP: ; Сдвинуть вправо старшую половину произведения

MOV В,С ; Счетчик байт в’регистре В

LHLD ENDHP : Сдвиг начинается со старшего байта
SHIFTPs DCX Н ; Продвинуть указатель

MOV А,М ; Произвести сдвиг байта
RAR

MOV М,А

DCR В ; Декремент счетчика байт

JNZ SHIFTP ; Продолжать сдвиг

88

; Сдвинуть вправо 'множитель.

MOV L,E 5 В HL - конечный адрес множителя

MOV H,D

MOV B,C ; Счетчик байт в регистре В

SHIFTM: DCX H ; Продвинуть указатель

MOV A,M ; Произвести сдвиг байта

RAR
MOV M,A

DCR В ; Декремент счетчика байт

JNZ SHIFTM ; Продолжать сдвиг

; Анализ очередного бита множителя во флажке перенос

JNC DECR ; Бит множителя равен нулю

; Прибавить множимое к произведении.
PUSH D ; Сохранить адрес множителя

LHLD MPCND ; Начальный адрес множимого

XCHG ; в регистре DE

LXI H.HIGH ; Адрес произведения в регистре HL

MOV B,C ; Счетчик байт в регистре В

ANA A ; Сбросить флажок переноса
ADDL: LDAX D ; Очередной байт множимого

ADC M ; Прибавить к произведения

MOV M,A
I NX H ; Продвинуть указатели

INX D

DCR В ; Декремент счетчика байт

JNZ ADDL ; Продолжать сложение

POP D ; Восстановить адрес множителя

; цекр с?мемт и анализ счетчика опт•

DECR-. UDA COUNT Декремент младшего байта

DCR A j счетчика бит

ST A. COUNT

JNZ LOOP : Повторять умножение

PUSH PSW ; Сохранить флажок переноса

LDA COUNT+1 ; Проверить на нуль старший байт

ANA A ; счетчика бит

JZ EXIT ; Он равен нулю, возврат

DCR A j Декремент старшего байта

STA COUNT+1 5 счетчика бит

pop PSW ; Восстановить флажок переноса .

J MP LOOP ; Повторять умножение

EXIT» w PSW j Очистить стек

RET ; Возврат

2. Цикл сдвига вправо на один бит старшей половины произ­
ведения с числом повторений, равным длине сомножителей в бай­
тах. Этот цикл начинается с метки SHIFTP.

3. Цикл сдвига вправо на один бит множителя. Он также пов­
торяется столько раз, чему равна длина сомножителей в байтах.
Начало цикла идентифицирует метка SHIFTM.

4. Цикл суммирования множимого и старшей половины произ­
ведения. Он начинается с метки ADDL, а число повторений равно
длине сомножителей в байтах.

Умножение целых знаковых чисел, представлен­
ных в дополнительном коде, с получением произведения
также в дополнительном коде не вызывает серьезных трудностей.
Традиционно умножение знаковых операндов выполняется путем
определения знака произведения (он равен сумме по модулю 2
знаковых битов сомножителей) умножения абсолютных значений
(для чего привлекается любая из рассмотренных выше подпрог­
рамм умножения) и образования дополнительного кода произве­
дения. Можно также воспользоваться следующим приемом. Ана­
лизируется знаковый бит множителя, и сомножители преобразу­
ются так, чтобы множитель стал положительным: когда множи­
тель отрицательный, сомножители умножаются на —1. После это­
го происходит умножение операндов как беззнаковых целых чи­
сел. В результате получается произведение, сразу представленное
в дополнительном коде, если множимое берется двойной длины с
расширением знака в старшую половину. Известен также алго­
ритм Бута умножения чисел, представленных в дополнительном
коде, с автоматическим получением произведения в дополнитель­
ном коде. Однако программная реализация алгоритма Бута, в ко­
тором необходимо анализировать по два соседних бита множи­
теля, оказывается для МП К580 громоздкой.

Для умножения целых знаковых чисел X и Y, имеющих длину
п бит и представленных в дополнительном коде, можно исполь­
зовать следующий прием. Вычисляется 2/г-битное произведение Р
кодов X и Y, которые интерпретируются как беззнаковые целые
числа; для такого умножения применима любая из рассмотрен­
ных выше подпрограмм. В зависимости от знаков сомножителей-
получение произведения в дополнительном коде может потребо­
вать корректирующих действий.

Если оба сомножителя положительны (Х^О, Y^O), то полу­
ченное значение Р представляет собой истинное произведение и
коррекция не нужна. В том случае, когда сомножители имеют
разные знаки (XjaO, Y<0 или Х<0, Y^O), значение Р равно

Р= х (2« — Y)= Х2" — XY,
или

Р=(2” — X) Y= Y2« - XY.
90

Здесь коррекция заключается в том, чтобы вычесть из Р по­
ложительный сомножитель, сдвинутый на п бит влево. Это экви­
валентно прибавлению к старшей части произведения Р допол­
нительного кода положительного сомножителя. Если оба сомно­
жителя отрицательны, значение Р равно

Р=(2* — X) (2П - Y)= 22" — Х2" - Y2" 4- X Y.

Для коррекции результата необходимо прибавить к Р абсо­
лютные значения сомножителей, сдвинутые на п бит влево. Это
эквивалентно прибавлению к старшей части произведения допол­
нительных кодов исходных операндов.

Деление. Общая циклическая схема операции деления очень
похожа на операцию умножения. Различие заключается в том, что
умножение выполняется в цикле «сложение — сдвиг», а для деле­
ния потребуется цикл «вычитание — сдвиг». Так как частное мож­
но получать только со старших разрядов, имеются два варианта
деления: со сдвигом остатка влево и со сдвигом делителя вправо.
Второй вариант на практике не применяется из-за необходимости
иметь регистры остатка и делителя двойной длины. Операция де­
ления характерна тем, что в ней всегда возможно переполнение,
когда делитель равен нулю.

При делении целых чисел приходится получать частное и ос­
таток также в виде целых чисел, причем обычно знак остатка
совпадает со знаком делимого. После вычитания делителя из сдви­
нутого положительного остатка цифра частного равна инверти­
рованному значению флажка переноса. Действительно, флажок
переноса сбрасывается в 0, если текущий остаток больше делите­
ля (бит частного равен 1), и устанавливается в 1, показывая за­
ем, если текущий остаток меньше делителя (бит частного ра­
вен 0).

Если при вычитании получен очередной отрицательный оста­
ток, приходится восстанавливать предыдущий положительный ос­
таток путем прибавления делителя. Вариант деления без восста­
новления остатка, когда при получении отрицательного остатка
он сдвигается влево, а затем суммируется с делителем, не приме­
няется из-за громоздкости программы. Более распространен при­
ем сохранения текущего положительного остатка в дополнитель­
ном буфере; при получении отрицательной разности восста­
новление остатка заключается в том, чтобы возвратить его из бу­
фера.

Имеются две разновидности операции деления. В первой из
них (более простой для программирования) делимое и делитель
имеют одинаковую длину. Переполнение здесь может возникнуть
только в том случае, когда делитель равен нулю. Во второй раз­
новидности операции деления делимое имеет двойную длину и

Si

переполнение возникает, если старшая половина делимого боль­
ше делителя.

Рассмотрим простую подпрограмму (2.12) деления
8-битных целых беззнаковых чисел со следующим рас­
пределением регистров МП: делимое находится в регистре Е, де­
литель— в регистре D, частное образуется в регистре Н и положи­
тельный остаток — в регистре С. Регистр L используется как счет­
чик битов. При нулевом делителе флажок нуля Z после возврата
установлен в 1.

Программа 2.12. Деление 8-битных целых беззнаковых чисел:

। Делимое в регистре Е, делитель в регистре В.

у Частное возвращается в регистре Н, а положительный

; остаток в регистре С.

DIV88: LXI Н,8 ? Образовать счетчик бит, сбросить частное

MVI С,О ; Сбросить остаток

MOV A,D ; Проверить нулевой делитель

DRA А

RZ ; Возврат,делитель равен нули»

LOOP: MOV А,Е ; Передать делимое в аккумулятор

RAL ; Сдвинуть его влево
MOV Е,А ; Вернуть делимое в регистр Е

MOV А,С ; Сдвинуть остаток влево

RAL

SUB D ; Вычесть делитель

JNC NDADD ; Восстанавливать остаток не нужно

ADD D : Восстановить остаток
NOADD: MOV С,А : Вернуть остаток в регистр С

СМС ; Образовать бит частного

MOV А,Н : Передать бит устного

RAL : в регистр Н

MOV Н5А

DCR L ; Декремент счетчика бит

JNZ LOOP ; Повторять деление

INR L : Сбросить Флажок нуля

RET : Возврат

В цикле деления, который начинается с метки LOOP, делимое
сдвигается влево с передачей его старшего бита во флажок пе­
реноса. Затем остаток из регистра С передается в аккумулятор и
бит делимого сдвигается из флажка переноса в его младший бит.
Команда SUB D вычитает делитель из остатка. Если разность
(т. е. очередной остаток) положительна, происходит переход на
метку NOADD. Когда при вычитании возникает заем (очередной
остаток отрицательный), команда ADD D восстанавливает пре-
92

дыдущий положительный остаток. После этого во флажке пере­
носа образуется цифра частного и передается посредством сдвига
влево в младший бит частного.

Подпрограмма (2.13) осуществляет деление 16-битных
целых беззнаковых чисел. В ней сохранена такая же об­
щая схема деления, как в предыдущей подпрограмме. Делимое
находится в регистре HL, делитель — в регистре DE. Аккумуля­
тор участвует в операциях сдвига влево и в вычитании делителя
из остатка. Счетчик битов из-за нехватки регистров МП организо­
ван в ячейке памяти COUNT. Если делитель равен нулю, проис­
ходит выход из подпрограммы с установленным в 1 флажком ну­
ля Z. В подпрограмме реализован алгоритм деления со сдвигом
остатков влево.

Сначала в подпрограмме проверяется делитель и, если он ра­
вен нулю, происходит возврат с установленным в 1 флажком нуля
Z. Затем делимое передается в регистр ВС, в ячейке COUNT об­
разуется счетчик битов и начинается цикл деления (метка LOOP).
Делимое и остаток сдвигаются влево как 32-битные значения че­
рез аккумулятор, причем в освобождающиеся биты делимого пе­
редаются последовательно образуемые биты частного. Перед вы­
читанием делителя положительный остаток сохраняется в стеке и,
если результат вычитания отрицательный, командой XTHL сохра­
ненный остаток возвращается в регистр HL. Когда очередной ос­
таток положительный, производится удаление предыдущего ос­
татка из стека; оно осуществляется двумя командами 1NX SP без
явного извлечения из стека. После декремента счетчика битов
проверяется, необходимо ли продолжать цикл деления. При до­
стижении счетчиком битов нуля остаток из регистра HL переда­
ется в регистр DE, а частное (со своей последней цифрой) пере­
дается в регистр HL.

Рассмотрим выполнение операции деления, когда операнды
по-прежнему целые беззнаковые числа, а делимое имеет двойную
длину. Используется следующее распределение регистров МП: де­
лимое в регистрах HL—DE, делитель в регистре ВС, частное об­
разуется в регистре DE и остаток — в регистре HL. Признаком пе­
реполнения служит установленный в 1 флажок переноса.

Подпрограмма начинается с вычитания делителя из старшей
части делимого для обнаружения переполнения. Если разность
положительная (флажок переноса сброшен в 0), осуществляется
возврат с установленным в 1 флажком переноса. При отсутствии
переполнения командой XRA А аккумулятор сбрасывается, так
как его старшие четыре бита используются как счетчик. Инкре­
мент счетчика производится командой ADI ЮН и при возникнове­
нии переноса цикл деления заканчивается: произведено 16 пов­
торений цикла.

В программе 2.14 применяется способ деления со сдвигом
остатков влево.

93

Программа 2.13. Деление 16-битных целых беззнаковых чисел
j Делимо* в регистр* HL, делитель в регистр* БЕ, частно*

; возвращается в регистр» HL, остаток в регистре РЕ.
; При переполнении флажок Z установлен в 1.

DIV16:
5
MOV А,Е : Проверить нулевой делитель

DRA А
RZ : Возврат, делитель равен нулю

MOV C,L ; Передать делимое в регистр ВС

MOV В,Н
LXI Н,О ; Подготовить место для остатков

MVI А,16 ; Образовать счетчик бит

ORA A ; Сбросить флажок переноса
; Подготовка к циклу деления закончена.

LOOP: STA COUNT : Сохранить счетчик бит е памяти

MOV’2 А , С ; Сдвинуть делимое влево

RAL

MOV С,А
MOV А,В

RAL
MOV В,А

MOV A,L ; Сдвинуть остаток влево,

RAL ; связь с делимым через

MOV L,A ; флажок переноса
MOV: А,Н
RAL

MOV Н,А

? Вычитание делителя из остатка.

PUSH Н : Сохранить текущий остаток

MOV A,L ; Вычесть делитель
SUB Е , ‘

MOV L,А

MOV А,Н
SBB т>

MOV Н,А

• Инвертированная цифра частного во флажке переноса.

СМС « Образовать явную цифру частного

ас NOREC 5 Новый остаток положительный

XTHL ? Новый остаток отрицательный,

; вернуть предыдущий остаток из стека
NOREC: INX ЕР ; Удалить остаток из стека

INX SP

; Проверить окончание деления.

LDA COUNT ; Счетчик бит в аккумуляторе

■BCR ; Декремент счетчика бит

JNZ LOOP ; Повторять цикл деления

94

j Деление закончено, учесть последнюю цифру частного.-

ХСНЕ • Остаток в регистре DE

MOV А,С ; Передать частное в регистр HL

RAL

MOV L,А
MOV А,В

RAL

MOV Н,А

• учесть его последнюю цифру

XRA А ; Сбросить

INR А

RET

; Флажок Z

1 Возврат

Программа 2.14. Деление с 32-битным
делителем:

делимым и 16-битным

= Делимое в регистрах HL - DE, делитель в регистре ВС,

; частное возвращается в регистре DE, а остаток в регистре HL-
; При переполнении флажок переноса установлен е 1.

DIV32: MOV A,L ; Пробное вычитание делителя

SUB C 5 из старшей части делимого

MOV A,H ; для определения переполнения

SBB C

CMC

RC ; Возврат, переполнение
XRA A ; Подготовить счетчик бит

LOOP: DAD H 5 Сдвинуть ос таток влево

PUSH PSW ; Сохранить счетчик и перенос

XCHG ; Сдвинуть младшую часть делимого

DAD H

XCHG

JNC LI ; Из младшей части выдвинут О

INX H ; Иэ младшей части выдвинута 1

Мг MOV A,L 5 Вычесть делитель из остатка

SUB C

MOV L,A

MOV A,H

SBB В

MOV
1Г

H,A

чЪ L2 ; Цифра частного равна 0

POP PSW ; Восстановить счетчик и перенос
L3: INX D ; Цифра частного равна 1

J MP L4 ; Перейти к проверке счетчика
L2: POP PSW ; Восстановить счетчик и перенос

JNC L3 ; Цифра частного равна 1

DAD В : Восстановить остаток

L4s ADI ЮН ; Инкремент счетчика бит

JNC LOOP ; Повторить цикл деления

ORA A ; Сбросить флажок переноса

Сначала выполняется сдвиг делимого влево, причем выдвигае­
мый старший бит, попадающий во флажок переноса, сохраняется
в стеке. Затем делитель вычитается из старшей части делимого
(остатка). Образующиеся единичные биты частно передаются в
освобождающиеся младшие биты делимого командой INX D. При
получении отрицательного остатка предыдущий положительный
остаток восстанавливается командой DAD В, которая прибавляет
делитель к остатку.

Деление чисел произвольной длины, как и умноже­
ние, вызывает определенные трудности, хотя общий принцип де­
ления путем последовательных вычитаний сохраняется. Рассмот­
рим подпрограмму DIVRND деления целых беззнаковых чисел, в
которой делимое и делитель имеют произвольную, но одинаковую,
длину. Общая схема реализуемой ею операции показана на рис.
2.12, а граф-схема алгоритма — на рис. 2.13.

По сравнению с умножением в операции деления имеется осо­
бая ситуация, связанная с получением отрицательной разности
при вычитании делителя. Чтобы вернуться к предыдущему поло-

Юстаток Частное

Рис. 2.12. Общая схема деления чисел произвольной длины

жительному остатку, приходится суммировать делитель и отрица­
тельную разность. Можно избежать этой операции, если выделить
для старшей части делимого две буферные области (или просто
буфера) с начальными адресами BUFF1 и BUFF2; длина обоих
буферов равна длине исходных операндов. Адреса буферов нахо­
дятся в ячейках памяти PTR1 и PTR2. При вычитании делителя
из старшей части делимого, находящейся в одном буфере (его
называют текущим буфером), разность помещается в другой бу­
фер. Если получена отрицательная разность (цифра частного рав-
96

(DIVRND

Рис. 2.13. Схема алгоритма деления чисел произвольной длины

на 0), в текущем буфере сохранилась предыдущая положитель­
ная старшая часть делимого и в следующем цикле деления необ­
ходимо использовать содержимое этого же буфера. Когда полу­
чена положительная разность (цифра частного равна 1), далее
использовать именно эту разность, находящуюся в другом буфере.

Программа 2.15. Деление беззнаковых целых чисел произволь­
ной длины:
4—1021 S7

; Начальный адрес делимого в HL, начальный адрес делителя в DE

; длина операндов в регистре В. Частное возвращается на месте

; делимого, a HL адресует положительный остаток.

; Если делитель равен нулю, флажок переноса установлен в 1..

5
D1VRND: ; Проверить нулевую длину операндов и сохранить

; их начальные адреса.

MOV

□RA

A,В ; Передать длину в аккумулятор

Возврат,A 5
JZ OK 5 если она равна нулю

SHLD DVEND 5 Сохранить адрес делимого

XCHG » Сохранить

SHLD DVSDR 5 адрес делителя

MOV C,B 5 Сохранить длину в регистре С

; o<5p азовать сч етчик бит и сохранить его в слове COUNT.

MOV L,C 5 В HL длина в байтах

MV I H,0

DAD H j Умножить ее на 8

DAE H 5 для образования счетчика бит

DAD H*•
INX H

COUNTSHLD 5 Сохранить счетчик бит

; Очистить буферныеэ области.

LXI H,BUFFI » Начальные адреса буферов

LXI D,BUFF2 ? в HL и DE

MOV B,C ? Длина в регистре В

SUB A 5 Сбросить аккумулятор
ZERO': MOV M, A » Передать нуль

STAX D в текущие байты буферов

INX H ; Продвинуть указатели

INX

DCR

D

В ? Декремент счетчика байт

JNZ ZERO г Повторять до завершения
; Инициализировать указатели буферов.

LXI H,BUFF1 Адрес первого текущего .буфера

SHLD PTRI 1 в слове PTR1

LXI H,BUFF2 Адр ес в торо г о буфер а

SHLD PTR2 в слове PTR2

; Проверить делитель на нуль.

LHLD DVSDR » В HL адрес делителя

MOV B,C 5 Счетчик бит в регистре В
SUB A г Спросить аккумулятор

CHECK: □RA M 5 □бъединить по ИЛИ очередной бай г

INX H 5 Продвинуть указатель

DCR в i Декремент счетчика байт
JNZ CHECK • Повторять до завершения

98

ORA A j Проверить на нуль

LOOP:

JZ ERR ; Ошибка, делитель равен нулю
; Подготовка к циклу делания закончена.

ORA А ; Вначале Флажок переноса сброшен
LHLD DVSDR ; Начальный адрес

SHIFTIs

XCHG ; делителя в DE
LHLD DVEND ; Начальный адрес делимого в HL
MOV В,С ; Счетчик байт в регистре В

; Сдвинуть делимое влево с учетом флажка переноса.
MOV А,М ; Сдвинуть очередной байт

DECRs

RAL j делимого
MDV М,А ; влево

INX Н ; Продвинуть указатель
DCR В ; Декремент счетчика байт

JNZ SHIFT1 ; Повторять до завершения

; Проверить достижение конца цикла деления.

LDA COUNT ; Произвести декремент

CDNT:

DCR А ; счетчика бит (слова)

STA COUNT ; и перейти на метку ОК,
JNZ CDNT ; если деление закончено.
LDA COUNT4-1 j Эти команды не изменяют

DCR А ; состояние флажка переноса.

STA COUNT+1

ЛМ ОК ; Деление закончено

; Сдвинуть содержимое текущего буфера влево,

SHIFT2S

; передать Флажок переноса е младший бит.

LHLD PTR1 5 В HL начальный адрес текущего буфера
MOV В,С ; Счетчик байт в регистре В

MOV А,М ■ Сдвинуть очередной байт

RAL ; текущего буфера влево

MOV М,А

INX Н ; Продвинуть указатель

DCR В ; Декремент счетчика байт

JNZ SHIFT2 ; Повторять до завершения

; Произвести вычитание, помещая разность в другой буфер.

PUSH В ; Сохранить длину, освободить ВС

MOV А,С ; Образовать счетчик байт

STA LENGTH ; в ячейке LENGTH

LHLD PTR2 ; В HL указатель другого буфера,

MOV С,L j передать его в ВС

MOV В,Н

LHLD PTR1 ; В HL указатель текущего буфера,

XCHG ; передать его в DE

LHLD DVSOR ; В HL адрес делителя

DRA A j Сбросить флажок заема

4* 99

SUBL: LDAX Г У Произвести вычитание

ERR:

SB В М » и запомнить разность

STAX В
INX Н у Продвинуто указатели

INX D

INX В
LDA LENGTH ; Декремент счетчика байт

ГСП А

STA LENGTH

JNZ SUBL ; Повторять до завершения
PDF в ; Восстановить■длину операндов

; Во флажке переноса инверсия бита частного.
СМС ; Образовать явный бит частного

JNC LOOP ; Разность отрицательна

$ LHLD PTR1 ; Разность положительна,
XCHG ; необходимо скоммутировать

LHLD PTR2 ; буферы (обменять
SHLD PTR1 ; содержимое слов PTR1 и PTR21

XCHG

SHLD PTR2
* JMP LOOP ; Повторять цикл деления

; Ошибка — деление на нуль.

ОК:

STC
JMP EXIT

; Нормальный выход

Установить флажок переноса

EXIT:

DRA А
LHLD PTR1

5 Сбросить флажок переноса

В HL начальный адрес остатка

RET Возврат

Следовательно, при получении положительной разности
необходимо сделать текущим другой буфер, т. е. скоммутировать
(переключить) буферы. Для этого достаточно обменять содержи­
мое ячеек памяти PTR1 и PTR2, хранящих начальные адреса
буферов.

В каждом цикле деления (он начинается с метки LOOP), чис­
ло которых определяется счетчиком битов, производится сдвиг
влево делимого, а также содержимого текущего буфера. При этом
очередной бит делимого через флажок переноса попадает в млад­
ший бит текущего буфера. После этого выполняется вычитание
делителя из содержимого текущего буфера и образованная во
флажке переноса цифра частного (фактически она равна инвер­
сии флажка переноса) передается в младший бит делимого. Та­
ким образом, после выхода из цикла частное оказывается на мес­
те делимого, а положительный остаток — в текущем буфере.
100

Предполагается, что при вызове подпрограммы регистр HL
адресует делимое, регистр DE — делитель, а в регистре В нахо­
дится число байтов операндов. Подпрограмма начинается с про­
верки длины операндов и сразу осуществляет возврат, если она
равна нулю. Затем формируется и запоминается в слове COUNT
счетчик битов, а обе буферные области очищаются. С помощью
команд SHLD производится инициализация слов PTR1 и PTR2,
служащих указателями буферов. Далее осуществляется про­
верка делителя на нуль и, если делитель равен нулю, подпрограм­
ма возвращается с установленным в 1 флажком переноса (метка
ERR).

Начиная с метки LOOP, реализован «глобальный» цикл де­
ления с образованием последовательных битов частного. Первое
действие в цикле заключается в сдвиге делимого на один бит
влево (метка SHIFT1), причем выдвигаемый бит попадает во
флажок переноса. После этого производится декремент счетчика
битов и при достижении им нуля подпрограмма заканчивается.
Если цикл деления не закончен, осуществляется сдвиг влево со­
держимого текущего буфера (метка SHIFT2), а затем из него вы­
читается делитель (метка SUBL). Как уже говорилось, форми­
руемая разность помещается в другой буфер. В зависимости от
полученной цифры частного (она определяется состоянием флаж­
ка переноса) производится или нет коммутация буферов и цикл
деления повторяется.

Деление знаковых целых чисел обычно выполняется
следующими действиями:

по знакам делимого и делителя определяется знак частного;
образуются абсолютные значения операндов, т. е. операнды

превращаются в беззнаковые числа, для деления которых при­
влекается любая из рассмотренных выше подпрограмм;

с учетом знака частное представляется в дополнительном коде.

2.4.2. ОПЕРАЦИИ С ДЕСЯТИЧНЫМИ ЧИСЛАМИ

При решении некоторых задач приходится оперировать много­
разрядными десятичными числами, которые, как правило, пред­
ставлены в формате упакованных целых беззнаковых чисел.
В МП К580 для десятичной арифметики предусмотрена единст­
венная команда DAA десятичной коррекции аккумулятора. Она
воздействует на находящуюся в аккумуляторе двоичную сумму
двух байтов, содержащих упакованные десятичные числа, таким
образом, что в аккумуляторе получается упакованное десятичное
представление суммы и флажок переноса показывает правильный
Десятичный перенос. Благодаря этой команде легко реализуются
операции сложения и вычитания, но в операциях умножения и де­
ления появляются некоторые трудности.

101

Сложение и вычитание. Рассмотренную выше программу 2.1
сложения двоичных целых беззнаковых чисел произвольной дли­
ны очень легко превратить в программу сложения десятичных чи­
сел: для этого достаточно после команды двоичного сложения
ADC ввести команду DAA.

Программа 2.16. Сложение упакованных десятичных целых без­
знаковых чисел:

? Начальные адреса операндов находятся в регистрах HL и DE,

; длина (в байтах) в регистре В.
£ Сумма замещает операнд, адресуемый регистром DE.

ADDPCK: XRA A ; Сбросить флажкм переноса

LOOPS LDAX D ; Текущий байт первого операнда

ADC

DAA

M ; Прибавить байт второго операнда

; Скорректировать сумму
STAX D ; Сохранить текущий байт суммы

INX

INX
H
D

; Продвинуть указатели

DCR e В ; Декремент счетчика байт

JNZ
RET

LOOP ; Повторять

; Возврат

до завершения

Установленный в 1 флажок переноса при возврате из подпрог­
раммы сигнализирует о переполнении.

Вычитание упакованных десятичных чисел несколько услож­
няется тем обстоятельством, что команда DAA не корректирует
результат двоичного вычитания. Поэтому операцию приходится
выполнять в два этапа: сначала образуется дополнение вычитае­
мого до 10"+1 (т. е. десятичный дополнительный код), а затем по­
лученное число суммируется с уменьшаемым. Результаты сложе­
ния можно корректировать командой DAA. В программе 2.17 при­
няты такие же начальные условия, как и в программе 2.1.

В этой подпрограмме оригинально используется команда об­
мена XCHG (обменивается содержимое регистров HL и DE), бла­
годаря которой можно обращаться к памяти короткими команда­
ми ADD М и MOV М, А. Если не использовать такого приема, в
подпрограмме появляются дополнительные команды межрегистро­
вых передач.

Образование десятичного дополнительного кода вычитаемого
и сложение его с уменьшаемым реализовано в одном цикле. Де­
сятичный дополнительный код получается путем вычитания из де­
вяток и инкремента результата, поэтому до входа в цикл флажок
переноса устанавливается в 1 командой STC. Следовательно, толь­
ко младший байт вычитаемого вычитается не из 99, а из 100, что
102

эквивалентно инкременту результата. Признаком получения отри­
цательной разности является сброшенный в 0 флажок переноса.

Умножение. При умножении упакованных десятичных чисел
сохраняется общий принцип выполнения операции с двоичными
числами: накапливающее суммирование множимого в зависимости
от значений цифр множителя (см. рис. 2.10). Однако по сравне­
нию с умножением двоичных чисел появляются некоторые особен­
ности. Во-первых, основной единицей обработки операндов стано­
вится десятичная цифра, т. е. четыре бита. Например, сдвиги мно­
жимого и суммы частичных произведений необходимо осущест­
влять в.цикле на четыре бита. Во-вторых, при умножении на каж­
дую цифру множителя множимое прибавляется такое количество
раз, равное значению цифры множителя (нулевые цифры, естествен­
но, пропускаются). Каждое суммирование сопровождается коман­
дой десятичной коррекции DAA. Программа десятичного умноже­
ния содержит около 120 команд (в тексте не приводится).

Программа 2.17. Вычитание упакованных десятичных целых
беззнаковых чисел:

S Адрес уменьшаемого в регистре DE, адрес вычитаемого

5 в регистре HL, длина операндов (в байтах) в регистре В.

5 Разность замещает уменьшаемое.

SUBPCK: STC , s Для младшего байта флажок = 1
LOOPs MVI А,99Н : Загрузить девятки

ACI о : Учесть флажок переноса
SUB М ;

ХСНБ ;
Дополнение вычитаемого

Обменять указатели операндов
ADD М ;

DAA ;

Сложить с уменьшаемым

Скорректировать как сумму

MOV М,А ;

ХСНБ ;
Разность на месте уменьшаемого

Восстановить указатели
INX Н ;
INX D

Продвинуть указатели

DCR В ; Декремент счетчика байт

JNZ LOOP ;

RET ;

Повторять до завершения

Возврат

Деление. В операции деления упакованных деся­
тичных чисел также сохраняется общий принцип выполнения
операции с двоичными числами: последовательные вычитания де­
лителя из остатков (см. рис. 2.12). Но здесь, как и в операции
умножения, появляются некоторые отличия. Основной единицей
обработки операндов остается десятичная цифра, поэтому сдвиги
остатка и частного производятся на четыре бита. При вычитании
Делителя из остатка фиксируется число вычитаний до получения

103

отрицательной разности; это число вычитаний и является очеред­
ной цифрой частного. Явное вычитание заменяется операцией сло­
жения остатка с десятичным дополнительным кодом делителя.
Длина программы деления десятичных чисел произвольной длины,
как и программы умножения, составляет около 120 команд.

Знаковые упакованные десятичные числа представляются в де­
сятичном дополнительном коде. В этом формате сложение и вы­
читание выполняются аналогично соответствующим операциям
над беззнаковыми упакованными десятичными числами (см. про­
граммы 2.16 и 2.17). Результат представляется в десятичном до­
полнительном коде. Умножение и деление обычно выполняются
над абсолютными значениями операндов, а знак результата опре­
деляется отдельным действием.

Программа .>2.18. Сложение неупакованных десятичных целых
беззнаковых чисел:

; Начальные адреса слагаемых находятся в регистрах HL и DE

В. Сумма замещает операнд, адресуемый; длина е pei HLipe

; регистром DE.

ADUNPK;
♦

XRA A Сбросить Флажок переноса

PUSH PSW Сохранить его в стеке

LOOP: POP PSW Возвратить состояние переноса

LDAX D Текущий байт первого операнда

ADC M Прибавить байт второго операнда

DAA Скорректировать сумму

AN I 1FH Выделить нужные биты

CPI 16 Передать межразрядный перенос

CMC во флажок переноса

. PUSH PSW Сохранить перенос в стеке

ORI ЗОН Образовать код цифры

LDAX D Сохранить текущий байт суммы

INX H Продвинуть указатели
INX D

DCR В Декремент счетчика байт

JNZ LOOP Повторять до завершения

POP PSW Вернуть значение переноса

RET Возврат

Операции с неупакованными десятичными чис­
лами на практике почти не встречаются. Рассмотрим все же вы­
полнение сложения и вычитания беззнаковых целых чисел в этом
формате. Напомним, что байт содержит 16-ричные коды от ЗОН
до 39Н, соответствующие десятичным цифрам от 0 до 9. При сло­
жении таких чисел с произвольной длиной операция начинается
с младших байтов и циклически продолжается в сторону старших
104

байтов с учетом межразрядных переносов. Команда ADC позво­
ляет учесть межразрядный перенос, сформированный во флажке
переноса. Однако фактический межразрядный перенос должен
быть десятичным переносом из младшей тетрады суммируемых
байтов. Поэтому в программе потребуются специальные команды,
передающие межтетрадный перенос во флажок переноса. Если
произвести двоичное сложение двух байтов, а затем скорректи­
ровать сумму командой DAA, то интересующий нас перенос будет
зафиксирован в четвертом бите аккумулятора. Его состояние не­
обходимо передать во флажок переноса; эту функцию выполняют
команды ANI, CPI и СМС.

Программа 2.19. Вычитание неупакованных десятичных целых
беззнаковых чисел:

; Адрес: уменьшаемого находится в регистре DE, адрес

$ вычитаемого п регистре HL, длина операндов - б регистре В.
; Г аэпость замешает уменьшаемое.

SBUNPK: SIC ; Аля младшей цифры флажок “ 1

; Сохранить его в стекеPUSH rsw
LOOR: POP PSW : Возвратить состояние переноса

MV I A, <?«?P : Загрузить девятки
AC1 О : Учесть шлажок переноса
SUB

XCHG

M : Дополнение вычитаемого

: Обменять указатели операндов
ADD
DAA

M : Сложить с уменьшаемым

: Скорректировать как сумму
ANI ’ FH : Выделить нужные биты
CPI 1 P : Огтреде «ить состояние пепеноса
PUSH PSW : Спхрамит&-нфёноС"в стеке
ORI гон : Образовать код цифры

MOV

XCHG
M, A : Разнос гь на месте уменьшаемого

: Россгаипвить указатели
I NX H ; Продвинуть указатели

DCR В : Декремент счетчика байт

JNZ LOOP : Повторять до завершения
POP

RET

PSW ; Пернуть значение переноса

; Возврат

После команды десятичной коррекции DAA выделяются пять
младших битов (команда ANI) и находящееся в них число срав­
нивается с 16 (команда CPI). Если оно больше или равно 16,
флажок переноса сбрасывается в 0 (но десятичный перенос дол­
жен быть равен 1), а если число в аккумуляторе меньше 16, фла­
жок переноса устанавливается в 1 (десятичный же перенос должен
быть равным 0). Поэтому команда СМС инвертирования флажка
переноса образует в нем правильное значение десятичного пере­

105

носа. Командой PUSH PSW оно сохраняется в стеке, так как
следующая команда ORI ЗОН, образующая в аккумуляторе код
цифры суммы, сбрасывает флажок переноса в 0. Следующие ко­
манды стандартным образом завершают цикл суммирования. При
выходе из подпрограммы установленный в 1 флажок переноса оз­
начает переполнение.

Вычитание неупакованных десятичных чисел приводится к сло­
жению путем образования десятичного дополнительного кода вы­
читаемого. Отметим, что здесь команда СМС не требуется.

2.4.3. ОПЕРАЦИИ НАД ЧИСЛАМИ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Для арифметических операций над числами с плавающей точ­
кой в МП К580 разрабатываются довольно сложные подпрограм­
мы. Если принять за исходный любой из форматов чисел с пла­
вающей точкой, рассмотренных в гл. 1, то даже для 32-битного
формата подпрограммы будут слишком громоздкими. Объясняется
это катастрофической нехваткой внутренних регистров МП и «кон­
центрацией» арифметических и логических операций, а также
сдвигов в аккумуляторе А. Например, даже разместить два 32-
битных числа в регистрах МП невозможно; операнды придется
хранить в памяти и частями пересылать в МП для обработки.
При этом длина подпрограмм (и время их выполнения) становит­
ся чрезмерно большой. Чтобы . показать принципы выполнения
операций над числами с плавающей точкой, принимается «уре­
занный» формат представления чисел. В этом формате сохранено
кодирование порядка и мантиссы в соответствии со стандартом на
одинарные числа с плавающей точкой, но мантисса имеет 15 зна­
чащих битов, а не 23. Напомним, что в старшем бите находится
знак S числа, затем следует 8-битный смещенный порядок (сме­
щение равно 127), а после него находится дробная часть мантис­
сы. Скрытый бит целой части мантиссы в нормализованных чис­
лах содержит 1. Истинный нуль кодируется нулевым набором, а
разнообразные специальные числовые значения (бесконечность,
неопределенность и не-числа) учитывать не будем. Несколько при:
меров кодирования чисел в этом формате:

1.00111Х2»=9 3/4 01000001 00011100 00000000
—1.0Х29=—512 11000100 00000000 00000000
1.0101Х2п=1 5/16 00111111 10101000 00000000
—1.11Х2-3=—7/32 10111110 01100000 00000000

Примем стандартное размещение операндов во всех операциях:
первый операнд X находится в регистрах EHL (старший байт в
регистре Е), а второй операнд Y — в регистрах DBC (старший
байт в регистре D). Кроме того, результат операции возвращает­
ся на место операнда X, т. е. в регистр EHL.
106

Для того чтобы сократить длину листингов, воспользуемся не­
сколькими короткими и простыми подпрограммами, которые вы­
полняют функции, требующиеся в нескольких операциях.

1. Подпрограмма СОМР образует дополнительный код числа,
находящегося в регистре HL.

Программа 2.20. Образование дополнительного кода числа в
регистре HL:

СОМР: MOV А,Н ; Инвертировать код

СМА

MOV

: в регистре Н

Н, А

MOV A.L : Инвертировать код

СМА ; в регистре L

MOV L, А

INX Н : Образовать дополнительный код

RET : Возврат

Эта подпрограмма осуществляет нахождение дополнительного
кода по способу «инвертированно и инкремент». Она не сигнали­
зирует об особом случае, когда в HL содержится максимальное
по модулю отрицательное.число 8000Н.

2. Подпрограмма NEG проверяет знак числа с плавающей точ­
кой (он находится в старшем бите регистра Е) и, если знак от­
рицательный, производится образование дополнительного кода
мантиссы в регистре HL.

Программа 2.21. Проверка знака и образование дополнитель­
ного кода:

NEG: MOV rt,E ; Проверить знак
ORA E ; в старшем бите ■регистра Е
<JP NOTDK ; Знак положительный
CALL COMP ; Знак отрицательный , преобразовать (HL)

NOTDK: RET

3. Подпрограмма SHIFT предназначена для сдвига вправо на
один бит числа, находящегося в регистре HL. В освобождающийся
левый бит помещается состояние флажка переноса.

Программа 2.22. Сдвиг содержимого HL вправо на один бит:

МП К580 может сдвигать в аккумуляторе А только 8-битные
коды. Поэтому сдвиг содержимого HL как единого 16-битного чис-

SHIFT: MOV A,H ; Сдринугь впрапо (H),

RAR • младший бит во флажке С

MOV H,A

MOV A,L ; Сдвинуть вправо (L),

RAR ; связь через перенос

MOV L, A

RET ; Возврат

107

ла производится в два приема. Вначале команда RAR сдвигает
вправо содержимое регистра Н, причем в его старший бит поме­
щается состояние флажка переноса, а выдвигаемый младший бит
передается во флажок переноса. После этого второй командой
RAR сдвигается содержимое регистра L и передаваемый через
флажок переноса из регистра Н бит попадает в старший бит ре­
гистра L.

4. Подпрограмма SWAP осуществляет обмен содержимого ре­
гистров EHL и DBC. Такая операция требуется в программах для
того, чтобы разместить в регистрах EHL большее или меньшее из
двух чисел. В подпрограмме SWAP оригинально используются
стековые операции: сначала содержимое ВС включается в стек
(команда PUSH В), затем оно обменивается с содержимым HL
(команда XTHL) и, наконец, содержимое вершины стека, т. е. на­
ходящееся там число из EHL, извлекается в регистр ВС (команда
POP В). *

Программа 2.23. Обмен содержимого регистров EHL и DBC:

SWAP: PUSH в
XTHL

; Включить содержимое ВС в стек
; Обменять вершину стека с HL

POP В ; Передать содержимое HL в ВС
MOV A, Г ; Обменять содержимое
MOV D, 1 Е ; регистров D и Е
MOV E, А

< RET ; Возврат

Программа 2.24. Восстановление числа ,c плавающей точкой.

REC: MOV A,H 5 Старший байт мантиссы в регистре А

ADD A • Младший бит порядка во флажке переноса

MOV A,E ; Образовать в регистре Е

RAL, ; S-битный смешенный порядок

MOV E, A
MOV A,H ; Восстановить скрытую единицу

ORI аин

MOV H,A
RET ' Возврат

5. Подпрограмма REC воспринимает в регистрах EHL число
со скрытым битом мантиссы и возвращает в регистре Е полный
8-битный смещенный порядок, а в регистре HL — мантиссу с яв­
ной старшей единицей.

6. Заключительная подпрограмма РАСК выполняет действия,
противоположные действиям предыдущей подпрограммы. Она вос­
принимает в регистрах EHL истинные порядок и мантиссу числа
и в ячейке SIGN знак числа (в старшем бите). Как результат она
возвращает в регистры EHL число в стандартном представлении.
При этом флажок переноса сбрасывается в 0.
108

Программа 2.25. Преобразование в стандартный формат:

PACK: LDA SIGN 5 Передать знак в регистр А

ADD A у Знак so флажке переноса

MOV A,E 5 Полный порядок в регистре А
MOV D,A » Сохранить полный порядок в регистре D

RAR j Встроить бит знака

MOV E,A
MOV A,H 5 Подготовить бит
AN I 7FH для младшего бита порядка
MOV H,A

MOV A,D Образовать в старшем бите А
RRC младший бит порядка
AN I ВИН Выделить бит порядка
ORA H Сформиров ать
MOV H,A второй байт числа

RET Возврат

Имея в распоряжении такие удобные подпрограммы, можно
разработать приемлемые по размеру программы всех арифмети­
ческих операций над числами с плавающей точкой.

Сложение. Как было показано в гл. 1, сложение чисел с пла­
вающей точкой состоит из нескольких этапов. Прежде всего вы­
равниваются порядки, чтобы точка в обоих операндах находилась
в одном и том же месте. При этом мантисса меньшего числа сдви­
гается вправо до тех пор, пока меньший порядок не будет равен
большему. После этого производится сложение мантисс как чисел
с фиксированной точкой, а за порядок результата принимается
общий порядок (т. е. первоначально больших из двух порядков).
Затем анализируется нарушение нормализации. При сложении
чисел с одинаковыми знаками оно может быть только влево на
один бит. Для устранения нарушения нормализации мантисса
сдвигается вправо на один бит, а порядок увеличивается на еди­
ницу. Эта операция может вызвать переполнение, если порядок
ненормализованного результата был максимальным.

В подпрограмме 2.26 число, находящееся в регистрах DBC,
суммируется с числом в регистрах EHL и сумма сохраняется в
этих же регистрах: EHL-e-(EHL) + (DBC). Исходное число в ре­
гистрах DBC разрушается.

Граф-схема алгоритма сложения, представленная на рис. 2.14,
начинается с ряда проверок. Прежде всего проверяются знаки чи­
сел и, если они различны, знак числа в регистрах DBC изменяет­
ся на противоположный с последующим переходом к подпрограм­
ме вычитания SUBF. Далее проверяется, не является ли какой-
либо операнд нулем. Если один из них нулевой, результат прини­
мается равным второму операнду. Он при необходимости переда-

109

(ADDF у

Сохранить знак ,
восстановить X и У

Да

Нет

1=
Да

Образовать Пх -Рц
ADDF3 I—

’Я/ А П-К 9 ^ДД

Л |ADDFH
\Сохранить ЛИ в Е

>\ added
^Сдвинуть HL вправо |

f
\Скоррекрцровап порядок |

f
\Декремент Л П |

----- ------ADDF61____
| Сложить мантиссы |

Нет s Нарушение
\нормализадии ? /

ADD Pl Hem

Форматировать
результат В EHL

A DOF 8

____ t . ■.
Установить
флажок переноса

I

$
I

(_ Возврат

Рис. 2.14. Схема алгоритма сложения чисел с плавающей точкой

ется в регистры' EHL и осуществляется возврат из подпрограм­
мы. Следующая проверка выясняет равенство порядков. Если по­
рядки операндов равны, происходит сложение мантисс и норма­
лизация результата. Если же порядки не одинаковы, производит­
ся их выравнивание, а уже после этого сложение мантисс и нор­
мализация результата. Переполнение фиксируется при возврате
из подпрограммы установленным в 1 флажком переноса. Для
удобства изучения подпрограммы использованные в ней метки
показаны па рис. 2.14.

В подпрограмме ADDF отметим интересный прием. На метку
ADDF4 она выходит со следующим содержимым регистров: в ре­
гистрах EHL находится большее число, в регистрах DBC — мень­
шее, в аккумуляторе А — положительная разность порядков ДП<
<16. Для выравнивания порядков необходимо сдвигать вправо
мантиссу меньшего числа. На первый взгляд, регистров МП не
хватает, так как осуществить сдвиг вправо можно только в ак­
кумуляторе, а он занят разностью порядков. Чтобы преодолеть
возникшую трудность, разность порядков передается в регистр Е,
замещая больший порядок, и производится обмен чисел. В ре­
зультате, меньшее число оказывается в регистрах EHL (напом­
ним, что подпрограмма сдвига SHIFT осуществляет сдвиг ман­
тиссы в регистре HL),a разность порядков — в регистре D. Начиная
с метки ADDF5 реализован цикл сдвига мантиссы меньшего чис­
ла. Собственно сдвиг производится подпрограммой SHIFT, а счет­
чиком сдвигов служит регистр D, содержащий разность порядков.
Одновременно с каждым сдвигом выполняется инкремент мень­
шего порядка в регистре Е. Следовательно, при выходе из цикла
по нулевому содержимому регистра D в регистре Е оказывается
меньший порядок, увеличенный на разность порядков, т. е. восста­
новленный больший порядок.

После этого суммируются мантиссы и по флажку переноса
проверяется нарушение нормализации влево. Если флажок сбро­
шен в 0, нарушения нормализации нет и подпрограмма переходит
на метку ADDF7, где форматируется окончательный результат.
При наличии нарушения нормализации производится инкремент
порядка в регистре Е и, если при этом в нем образуется нуль,
т. е. порядок изменился с максимального 11111111 на нулевой,
фиксируется переполнение. Подпрограмма переходит на метку
ADDF8 с установленным в 1 флажком переноса. При переполне­
нии результат в регистрах EHL не определен и не формати­
руется. Когда переполнения нет, мантисса сдвигается вправо, для
чего вызывается подпрограмма SHIFT. При этом в старший бит
регистра Н не нужно записывать 1, так как юна в процессе фор­
матирования была бы скрыта, т. е. заменена на младший бит по­
рядка.

Подпрограмма ADDF рассчитана только на сложение чисел с
одинаковыми знаками. В случае операндов с разными знаками,

ш

Программа 2.26. Сложение чисел с плавающей точкой:
; Первый операнд X находится в регистре EHL,
; второй Y — в регистрах ВВС, сумма возвращается

; в регистрах EHL. При переполнении флажок переноса
; установлен в 1

ADDF:
j

MOV A,D ; Сравнить знаки операндов

XRA E

JR ADDF1 ; Знаки операндов одинаковы
MOV A,D ; Знаки различны,

XRI 80H ; необходимо вычитать
MOV D,A

JMP SUBF

ADDF1:■
5

‘ MOV M ; Проверить на нуль
oPta В ; второй операнд

DRA c

JZ ADDFS ; Результат находится в EHL
MDV A,E ; Проверить на нудь
DRA H ; первый операнд

DRA L

JNZ ADDF2 ; Оба операнда ненулевые

CALL SWAP Результат находится в EHL
J MF ADDFS

ADDF2;
5
MDV A,В ; Сохранить общий знак
STA SIGN ; операндов

CALL REC ; Восстановить полные порядки
CALL SWAP ; и Скрытые биты мантисс
CALL REC ; обоих операндов

MDV A,E ; Сравнить порядки
SUB D ; с образованием разности порядков
JNC ADDF3 ; Число в EHL больше
CALL SWAP ; Обменять числа
MDV A,E ; Сравнить порядки
SUB

; 8 EHL

D ? с образованием разности порядков

. оилы чиили, ы елккуr*iy jim i мре разность порядков
ADDF3: JZ ABDF6 ; Порядки одинаковы

CP] 16 ; Сравнить разность пооядков с 16
JC ABDF4 5 Разность порядков меньше 16
J MP ADDF7 ; Результат равен большему числу

ABBF41

; Моине

MDV
> сдвигать
E,P

мантиссу меньшего числа.

; Разность порядков в регистре Е

112

CALL SNAP ■ Необходимо сдвигать меньшее число

ADDF5: DRA A ; Сбросить флажок переноса

CALL SHIFT ; Сдвинуть мантиссу меньшего числа

J NR E ; Увеличить меньший порядок -

DCR D ; Уменьшить раэность порядков

JNZ ADDF5 ; Повторять сдвиг

; в регистре E общий порядок. Можно складывать мантиссы.

ADDF6: DAD В ; Сложить мантиссы

JNC ADDF7 ; Нарушения нормализации нет

I NR E ; Скорректировать порядок

JZ ADDF8 ; Переполнение

□RA A ; Сбросить флажок переноса

CALL SHIFT ; Сдвинуть мантиссу вправо

ADDF7: CALL PACK ; форматировать результат

ADDF8: RET ; Возврат

т. е. когда фактической операцией является вычитание, осущест­
вляется переход на подпрограмму вычитания SUBF. Подпрограм­
ма алгебраического сложения операндов оказалась бы несколько
длиннее, в нее пришлось бы включить значительный фрагмент под­
программы SUBF. Но при этом она практически без усложнений
выполняла бы и вычитание чисел: нужно только изменить знак
второго числа и произвести алгебраическое сложение.

Вычитание. Операция вычитания чисел похожа на операцию
сложения, но мантисса меньшего числа после выравнивания по­
рядков вычитается из мантиссы большего числа и соответственно
корректируется знак результата. В подпрограмме 2.27 вычитания
чисел число Y, находящееся в регистрах DBC, вычитается из чис­
ла X в регистрах EHL и разность возвращается в эти же регист­
ры: EHL-<-(EHL) —(DBC).

Схема алгоритма вычитания, показанная на рис. 2.15, начи­
нается с нескольких проверок. Сначала сравниваются знаки опе­
рандов и в случае разных знаков знак второго операнда Y изме­
няется на противоположный и происходит переход на подпрограм­
му сложения ADDF, так как фактической операцией здесь будет
сложение. При одинаковых знаках операнды проверяются на нуль.
Если один из операндов равен нулю, подпрограмма заканчивает­
ся с ненулевым операндом в регистрах EHL и при необходимости
корректируется знак разности. Следующая проверка определяет
больший (по модулю) операнд. При этом в случае одинаковых
порядков приходится сравнивать старшие байты мантисс, а при
их равенстве — еще и младшие байты мантисс. При абсолютном
равенстве операндов получается нулевой результат.

После выявления большего (по модулю) числа происходит вы-
113

Рис. 2.15. Схема алгоритма вычитания чисел с плавающей точкой

равнивание порядков и вычитание мантисс. Результирующая раз­
ность размещается в регистрах EHL. При вычитании мантисс мо­
жет возникнуть нарушение нормализации вправо, т. е. получение
нулей в одном или нескольких старших битах мантиссы разности.
Нормализация требует организации цикла, в котором мантисса
сдвигается влево с декрементом порядка при каждом сдвиге. В хо­
де нормализации может возникнуть антипереполнение, о чем сиг­
нализирует получение после декремента максимального порядка.
Другими словами, антипереполнение возникает, когда порядок в
процессе нормализации изменяется с минимального 0000000 на
максимальный 1111111’. В случае антипереполнения осуществля­
ется установка в I флажка переноса и возврат из подпрограммы
с неопределенным результатом.

Умножение. При умножении чисел с плавающей точкой необ­
ходимо сложить порядки и перемножить мантиссы. В этой опе­
рации могут возникнуть как переполнение, так и антипереполне­
ние. В рассматриваемом формате чисел о возникновении любого
особого случая можно судить по результату сложения порядков,
так как при умножении мантисс нарушения нормализации вправо
быть не может. Вместе с тем после умножения мантисс возможно
нарушение нормализации влево максимум на один бит. Действи­
тельно, максимальное произведение мантисс равно

(2_ 2~п) х(2__2~")—4__2~"+2 -4- 2-2®

т. е. оказывается меньше 4.
В программе умножения 2.28 сомножители размешаются в ре­

гистрах EHL и DBC, а произведение возвращается в регистры
EHL: EHL4-(EHL)X(DBC).

При возникновении переполнения или антипереиолнения фла­
жок переноса устанавливается в 1 и произведение не определено.

Граф-схема алгоритма умножения приведена на рис. 2.16. Сна­
чала оба операнда (по-прежнему обозначаем X число в регистрах
EHL и У число в регистрах DBC) проверяются на нуль. Если лю­
бой из них равен нулю, осуществляется возврат из подпрограммы
с нулевым результатом. Затем путем сложения по модулю 2 зна­
ковых битов операндов находится знак произведения и сохраня­
ется в ячейке SIGN.

После этого анализируются особые случаи переполнения и ан­
типереполнения. Для этого находится сумма смещенных порядков
сомножителей. Если при сложении порядков возникает перенос,
т. е. сумма больше 255, происходит переход на метку MULF2.
В противном случае из суммы вычитается смешение 127, так как
в сумме оно учтено дважды (в каждом из исходных порядков) и
при отсутствии заема подпрограмма переходит на метку MULF3.
Наличие заема при вычитании 127 свидетельствует о возникнове­
нии антипереполнения. ' 4

115

Программа 2.27. Вычитание чисел с плавающей точкой:
Уменьшаемое X находится в регистрах EHL, вычитаемое Y

в регистрах DBC, разность возвращается в регистрах EHL.
При антипереполнении флажок переноса установлен в 1.

SUEF: MOV A,D Сравнить знаки операндов
XRA E
JP SUBF1 Знаки операндов одинаковы
MOV A,D 5 Знаки различны
XRI SOH j необходимо складывать
MOV D,A
JMP ADDF

SUBF1:
J
MOV A,D 5 Проверить на нуль
DRA В 5 вычитаемое Y
ORA C
JZ SUBFA 5 Результат находится в EHL
MOV A,E 5 Проверить на нуль
DRA H 4 уменьшаемое X
DRA L
JNZ SUBF2 5 Оба операнды ненулевые

CALL SWAP Отменять числа
MOV A,E Изменить знак результата
XRI BOH
MDV E,A
JMP SUBFA Результат находится в EHL

SUBF21
?
MDV A,E Сохранить знак
STA SIGN » первого операнда X
CALL REC Восстановить полные порядки
CALL SWAP 5 и скрытые биты мантисс
CALL REC обоих операндов < X в DBC, Y в EHL)

MOV A, D Образовать разность
Sub E

J
порядков ПХ — ПУ

jnz SUBF3 Порядки не равны
MDV A,В » Сравнить
CMP H 5 старшие байты мантисс
JNZ SUBF3 $ Они не равны
MOV A,C » Сравнить
CMP L 5 младшие байты мантисс
JNZ SUBF3 5 Они не равны
MV I E,0 Числа равны,
LXI H,0 5 результат равен нули
J MP SUBFA

116

SUlF3s

SUBF4i

SUBFSs
SUBF62

SUBF72

SUBF8:

SUBF9:

SUBFA:

I Операнды не равны, необходимо вычитать.

□NC SUBFA 5 Первое число X больше, оно в ВВС

CALL SWAP ? Обменять числам Y больше X, оно в ВВС

LDA SION Изменить знак результата

XRI 80H

5TA SIGN

; Необходимо вычитать EHL из DBC, результат 'в EHL.

MOV A,D J Образовать разность порядное,

SUB E J она не отрицательна

JZ SUBF7 » Пор ядки одинаковы

CPI 16 » Проверить диапазоны разности порядков

ЛС SUBF5 Необходимо вычитать операнды

CALL SWAP Передать результат в EHL

JMP

У
• E>

SUBF9 > Форматировать результат

ность порядное, е DBC больший операнд.; В эегистре А раз

MOV E,A Сохранить рзноеть порядннв в регистре

ORA A Сбросить флажки переноса

CALL SHIFT » Выр авнять пор ядки,

DCR E 5 сдвигая мантиссу

JNZ SUBF6 ° меньшего числа вправо

; ' Вычесть» мантиссы результат В регистрах•EHL.

MOV A,C Вычесть младшие байты мантисс

SUB L

MOV L,A

MOV A,В 5 Вычесть старшие байты мантисс

BBB H 5 с учетом заема

MOV H,A
MOV E,D » Порядок результата в регистре Е

; Нормализовать и проверить антипереполмение.

MOV A,H 5 Проверить старший

ORA H бит мантиссы

JM SUBF9 Результат нормализован

DCR E F Декремент порядка

MOV A,E > Проверить антипереполнение

CPI 0FFH

STC

JZ SUBFA Возникло антипереполнение

DAD H 5 Сдвинуть мантиссу влево

J MP SUBF8 ! Повторять до завершения

?
; Результат в регистрах EHL.

CALL PACK форматировать разность

RET s Возврат

Да

C MULF)

Нет

Образовать и сохранить
знак произведения

| восстановить X и у)

(возврат)

Рис. 2.16. Схема умножения чисел с плавающей точкой (первый вариант)

Когда сумма смещенных порядков больше 255 (метка MULF2),
из нее также вычитается смещение 127. В этом случае отсутствие
заема сигнализирует о переполнении, а наличие его — о возмож­
ности продолжать операцию умножения. Таким образом, на метку
M.ULF3 подпрограмма выходит с образованным в аккумуляторе
правильным смещенным порядком произведения.

Умножение 16-битных мантисс ставит определенные трудности,
так как полное произведение имеет длину 32 бит и регистров МП
не хватает. Рассмотрим два варианта операции умножения.
В первом (упрошенном) варианте (программа 2.28) умно­
жаются только старшие байты мантисс сомножителей с образо­
ванием в регистре HL 16-битного произведения. Здесь принят ал­
горитм умножения младшими разрядами вперед со сдвигом мно­
жимого влево. Чтобы учесть целые части. сомножителей, множи­
мое до собственно умножения сдвигается влево на один бит. Пос­
ле умножения мантисс проверяется нарушение нормализации вле­
во и при его возникновении результат нормализуется. При этом
возможно появление переполнения.

Во втором варианте умножения (программа 2.29), заклю­
чительная часть схемы которого представлена на рис. 2.17, реа­
лизовано умножение 16-битных операндов младшими разрядами
вперед со сдвигом суммы частичных произведений вправо. При
этом выдвигающиеся младшие биты произведения мантисс от­
брасываются. Собственно умножение мантисс начинается с метки
MULF3, на которую подпрограмма выходит со следующим со­
стоянием регистров: в аккумуляторе А находится сумма поряд­
ков, а в регистрах HL и ВС — мантиссы сомножителей. Здесь по­
требуется освободить регистр HL для накопления произведения,
выделить регистр для счетчика цикла и производить сдвиг содер­
жимого HL вправо. Сдвиг производится вызовом подпрограммы
SHIFT, которая для своей операции привлекает аккумулятор. Сле­
довательно, придется временно сохранить в памяти порядок про­
изведения и старший байт мантиссы множителя, так как умноже­
ние начинается с младшего байта. • \

Деление. В операции деления чисел с плавающей точкой не­
обходимо вычесть порядки и разделить мантиссы. Здесь могут
возникнуть оба случая переполнения и антипереполнения. Об их
появлении можно судить по результату вычитания порядков, так
как при делении мантисс возможно только нарушение нормали­
зации вправо максимум на один бит.

В программе деления 2.30 делимое X находится в регистрах.
EHL, делитель Y — в регистрах DBC и частное возвращается в
регистрах EHL: EHL-e-(EHL)/(DBC).

При возникновении любого особого случая флажок переноса
устанавливается в 1 и частное не определено.

Программа 2.28. Умножение чисел с плавающей точкой (пер­
вый вариант):

; Первый операнд X (множитель) находится в регистрах EHL,

; второй Y (множимое) в регистрах DEC, произведение

; возвращается в регистрах EHL.

; При возникновении особого случая флажок переноса = 1.

rtULF: MDV А, Е ; Проверить множитель на нуль

ORA Н
ORA L

JZ MULES ; Произведение равно нулю

MDV A,D ; Проверить множимое на нуль

□RA В

ORA С

JNZ MULF1 ; Оба операнда ненулевые

CALL SWAP ; Произведение
JMP MULES ; равно нулю

;
; Операнды ненулевые, можно умножать.

MULFls MOV А.D ;
XRA Е ;

STA SIGN

CALL REC ;

CALL SWAP ;

CALL REC ;
MDV A, D ;

ADD E

JC MULF2

SUI 127 ;

JNC MULF3 ;
JMF MULFS ;

Образовать и сохранить

знак произведения

Восстановить полные порядки

и скрытые биты мантисс

X в DBC, Y в EHL

Сложить

смешенные порядки

Вычесть смешение

Можно умножать мантиссы

Антипервполнемие
MLILF2; ADI 129 ;

JNC MULF3 •
JMF MULFS ;

J
; В аккумуляторе A

Учесть потерю 256 из-за переноса

Можно умножать мантиссы

Переполнение

смещенный порядок произведения.
MULF3: MDV C , A ;

MOV E,В ;

MVI D,0 ;

MOV A,H ;

LXI h,0 ;
XCHG * ;

DAD H ;

XCHG

; Здесь начинается

Сохранить порядок Произведения

Подготовить для умножения

множимое

Старший байт множителя в А

Место для накопления произведения
Учесть наличие целых частей

сдвигом множимого влево

цикл умножения.
MULF4: ORA A ;

RAR
Сбросить Флажок переноса

Млайший бит множителя

120

JNC MULF5 ; во фпажко переноса

DAD D ; Прибавить множимое

MULF5: JZ MUL F£> - умножение-закончено

XCHG ; Сдвинуть множимое

DaD H ; влево на один бит

XCHG

J MF F1ULF4 ; Повторять умножение

; Проверить нарушение нормализации.

MULFfc: JNC MULF7 ; Нарушения нормализации нет

call SHIFT ; Сдвинуть мантиссу вправо

I NR c ; Скорректировать порядок

STC

JZ MULF8 ; Возникло переполнение

MULF7: MOV E,C ; Передать порядок в регистр Е

CALL PACK ; форматировать результат

MULF8: RET ; Возврат

Граф-схема алгоритма деления показана на рис. 2.18. Как и
прежде, вначале операнды анализируются на нуль. Если нулю
равно делимое, образуется нулевое .частное, а когда нулю равен
делитель, фиксируется переполнение. Затем образуется и сохра­
няется в ячейке памяти SIGN знак частного и осуществляется
восстановление операндов.

По результату вычитания исходных порядков и образования
смещенного порядка частного определяется наличие особых слу­
чаев и, если их нет, подпрограмма переходит на метку DIVF2.
Подготовка деления мантисс включает в себя следующие дейст­
вия: порядок частного сохраняется в ячейке памяти ЕХР, мантис­
са делимого передается в регистр DE, в регистр HL загружается
нуль, так как в HL будут последовательно формироваться биты
частного, инициализируется на 16 и сохраняется в стеке счетчик
цикла. В этой подпрограмме задействованы все регистры МП, по­
этому для временного хранения счетчика, а также последнего по­
ложительного остатка привлекается стек.

Далее реализуются циклические действия по вычислению
цифр частного, которые не требуют подробных пояснений. По­
следний положительный остаток всегда находится в стеке, по­
этому когда при вычитании делителя из остатка получается оче­
редной отрицательный остаток, восстановление остатка сводится
к извлечению из стека положительного остатка. Цикл заканчива­
ется при достижении счетчиком нуля. После этого реализуются
стандартные действия по проверке нарушения нормализации и при
необходимости ее устранения, а также формирование результата.

191

MULF5

Рис. 2.17. Умножение чисел с плавающей точкой (второй
вариант)

Программа 2.29. Умножение чисел
рой вариант):

с плавающей точкой (вто

MULF3: STA EXP ; Сохранить поряден произведения

MOV AjH ; Сохранить старший байт

STA MF'L* ; мантиссы множителя

MV I E,S ; Образовать счетчик цикла

MOV - D.L ; Младший байт мантиссы множителя

LXI H,0 ; Место для произведения
MULFA: MOV A,D ; Проверить очередной

RAR ; младший бит множителя
MOV D, A ; Возвратить множитель

JNC MULFB ; Суммировать не нужно

DAD Б ; Прибавить множимое

MULFB: CALL SHIFT ; Сдвинуть сумму частичных произведений
DCR E ; Декремент счетчика

JNZ MULFA ; Повторять умножение

»
; Умножить на старший байт мантиссы множителя.

MV I E,7 ; Счетчик цикла

LDA,

MOV

MPL

D,A

; Передать старший байт

; из памяти в регистр D

MULFC: MOV A,D ; Повторение предыдущего
RAR ; фрагмента умножения1

MOV D,A
JNC MULFD

DAD В

MULFDx CALL SHIFT

DCR E

JNZ MULFC
DAD Б ; Умножить на единицу целой части
LDA EXP ; Передать порядок7 произведения
MOV E , A : из памяти в регистр Е
JNC MULF7 ; Нарушения нормализации нет

CALL SHIFT ; Сдвинуть мантиссу вправо

MOV A,H ; Учесть единицу

□ RI ROH ; из флажка переноса
MOV H, A

I NR E ; Скорректировать порядок

STC ; Установить флажок переполнения

J7 MULFB ; Возникло переполнение

MULF7: CALL PACK ; форматировать результат

MULFB RET ; Возврат

123

Программа 2.30. Деление чисел с плавающей точкой:
; Первый операнд X (делимое) находится в регистрах EHL,
; второй Y (делитель) в регистра:-: DEC, частное возвращается

; в регистрах EHL.
; При возникновении особого случая флажок переноса ~ 1.

DIVE: MOV A,E ; Проверить на нуль делимое

□RA
DRA
JZ

H
L
DIVF7 ; Нулевой результат в EHL

MOV A,D ; Проверить на нуль делитель

ORA

ORA
STC
JZ

В

C

DIVF7 4

Установить флажок переноса
Возникло переполнение

$
»
; Операнды не равны нулю.

MOV A,D ; Образовать и сохранить

XRA E ; знак частного
SIA

CALL

SIGN

REC ; Восстановить делимое и делитель
CALL * SWAP ; оставить их на месте
CALL
CALL
MOV

REC
SWAP
A,E ; Образовать разность порядков

SUB
JNC

D

DIVF1 ; Пор 5iдок делимого больше
ADI 127 ; Прибавить смещение
CMC
JC DIVF7 ;

Если нет переноса

возникло антипереполнение
J ME­ DIVF2 ; Перейти на деление мантисс

DIVF1: AD I 127 ; Прибавить смешвНие
JC DIVF7 ; Возникло переполнение

; Можно начать деление мантисс.
DIVF2s SIA EXP ; Сохоанить порядок

XCHG
LXI H,0 ;

Мантисса делимого в регистре DE

Подготовить место для частного
MV I A, 16 ; Инициализировать счетчик
PUSH PSW ; Сохранить счетчик в стеке
J MP DIVF4 ; Войти в цикл деления

DIVF3: PUSH PSW ; Сохранить счетчик
DAD H ; Сдвинуть влево

DIVF4:

XCHG
DAD

XCHG
PUSH

3
H

в ;

частное и остаток

Сохранить остаток в стеке

MOV A,E ; Вычесть делитель

SUB

mov

MOV

SBB

mov

JC

C
E,A

A,D

В

D,A
DIVF5

; mg остатка

POP PSW ; Удалить остаток mg стека

I NR L ; Цифра частного равна 1

PUSH D ; Включить новый положительный остаток

DIVF5: POP D ; Извлечь предыдущий остаток

POP PSW ; Повлечь счетчик

DCR A ; Декремент счетчика

JNZ DIVF3 ; Повторить цикл деления

; Деление мантисс закончено.
LDA EXP ; Возвратить порядок’ частного

MOV E,A ; в регистр Е

; Нормализовать * <астное.

MOV A,H ; Проверить

DRA A ; старший вит мантиссы

JM DIVF6 ; Нарушения hodмализайми нет

DAD H ; Сдвинуть мантиссу влейо

DCR E ; Декремент порядка

CPI'
STC

0FFH • Проверить антипереполнение

JZ DIVF7 ; Возникло антипереполнение
DIVF6: CALL PACK ; форматировать результат

DIVF7: REI ; Возврат

2.4.4. ВСПОМОГАТЕЛЬНЫЕ ПРОГРАММЫ

В этом параграфе рассматривается несколько простых прог­
рамм, предназначенных для преобразований форматов числовых
данных.

Преобразование 8-битного двоичного целого беззнакового чис­
ла в упакованное десятичное (программа 2.31). Предположим,
что в аккумуляторе А находится байт, интерпретируемый как
двоичное целое беззнаковое число (диапазон от 0 до 255), и не­
обходимо образовать в регистре HL его представление как упа­
кованного десятичного числа. Простой способ преобразования за­
ключается в том, чтобы сначала определить цифру сотен, вычи­
тая 100 из исходного числа. Затем находится цифра десятков по­
следовательным вычитанием 10. После этого в аккумуляторе ос­
танется цифра единиц. Вычитание оба раза производится до по-

Д25

Установить тли
жок переноса

(DIVF

; к :
< Л = Р ?

D

Образовать и сохранить
'знак частноео

| восстановить х и 7 |

I вычесть порядки
Нет j . -

HIVF1
\ПриШт 127 |

^nep^S^L

Да

mvF2 [ПрЛвить 727\

Перенос 7 Нет

Нет . Т Да
«—(Переполнение —

________ -1DIVF6
г-_____ Е___
Форматировать
результат в EHL

^1D/VF7
'У

(Возврат)

Подготовить деление
мантисс

Рис. 2.18. Схема алгоритма деления чисел с плавающей точкой

лучения отрицательной разности с подсчетом числа вычитаний, а
затем к отрицательной разности прибавляется 100 (или 10) для
восстановления последней положительной разности, меньшей 100
(или 10).

Программа 2.31. Преобразование 8-битного двоичного целого
беззнакового числа в упакованное десятичное:

; Исходное двоичное число в аккумуляторе А,

; результат возвращается в регистре HL-

BBCD: MVI H, -1 Начальное значение равно -1

L100: INR н ; Прибавить 1 к цифре сотен

SUI 10И ; Вычесть 100

3NC L100 ; Повторять цикл для цифры сотен

ADI 100 ; Восстановить положительную разность

MVI L, — ? ; Начальное значение равно —1

L10S INR Прибавить 1 к цифре десятков

SUI 10 ; Вычесть 10

J NC LI 0 ; Повторять цикл для цифры Десятков

ADI 10 ; Восстановить положительную разность

; Объединить цифры десятков и единиц в одном байте.

MOV C,A ; Сохранить цифру единиц

MOV A,L ; Передать цифру десятков

RRC

RRC

RRC

RRC

j в старшую тетраду

ORA C ; Объединить в регистре L -

MOV L,A ; цифры дес ятков и единиц

RET ; Возврат

Преобразование упакованного десятичного целого беззнаково­
го числа в двоичное (программа 2.32). Пусть в аккумуляторе А
находится байт, представляющий собой упакованное десятичное
целое беззнаковое число (диапазон от 0 до 99), и необходимо
образовать в аккумуляторе эквивалентное двоичное число. Преоб­
разование заключается в том, чтобы старшую тетраду аккумуля­
тора (т. е. цифру десятков) умножить на 10 и прибавить к полу­
ченному произведению младшую тетраду (цифру единиц). Наи­
более просто умножение на 10 (в двоичном коде 1010В) выпол­
няется путем умножения цифры на 8 (сдвиг на три бита влево)
и прибавления цифры, умноженной на 2 (сдвиг на один бит вле­
во). Поскольку цифра десятков находится в старшей тетраде,
вместо сдвига ее из младшей тетрады влево осуществляется сдвиг
вправо.

.127

Программа 2.32. Преобразование упакованного десятичного це­
лого беззнакового числа в двоичное:

; Исходное десятичное число находится в аккумуляторе А,

; результат возвращается также в аккумуляторе.

BCDB:
1
MOV B,A ; Сохранить исходное число

ANI OF0H ; Выделить цифру десятков

RRC ; Она умножена на 8

NOV C.A ; Сохранить промежуточный результа

RRC ; Цифра десятков,

RRC ; умноженная на 2

ADD C ; Цифра десятков умножена на 10

MOV C,A ; Сохранить промежуточный результа

MOV A,B ; В исходном числе

АГФ1 OFII ; выделить цифру единиц

ADD C ; Образовать двоичное число

RET ; Возврат; - ..

Преобразование 8-битного двоичного целого беззнакового чис­
ла в неупакованное шестнадцатеричное (программа 2.33). Шест­
надцатеричные* числа, применяемые для индикации адресов при
выводе на экран или принтер, представляются в неупакованном
формате: байт содержит одну шестнадцатеричную цифру. В пре
образованиях таких чисел необходимо учитывать, что коды «бук­
венных» цифр А—F (41Н—46Н) не следуют по порядку за кода­
ми десятичных цифр 0—9 (ЗОН—39Н). Поэтому в подпрограммах
преобразования с шестнадцатеричными неупакованными числами
необходимо принимать во внимание «разрыв» или смещение меж­
ду цифрами, которое равно 7 (41Н—39Н=7).

Простая программа 2.33 преобразует двоичное число, находя­
щееся в аккумуляторе А, в двухразрядное неупакованное шест­
надцатеричное число, которое возвращается в регистр HL.

Здесь для преобразования каждой тетрады в неупакованную
шестнадцатеричную цифру вызывается подпрограмма CONV.

Преобразование неупакованного шестнадцатеричного числа в
двоичное (программа 2.34). Следующая подпрограмма выполняет
функцию, обратную по отношению к предыдущей подпрограмме:
она воспринимает в регистре HL двухразрядное неупакованное
шестнадцатеричное число и возвращает в аккумулятор А его
двоичный эквивалент.

Преобразование неупакованного шестнадцатеричного числа в
двоичное с контролем. В программе 2.34 не контролируется пра­
вильность кодов шестнадцатеричных цифр, поэтому при наличии
в регистре HL запрещенных комбинаций она возвращает бессмыс­
ленный результат. При обработке ввода с клавиатуры приходится
учитывать возможность того, что оператор нажимает неверную
128

клавишу. Программа 2.35 вводит с клавиатуры 4-разрядное шест­
надцатеричное число в неупакованном формате, преобразует его
в двоичное и размещает в регистре HL. Предполагается, что ввод
с клавиатуры осуществляет подпрограмма INPUT, которая воз­
вращает код символа нажатой клавиши в аккумулятор А. Для
своей работы она использует регистр HL, поэтому его содержимое
перед вызовом подпрограммы INPUT приходится сохранять в сте­
ке, а затем восстанавливать.

Программа 2.33. Преобразование двоичного целого беззнаково­
го числа в неупакованное шестнадцатеричное:

; Двоичное число находится в аккумуляторе А.

: Результат возвращается в регистре HL.

»
BHEXs MOV B,A ; Сохранить двоичное число

AN I 0F0H ; Выделить старшую тетраду

RRC ; Передать ее

RRC ; в младшую тетраду

RRC

RRC

CALL CONV ; Преобразовать в 16—ную цифру

. MOV H,A ; и поместить ¥ в регистр Н
MOV A.В ; Вернуть число в аккумулятор

AN I 0FH ; Выделить младшую тетраду

• CALL CONV ; Преобразовать в 16—ную цифру

MOV L,A ; и поместить ее в регистр L

RET ; Возврат

; Подпрограмма CONV преобразует младшую тетраду

; аккумулятора в неупакованную 16—ричмую цифру.

CONV: CPI 10 ; Цифра больше Я1'7

ЛС NOT1 ; Нет, смещение не требуется

ADI 7 ; Да, прибавить смешение

NOT1: ADI 30H ; Образовать код цифры

RET ; Возврат

Преобразование неупакованного десятичного числа в двоичное
с контролем (программа 2.36). Следующая подпрограмма анало­
гична предыдущей, но здесь с клавиатуры вводится десятичное
число, поэтому содержимое регистра HL приходится умножать на
десять. Для этого используется соотношение 10ХХ=8ХХ+2ХХ.

Преобразование 16-битного двоичного числа в неупакованное
шестнадцатеричное. Выше рассмотрена программа 2.33, преобра­
зующая двоичное число, находящееся в аккумуляторе А, в двух­
разрядное неупакованное шестнадцатеричное число. Несколько ус-
5—1021 . 129

ложним ситуацию и будем считать, что подлежащее выводу на
экран, или принтер, двоичное число размещается в регистре HL.
Собственно вывод одной цифры осуществляет подпрограмма
PCHAR; выводимая цифра передается ей в аккумуляторе А.

Преобразование 16-битного двоичного числа в неупакованное
десятичное (программа 2.38). Функция подпрограммы BINDEC
аналогична функции предыдущей подпрограммы, но двоичное чис­
ло, находящееся в регистре HL, преобразуется в неупакованный
десятичный формат. Вывод одной цифры осуществляет подпрог­
рамма PCHAR.

Программа 2.34. Преобразование неупакованного шестнадца­
теричного числа в двоичное:

; Исходное число в регистре HL.
; Двоичное число возвращается в аккумуляторе.

НЕХЕ: MOV

CALL

MOV

MOV

CAL*L

RLC

Rl.C

RLC

RLC

ORA

RET

A,L ;

TRANS ;

Б,А ;
А,Н ;

TRANS ;

в ;

Младшая цифра числа

Преобразовать ее в двоичную

Сохранить в регистре В

Старшая цифра числа

Преобразовать ее в двоичную

Передать в старшую тетраду

аккумулятора

Объединить две тетрады

Возврат

тетраду

тетраду

TRANS:

NOT 1 :

; Подпрограмма TRANS преобразует неупакованную

; lfc-ричную цифру в двоичную тетраду

SUI ЗИН ; Убрать кодовое смешение для цифр

CPI 10!! ; Цифра больше 9?

JC NOT1 ; Нет, результат готов

SUI 7 ; Убрать смещение для буквенных цифр

RET ; Возврат

130

Программа 2.35. Преобразование неупакованного шестнадцате­
ричного числа в двоичное с контролем:

; С клавиатуры вводится 16—ричное число, которое преобразуется

; в двоичное и размещается в регистре HL. Контроль

; переполнения отсутствует- Ввод заканчивается нажатием

; нецифровой клавиши.

HEXBIN: L>.1 H,0 ; Очистить регистр HL

NEWCH: PUSH H ; Сохранить содержимое HL в стеке

CALL INPUT ; Введенная цифра в аккумуляторе

POP H ; Восстановить содержимое HL
SUI ЗИН ; Убрать кодовое смещение для цифр

RM ; Конец - недействительная цифра
CF I 10H ; Цифра больше 9?
JC ADDTO ; Нет, ввести ее в регистр HL
SLI 7 ; Убрать смещение для буквенных цифр
CPI

RI*
ИАН ; Цифра меньше А?

; Конец — недействительная цифра
CF I

RF
1ИН ; Цифра больше F?

; Конец — недействительная цифра

ADDTO: MCV D,A ; Сохранить цифру в регистре D

DAD H ; Освободить место
DAD

DAD

DAD

' H

H

H

; для новой цифры

MOV A,L ; Передать введенную цифру
OF:A

MOV
D

L,A
; в младшую тетраду регистра L

J MP NEWCH ; Вводить следующую цифру

5*

Программа 2.36. Преобразование неупакованного десятичного
числа в двоичное:

? С клавиатуры вводится десятичное число, которое
; преобразуется в двоичное и размещается в регистре HL.

j Контроль переполнения отсутствует. Ввод заканчивается

; нажатием нецифровой клавиши.

DECBIN: LXI H,0 1 Очистить регистр HL

NEWDIGs PUSH H 5 Сохранить содержимое HL

CALL INPUT ! Введенная цифра в аккумуляторе

POP H j Восстановить содержимое HL

SUI ЗИН 5 Убрать кодовое смешение для цифр

RM i Конец - недействительная цифра

CPI 1ИН r Цифра больше 9?

RP i Конец - недействительная цифра

DAD H i Удвоить содержимое HL

MOV D,H i Передать его

MOV E,L 5 в регистры DE

DAD H i Содержимое HL умножено на 4
DAD ♦ H J Содержимое HL умножено на В

DAD D > Содержимое HL умножено на 10

MVI D,0 5 Прибавить новую цифру
MOV E,A

DAD D

JMP NEWDIG 5 Вводить следующую цифру

Программа 2.37. Преобразование двоичного числа в неупако
ванное шестнадцатеричное:

j Двоичное число находится в регистре HL. Вывод,

; начиная со старшей цифры, производится подпрограммой PCHAR.

BINHEX: MOV A,H ; Начать вывод
CALL PRINT1 ; со старшей цифры

MOV A,H 5 Очередная цифра
CALL PRINT2
MOV A,L ; Очередная цифра
CALL PRINT1

MOV A,L ; Вывести младшую цифру
CALL PRINT2
RET 3 Возврат

5
; Подпрограмма преобразования тетрады в неупакованную
; 16--ричную цифру и вывода ее.

PRINTls RLC 9 Произвести обмен тетрад

RLC J (старшая на месте младшей)
RLC

RLC

PRINT2s ANI ИЕН ; Выделить младшую тетраду
ADI ЗОН ; Преобразовать в код
CPI ЗАН 5 Если цифра больше 9,

JC NOT1 ; прибавить смещение
ADI 7

CALL PCHAR ; Вывести цифру

RET э Возврат

133

Программа 2.38. Преобразование двоичного числа в неупако­
ванное десятичное:

; Двоичное число находится в регистре HL- Еывод начинается

5 со старшей цифры, производится подпрограммой PCHAR»

BINDEC: LXI D,-10000 ; Печать цифры десятков тысяч

DALL

LXI

PRINT

D,—1000 ; Печать цифры тысяч

CALL

LXI

PRINT

D,—100 ; Печать цифры сотен

CALL

LXI

PRINT

D,-10 ; Печать цифры десятков

CALL PRINT

MOV $ A,L j Печать цифры единиц

ORI
CALL

RET

30H

PCHAR
; Возврат

; Подпрограмма определения и печати цифры.

PRINTS MVI ♦ C,2FH ; Образовать счетчик

LOOP: I NR C ; Инкремент счетчика

SHLD TEMP ; Сохранить положительную разность

DAD D ; Вычесть степень L0

□ C LOOP ; Продолжать вычитание

LHLD TEMP ; Восстановить положительную разность

MOV A,C ; Вывести цифру

CALL

RET

PCHAR

; Возврат

2.4.5. ПРЕОБРАЗОВАНИЕ ЧИСЕЛ ПО МЕТОДУ СДВИГА
И КОРРЕКЦИИ

Рассмотренные выше алгоритмы и программы рассчитаны на
преобразования чисел небольшой разрядности и при увеличении ее
становятся довольно громоздкими. В то же время известны спо­
собы преобразования, в которых длина программ практически не
зависит от разрядности чисел. Эти способы преобразования меж­
ду двоичными и десятичными числами опираются на метод сдви­
га и коррекции. Он допускает относительно простую аппаратную
реализацию и предполагает наличие двух регистров (регистр 1 и
регистр 2), связанных цепями сдвига (рис. 2.19). В регистре 1
находится исходное число, а в регистре 2 образуется результат
преобразования. Одним из регистров является обычный двоичный
сдвигающий регистр, а вторым — регистр, рассчитанный на хра­
нение десятичных чисел, но имеющий цепи обычного двоичного

Регистр 1 Регистр ?

Регистр ? Регистр 1

Рис. 2.19. Принцип преобразования
по методу сдвига и коррекции

сдвига. Очевидно, сдвиг на один бит влево двоичного регистра эк­
вивалентен умножению его содержимого на 2 (конечно, с уче­
том выдвигаемого слева бита). Если произвести п сдвигов, где
п — длина регистра, слева будет последовательно «выдвинуто»
все хранимое в регистре число, начиная со старших битов. Сдвиг
на один бит вправо эквивалентен делению содержимого двоично­
го регистра на 2 и после п сдвигов справа будет выдвинуто хра­
нимое число, начиная с младших
битов. Если выдвигаемые из ре­
гистра биты подавать в другой
регистр, выполняющий аналогич­
ные операции, но в другом фор­
мате, в нем будет образован экви­
валент исходного числа, представ­
ленный в требуемом формате.

Однако обычный (двоичный)
сдвиг десятичного регистра в об­
щем случае не дает правильного результата. Поэтому для выполне­
ния операций умножения и деления содержимого десятичного ре­
гистра на 2 требуются специальные корректирующие действия. Рас­
смотрим их для одного байта упакованного и неупакованного
десятичного числа.

Деление на 2 десятичного однобайтного числа.
Двоичный сдвиг упакованного десятичного числа вправо на один
бит дает в t-й тетраде правильный результат, если из младшего
бита соседней слева тетрады сдвигается нуль. Когда из старшей
тетрады сдвигается 1, она приобретает в i-й тетраде вес 8, а пра­
вильный десятичный вес равен 5. Следовательно, в тех тетрадах
десятичного регистра, в которых после двоичного сдвига старший
бит содержит 1, необходима коррекция, заключающаяся в вычи­
тании из тетрады числа 3. Приведем пример коррекции:

упакованное десятичное число 1001 0010 0111 0111
двоичный сдвиг вправо 0100 1001 ООП 1011
коррекция —ООН -ООП
результат 0100 ОНО ООН 1000

Здесь исходное число равно 9277, а после сдвига и коррекции
получается 4638 и справа выдвигается остаток 1.

Рассмотрим подпрограмму 2.39 деления на 2 упакованного од­
нобайтного десятичного числа при следующих предположениях.
Бацт в аккумуляторе А содержит две цифры упакованного деся­
тичного числа. Флажок переноса содержит значение бита, кото­
рый передан из соседнего старшего десятичного разряда. После
возврата из подпрограммы в аккумуляторе должен находиться
результат деления исходного числа на 2 (с учетом состояния
флажка переноса, который считается как бы разрядом сотен), а
остаток, т. е. исходный младший бит аккумулятора, должен ока­

заться во флажке переноса. Для промежуточных результатов под­
программа может использовать регистры D и Е.

Программа 2.39. Деление на два байта, содержащего две деся­
тичные цифры:

; Преобразуемый байт находится в аккумуляторе А-
; Младший бит соседней старшей тетрады во флажке переноса.

; Частное возвращается в аккумуляторе, а остаток во флажке

; переноса.

RPACK: RAR- ; Двоичный сдвиг вправо через перенос

PUSH PSW ; Сохранить флажок переноса

MOV D,A ; Сохранить результат сдвига

AN I EFH ; Выделить младшую тетраду

CPI у 3 ; Есть 1 из старшей тетрады?

□ C NOC1 ; Нет, коррекция не нужна

SUI 3 Скорректировать младшую тетраду

NOCls MOV E,A ; Сохранить младшую тетраду

MOV A,D ; Вернуть сдвинутый байт

AN I ИРИН ; Выделить старшую тетраду

CPI * вин ; Была 1 из старшей тетрады?

JC N0C2 ; Нет, коррекция не нужна

SUI ЗИН ; Скорректировать старшую тетраду

N0C2: □RA E ; Объединить тетрады

MOV E, A ; Восстановить
POP PSW ; флажок переноса

MOV

RET

A,E ; (выдвинутый бит)

; Возврат

Рассмотрим подпрограмму 2.40 деления на 2 однобайтного не­
упакованного десятичного числа. Считаем, что байт в аккумулято­
ре А содержит десятичную цифру (ЗОН—39Н), а флажок перено­
са — бит, переданный из соседнего старшего десятичного разряда.
После возврата из подпрограммы в аккумуляторе должно быть
частное от деления исходной цифры на 2 (с учетом состояния
флажка переноса), а остаток, т. е. первоначальный младший бит
аккумулятора, должен оказаться во флажке переноса.

Умножение на 2 десятичного однобайтного чис-
л а. Обычный (двоичный) сдвиг упакованного десятичного числа
влево дает правильный результат, если в каждой тетраде нахо­
дится цифра, меньшая 5. Когда цифра больше или равна 5, не­
обходимо передать 1 в соседний старший десятичный разряд.
В данном случае удобно произвести коррекцию до сдвига, обна­
руживая цифры, большие или равные, 5 и прибавляя, в соответст­
вующие тетрады 3. Результирующая тетрада будет содержать 1
136

в старшем бите, которая передается в старший десятичный разряд
при обычном двоичном сдвиге. Приведем пример коррекции:

упакованное десятичное число 1001 0010 0111 0111
коррекция +0011 +0011 +0011
промежуточный результат 1100 0010 1010 1010
двоичный сдвиг влево 1000 0101 0101 0100

Здесь исходное число равно 9277, а после коррекции и сдвига
получается 8554 (или с учетом единицы десятков тысяч — 18554).

Программа 2.40. Деление на два байта, содержащего неупако­
ванную десятичную цифру:

; Преобразуемый байт находится в аккумуляторе А. Младший бит

; соседней старшей десятичной цифры во флажке переноса.

; Частное возвращается в аккумуляторе, а остаток во флажке

; переноса.

RUNPCKs RAR ; Двоичный сдвиг вправо через перенос

PUSH PSW ; Сохранить флажок переноса

JM COR ; Требуется коррекция
ANI И7РН ; Выделить нужные биты
JMP FRES ; и образовать результат

COR s ANI И7ЕН ; Выделить нужные биты
ADI 5 • Скорректировать результат

FRES: □RI ЗИН ; Образовать код цифры

MOV E,A ; Восстановить
POP PSW ; флажок переноса
MOV A,E ; (выдвинутый бит)
RET ; Возврат

В подпрограмме 2.41 умножения на 2 однобайтного упакован­
ного десятичного числа предполагается, что байт в аккумуляторе
содержит две десятичные цифры, а флажок переноса — бит, ко­
торый передан из соседнего младшего десятичного разряда. Пос­
ле возврата из подпрограммы в аккумуляторе должен находить­
ся результат умножения исходного числа на 2, а выдвигаемый
бит должен попасть во флажок переноса.

137

Программа 2.41. Умножение на два байта, содержащего две
упакованные десятичные цифры:

j Преобразуемый бейт находится в аккумуляторе. Выдвинутый

; из соседней младшей десятичной тетрады бит содержится

; во флажке переноса. Результат возвращается = аккумуляторе
; и флажке переноса.

LhACK:
f
PUSH PEW ; Сохранить флажок переноса
MOV D,A ; Сохранить исходный байт
AN I ИЕН ; Выделить младшую тетраду
CPI 5 ; Она больше 5?
JC NOCI ; Нет, коррекция не нужна
ADI 3 ; Скорректировать младшую тетраду

NOCls MOV V E,A » Сохранить младшую тетраду
MOV A, D ? Передать исходный байт в аккумулятор
AN I ИРИН ; Выделить старшую тетраду
CPI 5ИН ; Она больше 5?
JC N0C2 f Нет, коррекция не нужна
ADI 30H ; Скорректировать старшую тетраду

N0C2i ORA * E ; Объединить тетрады
MOV E,A ; Скорректировать байт в регистре Е
POP PSW Г Вернуть флажок переноса
MOV A,E f Скорректировать байт в аккумуляторе
RAL

RET
f Сдвинуть влево через перенос

1 Возврат

Подпрограмма LPACK разработана без привлечения команды
DAA десятичной коррекции аккумулятора. С помощью этой ко­
манды функцию подпрограммы LPACK можно реализовать всего
двумя командами:

ADC А ; Удвоить содержимое аккумулятора

ЮАА ; Скорректировать результат

138

Программа 2.42. Умножение на два байта, содержащего не­
упакованную десятичную цифру:

; Преобразуемый байт находится в аккумуляторе А.

; Выдвинутый из соседнего младшего десятичного разряда

; бит содержится во флажке переноса. Результат

; возвращается в аккумуляторе и флажке переноса.

LUNPCK; MVI D,0 ; Отметить для будущего переноса

KAL­ ; Сдвинуть влево через перенос

ANI 1FH ; Выделить 5 младших бит

CPI 1И ; Была цифра больше 4?

JC NOC ; Нет, коррекция не нужна

ADI A ; Скорректировать цифру

MVI D,0FFH ; Отметить для (будущего переноса

NOC: □RI ЗИП ; Образовать код цифры

MOV E,A ; Сохранить цифру

MOV A,D ; Образовать правильный (бит

RAR ; во флажке переноса

MOV A,E

RET ; Возврат

При разработке подпрограммы 2.42 удвоения неупакованного
десятичного числа считается, что байт в аккумуляторе А содержит
десятичную цифру (ЗОН—39Н), а флажок переноса — бит, выдви­
нутый из соседнего младшего десятичного разряда. После воз­
врата из подпрограммы в аккумуляторе должен быть результат
умножения исходной цифры на 2, а выдвинутый слева бит дол­
жен находиться во флажке переноса.

Поскольку в этом преобразовании байт содержит одну деся­
тичную цифру, коррекцию можно осуществить после двоичного
сдвига. Такой вариант по сравнению с коррекцией до сдвига при­
водит к более короткой подпрограмме.

Имея набор из четырех подпрограмм, нетрудно запрограмми­
ровать преобразования между двоичными числами (целыми и
дробями) и десятичными числами (целыми и дробями), представ­
ленными в упакованном и неупакованном форматах. Вместо ап­
паратных регистров и схем коррекции двоичные и десятичные чис­
ла размещаются в буферных областях памяти (часто их называ­
ют просто буферами), а необходимые сдвиги и коррекции осу­
ществляются программно. В приводимых далее программах пред­
полагается, что двоичное число находится в области памяти с на­
чальным адресом BBUF и длиной N байт. Для десятичного чис­
ла выделена область с начальным адресом DBUF и длиной К
байт. Значения N и К либо являются исходными данными, либо
определяются в соответствии с точностью преобразования, так как,
например, десятичная дробь может не иметь абсолютно точного

139

двоичного представления. Как всегда, адреса BBUF и DBUF от­
носятся к младшим байтам чисел.

Все программы преобразований имеют циклическую структу­
ру с тремя циклами. Глобальный цикл определяется длиной дво­
ичного числа в битах, поэтому начальное значение счетчика это­
го цикла равно 8XlN. Начало цикла идентифицирует метка LOOP,
а счетчиком цикла служит регистр В. Следовательно, ограничива­
ем длину двоичных чисел 31 байт, что удовлетворяет всем прак­
тическим требованиям.

Два внутренних цикла осуществляют умножение или деление
двоичного числа (этот цикл начинается с метки BLOOP) и деся­
тичного числа (начало цикла показывает метка DLOOP). Началь­
ными значениями счетчиков этих циклов являются N и К, а в ка­
честве счетчика используется один и- тот же регистр С. Сдвиг
вправо начинается со старших байтов, а сдвиг влево — с младших
байтов. В процессе сдвигов связь между байтами регистров, а
также между обоими регистрами осуществляется через флажок
переноса. Когда двоичное число преобразуется в десятичное, бу­
ферная область памяти для хранения десятичного числа должна
быть очищена, т. е. должна содержать нули. Когда десятичное
число преобразуется в двоичное, начальное содержимое двоичного
буфера безразлично, так как оно будет вытеснено результатом
преобразования. Во всех программах преобразования исходные
числа ради простоты считаются беззнаковыми. Учет знака нетруд­
но осуществить отдельным действием.

Преобразование правильной двоичной дроби в десятичную.
Пусть дана правильная двоичная дробь X длиной п бит (п=8Х
XN):

X=0.x1x2.. .%n=x12-1-j-x22~2-|-... Д-х£~п.

Если произвести п сдвигов этой дроби вправо и подавать вы­
двигаемые справа биты в десятичный регистр, осуществляющий
деление на 2, то в нем будет образован десятичный эквивалент.

Общая схема преобразования поясняется на рис. 2.20 и сле­
дующим примером для упакованного десятичного формата.

Рис. 2.20. Преобразование двоичной дроби в десятичную
140

Операция Двоичная
дробь

Десятичная дробь

Ю"1 10-2 Ю-з Ю-4

Начальное состояние 0.1011 0000 0000 0000 0000

1. Сдвиг 0.0101 1000 0000 0000 0000
Коррекция —ООП
Результат 0101 0000 0000 0000

2. Сдвиг 0.0010 1010 1000 0000 0000
Коррекция —ООП —ООП
Результат 0111 0101 0000 0000

3. Сдвиг 0.0001 ООП 1010 1000 0000
Коррекция —ООП —ООП
Результат ООП 0111 0101 0000

4. Сдвиг 0.0000 1001 1011 1010 1000
Коррекция —ООП —ООП —ООП —ООП
Результат оно 1000 0111 0101

.6 8 7 5

Здесь исходная дробь равна n/i6 и после преобразования по­
лучен правильный результат 0.6875. Нетрудно убедиться, что аб­
солютно точное преобразование n-битной двоичной дроби требу­
ет для результата п десятичных разрядов. На практике значение
К выбирается в зависимости от требуемой точности преобразо­
вания.

Подпрограмма 2.43 преобразует двоичную дробь в упакован­
ный десятичный формат. Для получения подпрограммы преобра­
зования двоичной дроби в неупакованный десятичный формат не­
обходимо заменить команду CALL RPACK на команду CALL
RUNPCK-

Преобразование десятичного целого числа в двоичное. Данное
преобразование очень похоже на преобразование двоичной дроби
в десятичную. За исходное принимается десятичное число

Х=... Xj-Xq = 10й-1 + • • • + Х0>

в котором каждая цифра х,- представлена тетрадой (упакованный
формат) или байтом (неупакованный формат).

Если последовательно делить X и получающиеся частные на 2,
то выдвигаемые справа биты будут давать цифры двоичного пред­
ставления исходного числа. Общая схема преобразования показа­
на на рис. 2.21 и иллюстрируется следующим примером для упа­
кованного десятичного формата.

141

Программа 2.43. Преобразование двоичной дроби в десятич­
ную:

: Двоичная дробь в буфере BBUF длиной N байт,

: десятичная дробь в буфере BBUF длиной К байт.
; До вызова необходимо очистить буфер BBUF.

; После возврата буфер BBUF содержит нули.

FBB: MVI В, 8*N ; Образовать счетчик бит

СССР: LXI Н,BBUF+N—1 ; Сдвиг начинается со старшего байта

XRA А : Сбросить флажок переноса

MVI C,N 5 Образовать счетчик байт

Сдвиг двоичной дроби вправо.

BLOOP s MOV

PAR
А,М ; Очередной байт двоичной дроби

: Сдвинуть его вправо
MOV М,А : Вернуть в двоичный буфер

ГСХ Н ; Продвинусь указатель
BCR С ; Декремент счетчика байт

JN2 BLOOP : Повторять для всей дроби

Сдвиг десятичной дроби вправо.

©LOOP:

LXI H,BBUF+k—1 ; Сдвиг co старшего байта

MVI C,K ; Образовать счетчик байт
MOV A ,M ; Очередной байт десятичной дпоб

CALL RPACK ; Разделить его на два

NOV M, A ; Р-ернуть в десятичный буфер

ГСХ H ; Продвинуть указатель

BCR c ; Декремент счетчика байт

□NZ BLOOP ; Повторять для всей дроби

; Преобразование одного бита закончено.

BCR В ; Декремент счетчика бит

□ NZ

RET

LOOP ; Повторять для всех бит

; Возврат

BBUF + К BBUF BBUF+N BE'JF

Десятичный регистр I---- Двоичный, регистр
длиной М байт Флажок длиной К байт

переноса

Рис. 2.21. Преобразование целого десятичного числа в двоич­
ное

142

Операция
Десятичное число

Двоичное число102 10" 10°

Начальное состояние 0010 ООП 0111 ХХХХХХХХ

1. Сдвиг 0001 0001 1011 1ХХХХХХХ
Коррекция
Результат

2. Сдвиг
0001
0000

0001
1000

—ООН
1000
1100 01ХХХХХХ

Коррекция
Результат

3. Сдвиг
0000
0000

—ООП
0101
0010

—ООН
1001
1100 101ХХХХХ

Коррекция
Результат

4. Сдвиг
0000
0000

0010
0001

—ООП
1001
0100 1101ХХХХ

Коррекция (нет)
Результат

5. Сдвиг
0000
0000

0001
0000

0100
1010 Q1101XXX

Коррекция
Результат

6. Сдвиг

0000

(
0000

0000
Больше кс

0000

—ООП
0111

jpрекции
ООН

се будет)
101101ХХ

7. Сдвиг 0000 0000 0001 Н01101Х
8. Сдвиг 0000 0000 0000 1 11101101

Полученное двоичное число равно исходному десятичному чис­
лу 237.

Приведенная подпрограмма 2.44 преобразует десятичное число,
представленное в упакованном формате. Чтобы перейти к неупа­
кованному формату, команду CALL RPACK следует заменить на
команду CALL RUNPCK.

Преобразование целого двоичного числа в десятичное. Пусть
целое двоичное число

Х=л-„_1х„_2...х1х0=л-„_12п-14-х„_22п-24-...4-л1214-л')

необходимо преобразовать в десятичное. Представим X в виде
полинома Горнера:

X=((хп~ t2 -ф- х„_2) 2 . ф- л^) 2 ф- х0.
♦

Десятичный эквивалент X можно получить, сдвигая двоичное
число влево и подавая выдвигаемые двоичные цифры в младший
разряд десятичного регистра. Одновременно со сдвигом двоично­
го регистра необходимо удваивать содержимое десятичного ре­
гистра. Это действие можно осуществить, вызывая для удвоения
подпрограмму LPACK. (упакованный формат) или LUNPCK (не­

143

упакованный формат). Общая схема преобразования показана на
рис. 2.22 и иллюстрируется следующим примером.

переноса

Рис. 2.22. Преобразование целого двоичного числа в десятичное

Программа 2.44. Преобразование целого десятичного числа
в двоичное:

; Десятичное число в буфере DBUF длиной К байт,
У; двоичное число в буфере EEUF длиной N байт.

; Начальное состояние буфера BEUF безразлично.
; После возврата буфер EBUF содержит нули.

IDB: MVI B,8*N ; Образовать счетчик бит
LOOP: LXI H.DBUF+K—1 ; Сдвиг со старшего байта

XRA А ; Сбросить флажок переноса

MVI С,К ; Образовать счетчик байт

р
; Сдвиг десятичного числа.

BLOOPг MOV А,М ; Очередной байт десятичного числа
CALL RPACK ; Разделить его на 2

MOV М,А ; Вернуть в буфер

ЕСХ Н ; Продвинуть указатель

BCR С ; Декремент счетчика байт

JNZ DLQOP ; Повторять ^цля всего числа

»
; Сдвиг двоичного числа.

LXI H,BBUF+N“1 ; Сдвиг со старшего байта

MVI C,N ; Образовать счетчик байт
BLOOP: MOV А,М ; Очередной байт двоичного числа

RAR ; Сдвинуть его вправо черев перенос
MOV М,А ; Вернуть в память

ЕСХ Н ; Продвинуть указатель

DCR С ; Декремент счетчика байт

JNZ BLOOP ; Повторять для всех байт

; Преобразование одного бита закончено.

®CR В ; Декремент счетчика бит
JNZ LOOP • Повторять для всех бит

RET ■ Возврат

144

Операция
Десятичное число Двоичное

102 10* 10° число

Начальное состояние 0000 оооо оооо 11110101

1 Коррекция
Сдвиг

(нет) 0000
0000

0000
0000

0000
00-01

11110101
11101010

2 Коррекция
Сдвиг

(нет) 0000
0000

0000
0000

0001
ООП 11010100

31 Коррекция
Сдвиг

(нет) 0000
0000

0000
0000

ООП
0111 10101000

(
1

Коррекция
Результат
Сдвиг

0000
0000

0000
0001

4-0011
1010
0101 01010000

5. Коррекция
Результат
Сдвиг

0000
0000

0001
ООП

4-0011
1000
оооо 10100000

6. Коррекция
Сдвиг

(нет) 0000
0000

ООП
оно

оооо
0001

01000000

7. Коррекция
Результат
Сдвиг

0000
0001

4-0011
1001
0010

. 0001
0010

10000000

8. Коррекция
Сдвиг

(нет) 0001
0010

0010
0100

0010
0101

00000000

Результатом преобразования является десятичное число э,
равное исходному двоичному числу.

Подпрограмма 2.45 преобразует двоичное число в упако- .ный
десятичный формат. Для перехода к неупакованному деся --чному
формату команду CALL LPACK нужно заменить на оманду
CALL LUNPCK.

Преобразование десятичной дроби в двоичную. Д преобра­
зования десятичной дроби

Х=0.Х1Х2.. ,хь—xt 10-1 -ф х210”2 4-... 4- хь Ю' А

где хг — десятичная цифра, можно применить традиционный спо­
соб умножения на 2 исходной дроби и дробных частей получаю­
щихся произведений. Цифрами двоичной дроби будут последова­
тельно получаемые целые части произведений, т. е. выдвигаемые
слева биты. Общая схема преобразования представлена на рис.
2.23. Следующий пример показывает абсолютно точное преобра­
зование.

145

Операция Двоичная
дробь

Десятичная дробь

10-1 10-2 10-3

Начальное состояние О.ХХХ оно 0010 0101

1. Коррекция
Результат
Сдвиг

2. Коррекция
Результат
Сдвиг

3. Коррекция
Результат
Сдвиг

Программа 2.45. Пр
сятичное: s

; Двоичное

0.ХХ1

О.ХЮ

0.101
еобразоваш

число находит

+0011
1001
0010

0010
0101

+0011
1000
0000

ie целого с

ся в буфере

0010
0101

+0011
1000
0000

0000
0000

воячного ч

3BUF длиной Ь

+0011
1000
0000

0000
0000

0000
0000

исла в dt

байт,
; десятичное число в буфере DBUF длиной К байт.
; Первоначально буфер DBUF должен быть очищен.

; После возврата буфер BBUF содержит нули.

IED-- НУ I B,£*N •; Образовать счетчик бит

LOOP: LXI H,BBUF ; Начальный адрес двоичного числа
ОК'А А ; Сбросить флажок переноса

MVI C,N ; Образовать счетчик байт

9
; Сдвиг влево двоичного числа.

BLODPs MOV А,М ; Очередной байт двоичного числа

RAL ; Сдвинуть его влево через перенос

MOV М,А ; Вернуть в двоичный буфер

INX Н ; Продвинуть, указатель

DCR С ; Декремент Ъчетчика байт

JNZ BLOOP. ; Повторять для всех байт

; Теперь удвоение десятичного числа.

LXI H,DBUF ; Начальный адрес десятичного числа
MVI С,К ; Образовать счетчик байт

DLOOP: MOV А,М ; Очередной байт десятичного числа

CALL LPACK ; Удвоить его
MCjV М,А ; Вернуть в буфер

INX Н ; Продвинуть указатель

DCR С ; Декремент счетчика байт

JNZ DLOOP ; Повторять для всех байт

0
; Один бит,обработан, повторить для других бит.

В ; Декремент счетчика бит
JNZ LOOP ; Повторять до завершения

RET ; Возврат

яе/хноса

Рис. 2.23. Преобразование десятичной дроби в двоичную

Программа 2.46. П реобразование десятичной дроби в двойн­
ую:

; Десятичная дробь находится в буфере DBUF длиной К байт,

: двоичная дробь в буфере BBUF длиной IM байт-

; Начальное содержимое буфера EBUF произвольно.

; После возврата буфер DBUF содержит нули.

FDBs MVI B,S*N ; Образовать счетчик бит

LOOP: LXI HyDBUF ; Начальный адрес десятичной дроби

ORА А ; Сбоосить флажок переноса

MVI С,К ; Образовать счетчик байт

; Сдвиг десятичной дроби влево.

BLOOP: MOV А,М ; Очередной байт десятичной дроби

CALL LPACK ; Удвоить его
MOV М,А ; Вернуть в десятичный буфер

INX Н ; Продвинуть указатель
DCR С j Декремент счетчика байт

JNZ DLOOP ; Повторять для всех байт

5
; Теперь удвоение двоичной дроби.

LXI H,BBUF ; Начальный адрес двоичной дроби

MVI C,N ; Образовать счетчик байт

-BLOOP: MOV А,М ; Очередной байт двоичной дроби

RAL ; Сдвинуть его влево

MOV М,А ; Вернуть в двоичный буфер

INX Н ; Продвинуть указатель

DCR С ; Декремент счетчика байт

JNZ BLOOP ; Повторять для всех байт

5
; Один бит обработан, повторить для других бит.

DCR В ; Декремент счетчика бит

JNZ LOOP ; Повторять до завершения

RET ; Возврат

147

Полученная двоичная дробь 5/8 эквивалентна исходной десяь
тичной дроби 0.625.

В подпрограмме 2.46 предполагается представление десяти'-
ной дроби в упакованном формате. Для перехода к неупакован­
ному формату команда CALL LPACK заменяется на команду
CALL LUNPCK-

Преобразование форматов чисел с плавающей точкой. В за­
ключение рассмотрим две программы, в первой из которых целее
знаковое число преобразуется в формат с плавающей точкой, а го
второй осуществляется обратное преобразование.

Пусть содержимое регистра HL интерпретируется как целое
знаковое число в дополнительном коде. Необходимо образовать
в регистрах EHL представление этого числа в 24-битном формате
с плавающей точкой, который был принят для программ арифме­
тических операций (знак, байт смещенного порядка и два байта
мантиссы). Первое действие преобразования (2.47)—проверка ис­
ходного числа на нуль; если оно равно нулю, происходит возврат
с тремя нулевыми байтами в регистрах EHL (истинный нуль).
После этого в стеке сохраняется знак исходного числа (во флаж­
ке переноса), а в регистре HL образуется абсолютное значение
числа. Далее организуется цикл сдвига числа влево (начало цик­
ла показывает метка LOOP) до тех пор, пока мантисса не будет
нормализованной (в старшем бите регистра HL находится 1).
С каждым сдвигом происходит декремент смещенного порядка на
1; за исходный смещенный порядок принимается +16 (или 8FH).
Заключительные действия подпрограммы, начинающиеся с метки
FORM, связаны с форматированием результата.

Обратное преобразование числа с плавающей точкой требует
отдельного представления его целой и дробной частей. Целая
часть числа преобразуется в 16-битное знаковое число в дополни­
тельном коде, причем точка фиксирована после младшего знача­
щего разряда. Для дробной части примем также представление в
дополнительном коде, но зафиксируем точку после знакового бита.
Предполагается, что исходное число находится в регистрах EHL,
а после преобразования целая часть будет в регистре ВС, а дроб­
ная— в регистре HL.

В подпрограмме 2.48 исходное число вначале проверяется на
нуль и, если оно равно нулю, в регистр результата ВС загружа­
ется нуль. Флажок переноса устанавливается в 1, показывая ус­
пешное преобразование. Затем проверяется нахождение исходно­
го числа в диапазоне представимых чисел выходного формата.
Для этого в регистре В образуется байт смещенного порядка, ко­
торый сравнивается с максимальным значением 8ЕН (истинный
порядок равен 15) и минимальным значением 70Н (истинный по­
рядок равен —15). Если исходный смещенный порядок выходит
за эти границы, подпрограмма заканчивается со сброшенным в 0
флажком переноса.
148

в1
Программа 2.47. Преобразование целого числа в формат спла

нощей точкой:
j Исходное* число находится в регистре HL,

; результат возвращается в регистрах EHL,

ITOF:
»
MOV A,H 5 Проверить исходное число

ORA L V на нуль

MOV E,A

JZ EXIT ■■ Число равно нулю, возврат

MDV A,H 5 Старший байт в аккумуляторе

ADD A 5 Знак во флажке переноса

PUSH PSW * Сохранить знак в стеке

JNC NDC i положит Е«л»ное

CALL COMP Изменить знак числа

NDC: MV I E,BFH Инициализировать порядок

LOOP: DAD H s Сдвинуть число влево

DCR E s Декремент пор ядка

MOV A,H Проверить на окончания

ORA H 5 нормализации

JR LOOP Нормализация не закончена

FORM: POP PSW ? Вер нуть знак в о флажке пер енос а

MOV A,E i Передать знак в старший бит

RAR

MOV E, A

MOV A,H '■ форматировать

RAL старший байт мантиссы

RRC

MOV H,A

EXIT: RET » Возврат, конец преобразования

Когда число находится в допустимых границах, определяется,
имеет ли оно целую часть. Для этого смещенный порядок числа
вычитается из кода 8ЕН. Если разность превышает 16, в регистр
целой части загружается нуль и происходит переход к преобразо­
ванию дробной части (метка FRAC). В случае ненулевой целой
части мантисса сдвигается вправо так, чтобы разряд единиц ока­
зался в младшем разряде регистра HL. Собственно сдвиг произ­
водится подпрограммой SHIRD. Она отличается от подпрограммы
сдвига SHIFT (см. программу 2.22) тем, что в освобождающийся
при сдвиге старший бит регистра HL помещается нуль, а не зна­
чение флажка переноса, и счетчиком сдвигов служит регистр D.
Подпрограмма СОМР при необходимости образует в регистре HL
дополнительный код целой части числа. Затем сформированная
целая часть включается в стек, а в регистр HL из стека переда­
ется сохраненная в нем исходная мантисса.

Программа 2.48. Выделение целой и дробной частей числа с
плавающей точкой:

149

; Исходное число с плавающей точкой в регистрах EHL,
; целая часть результата в регистре ВС, дробная часть

; в регистре HL. О выходе за диапазон сигнализирует

; сброшенный в И флажок переноса.

FTOIs MOV A,E ; Проверить исходное число

ORA H ; на нуль
ORA L
MOV B,A
MOV C,A

JZ QUIT ; Результат равен нулю

MOV A,H ; Образовать в регистре В

RAL ; байт смещенного порядка

MOV A,E
RAL

V
MOV Б,А

; Проверить нахождение числа в допустимом диапазоне,
CPI 8EH ; Сравнить с максимальным порядком
JNC EXIT ; Выход за верхнюю границу
CRT *

СМС
70H ; Сравнить с максимальным порядком

JNZ EXIT ; Выход за нижнюю границу

5
; Преобразование возможно.
MOV A,H ; Восстановить
ORI
MOV

ВИН ;
H,A

скрытую единицу мантиссы

PUSH H ? Сохранить мантиссу

MV I A,8EH ; Образовать в регистре D
SUB

MOV
в ;
B,A

счетчик сдвигов влево

CPI 16 ; Имеется ли целая часть?
JC INTEG Да, преобразовать ее
LX I H,0 ; Целая часть равна нулю
J MP FRAC ; Перейти к получению дробной части

J
: Преобразование целой части.
CALL SHIRB ; Сдвинуть мантиссу вправо
MOV A,E ; Проверить знак числа
ORA A 5 и при необходимости образовать
JP ,

CALL
FRAC 5

COMP
дополнительный мод

FRAC:
: Преобразование дробной части.

XTHL ; Целая часть в стеке, мантисса в HL

150

MOV А,В ; Образовать истинный

SUI 7FH ; порядок числа

SHILA:

3Z NOSH ; Истинный порядок равен нулю
JNC SHILA ; Мантиссу необходимо сдвигать влево

ОМА ; Образовать счетчик для сдвига

INR А ; мантиссы вправо

MOV D,А
CALL SHIRD ; Сдвинуть мантиссу вправо

JMP SIGN ; Учесть знак числа
DAD Н ; Сдвинуть мантиссу влево

NOSH:

DCR А
JNZ SHILA
JMP SIGN ; Учесть знак числа
MOV А,Н : Подавить восстановленную

* .

ANI 7FH ; скрытую единицу

MOV Н,А

SIGN:

; Учесть знак числа и разместить результат-

MOV А,Е ; Проверить знак числа

NOCls

ORA А ; и при необходимости образовать

CALL COMP ; дополнительный код

POP В ; Разместить целую часть

QUIT: STC ; Отметить успешное преобразование

EXIT: RET ; Возврат

SHIRDs

5
; Подпрограмма сдвига содержимого регистра HL вправо-

; Счетчик сдвигов в регистре D-
ORA А ; Сбросить флажок переноса

MOV А,Н ; Сдвинуть регистр Н,

RAR ; связь через флажок переноса

MOV Н,А

MOV A,L ; Сдвинуть регистр L

RAR

MOV L,А
DCR D ; Декремент счетчика сдвигов

JNZ SHIRD ; Повторять сдвиги

RET s Возврат

Путем вычитания из смещенного порядка значения 7FH опреде­
ляются действия, необходимые для образования в регистре HL
дробной части. Если исходный порядок равен нулю, требуется
просто подавить восстановленную скрытую 1 разряда целой части.
При положительном истинном порядке мантиссу приходится сдви­
гать влево, а когда он отрицательный — вправо. Для сдвига влево
применяется команда DAD Н. Дробная часть числа также преоб­
разуется в дополнительный код.

151

Контрольные вопросы и упражнения

1. Покажите, как выглядят адресные пространства памяти и ввода-вывода
в МП К580'.

2. Перечислите достоинства и недостатки изолированного ввода-вывода и
ввода-вывода, отображенного на память.

3. Назовите сходства и различия между регистром М и другими регистра­
ми микропроцессора.

4. Почему в любой программе число стековых операций PUSH должно быть
равно числу стековых операций POP? Поясните, к каким последствиям приве­
дет нарушение этого правила.

5. Пусть максимальный адрес области стека равен ТОР, а минимальный —
BOTTOM. Разработайте граф-схему контроля нахождения текущего стека в ука­
занных границах.

6. Предположим, что выполняется команда POP извлечения данных из вер­
шины стека. Каким образом можно извлечь из стека эти же данные еще раз?

7. Каждая ли строка исходной ассемблерной программы содержит машин­
ную команду?

8. Требуется ли комментарий в каждой строке ассемблерной программы?
9. В каком случае поле операции ассемблерной строки может отсутство­

вать?
10. Пусть аккумулятор А содержит 7АН, а регистр В — 0В5Н. Определите

содержимое аккумулятора и состояния флажков после выполнения каждой из
следующих команд: ADD В; SUB В; ADI OFCH; INR В; DCR А.

11. Назовите все различия команд INR А и ADI 1; DCR А и SUI 1.
12. Постройте^ граф-схему действий, выполняемых командой DAA.
13. Пусть в аккумуляторе находится число 8АН, а в регистре С — число

2СН. Определите состояния флажков после выполнения команд СМР В и
CPI 0Е9Н.

14. Приведите начальное состояние необходимых регистров и напишите ко­
манду, после выполнения которой будет установлено в 1 максимальное число
флажков. Существует ли команда, после выполнения которой все флажки бу­
дут находиться в состоянии 1?

15. Напишите программный фрагмент, который осуществляет кольцевую
пересылку содержимого всех регистров общего назначения.

16. При выполнении команд микропроцессор формирует машинный цикл
М; при каждом обращении к памяти или ввод-выводу. Определите число ма­
шинных циклов, необходимых для выполнения команд ADD В; ADD М;
MVI А, 37Н; STAX D; OUT PORT; PUSH В; SHLD ADDR; XTHL.

17. Напишите все команды, которыми можно сбросить аккумулятор А, и
укажите различия между ними.

18. Приведите последовательность команд, которая увеличивает содержимое
аккумулятора А в 5 раз; в 7 раз.

19. Приведите команды, с помощью которых:
бит 6 аккумулятора А устанавливается в 1,
биты 3 и 5 аккумулятора А сбрасываются в 0,
биты 1, 3, 5 и 7 аккумулятора А инвертируются,
бит 7 регистра В устанавливается в 1.

Содержимое всех остальных регистров не изменяется.
20. Напишите команды, передающие управление метке LABEL, если:

аккумулятор А содержит нуль.
аккумулятор А не содержит 0FFH,
аккумулятор А содержит положительное число.

21. Пусть в аккумуляторе А находится знаковое число X, представленное
в дополнительном коде. Запишите программный фрагмент, вызывающий пере­
ход к метке LESS, если Х<—25, и к метке GREATER, если Х>50.

22. Предположим, что в регистрах В и С находятся целые знаковые чис­
ла, представленные в дополнительном коде. Разработайте граф-схему алгорит-
152

ма и соответствующую программу их сложения. Результат должен находиться
в аккумуляторе А, а флажок С должен показывать переполнение.

23. Измените программу 2.1 так, чтобы сумма помещалась на место опе­
ранда, адресуемого регистром HL.

24. Как изменилась бы программа 2.1, если команда DCR В модифициро­
вала бы флажок переноса?

25. Укажите максимальную длину операндов, допустимую в программе 2.1.
При каком начальном состоянии она получается?

26. Можно ли в программе 2.4 заменить команды RAL и СС OVER на ко­
манду CM OVER?

27. От чего зависит время выполнения программы 2.G? Приведите условия,
при которых оно будет максимальным (минимальным).

28. Что окажется в регистрах A-HL (программа 2.7), если команда LXI Н,
О отсутствует?

29. Можно ли в программе 2.7 поставить метку NOADD у команды ACI О?
30. Постройте граф-схему умножения для программы 2.9.
31. Предположим, что в программе 2.9 команда LXI И, 0 отсутствует и

при вызове MUL16 в регистре HL находится число X. Какой результат будет
возвращен?

32. Каким образом время умножения в программе 2.11 зависит от длины
сомножителей?

33. Необходимо ли сбрасывать регистр частного в программе 2.12? Другими
словами, можно ли заменить трехбайтную команду LXI Н, 8 двухбайтной ко­
мандой MVI L, 8?

34. Команда DAA будет «корректировать» результат двоичного сложения
и в том случае, когда операнды не являются десятичными числами. Определи­
те, какой результат будет получен в аккумуляторе А после выполнения команд
ADD В и DAA, если (A)=0D6AH, (В)=72Н; (A) =0FFH, (В)=0С8Н?

35. Как изменится общее описание программы 2.17, если поменять местами
соседние команды MOV М, А и XGHG?

36. Определите диапазон и точность представления чисел для формата с
плавающей точкой, принятого в п. 2.4.3.

37. При каких условиях получается максимальное (минимальное) время вы­
полнения программ 2.26 и 2.27?

38. Какое исходное число обеспечивает минимальное (максимальное) вре­
мя выполнения программы 2.31?

39. Можно ли в программе 2.31 заменить четыре команды RRC на четыре
команды RLC?

40. Зависит ли время выполнения программы 2.32 от исходного десятич­
ного числа в аккумуляторе А?

41. Возможно ли переполнение в программе 2.47?
42. Почему в программе 2.47 за исходное значение порядка принято +16?

ГЛАВА 3

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ В МИКРОПРОЦЕССОРЕ
К1810ВМ86

Настоящая глава построена так же, как и гл. 2, и посвя­
щена гораздо более мощному 16-битному однокристаль­
ному микропроцессору К1810ВМ86, который широко при­

меняется в отечественных профессиональных персональных
компьютерах. После обсуждения общей характеристики
микропроцессора, его программной модели, разнообразных
режимов адресации и обширной системы команд рассмот­
рен вопрос о программной совместимости микропроцессо­
ров К580ИК80 и К1810ВМ86.

По-прежнему основной материал главы представлен ал­
горитмами и программами арифметических операций над
числами в различных форматах. Кроме -того, приведены
программы преобразований форматов и извлечения кор­
ня квадратного из целого 32-битного числа,

3.1. ОБЩАЯ ХАРАКТЕРИСТИКА МИКРОПРОЦЕССОРА

Микросхема К1810ВМ86 (далее сокращенно К1810) представ­
ляет собой однокристальный ЦП с фиксированными длиной сло­
ва (16 бит) и системой команд. Как и в случае МП К580, для ор­
ганизации функционально законченного изделия к МП К1810 не­
обходимо подключать память и средства ввода-вывода. Сфера
применения этого МП благодаря его возросшим возможностям
гораздо шире, чем у МП К580. Достаточно сказать, что произво­
дительность МП К.1810 примерно на порядок выше, а по функ­
циональным возможностям он приближается к процессорам ми­
никомпьютеров. К достоинствам МП К1810 относятся встроенные
средства работы с операционными системами, мультипрограмми­
рования, организации мультипроцессорных систем, обработки
сложных структур данных и эффективной реализации языков вы­
сокого уровня. Обладая мощной системой команд, МП оперирует
такими типами данных, как биты, байты, слова (16 бит), длинные
слова (32 бит), упакованные и неупакованные десятичные числа,
цепочки байтов и слов.

МП выполнен по высококачественной ЫМОП-технологии и вы­
154

пускается в 40-контактном корпусе типа DIP. На кристалле раз­
мещено около 30 000 транзисторов. Напряжение питания составля­
ет +5 В ±5%, потребляемая мощность не превышает 1,75 Вт, а
рабочий температурный диапазон от 10 до 70°С. Синхронизация
осуществляется однофазными сигналами с частотой 2—5 МГц, ко­
торые формирует микросхема генератора синхронизации
К1810ГФ84.

Особенностью МП является возможность работы в одном из
двух режимов (минимальном и максимальном), который опреде­
ляется уровнем напряжения на одном из входов. В зависимости
от режима изменяется интерпретация восьми управляющих сиг­
налов (так называемое «аппаратное программирование»). Мини­
мальный режим ориентирован на относительно простые однопро­
цессорные микросистемы. В этом режиме МП сам генерирует все
управляющие сигналы системной шины. В максимальном режи­
ме, рассчитанном на сложные мультипроцессорные системы, для
генерирования управляющих сигналов системной шины требуется
микросхема контроллера шины К1810ВГ88. Кроме того, у МП по-

Рис. 3.1. Структурная схема микропроцессора К1810ВМ86

является несколько сигналов, упрощающих построение мультипро­
цессорных систем и предназначенных, в частности, для управляе­
мого доступа к разделенным ресурсам системы и синхронизации
работы процессоров. Для программиста максимальный режим ха­
рактерен тем, что в нем можно пользоваться командой (префик­
сом) блокировки шины LOCK, который применяется для управ­
ления семафорами, и командами арифметического сопроцессора
(см. гл. 4).

Структурно МП состоит из двух практически автономных уст­
ройств, показанных на рис. 3.1. Операционное устройство выпол­
няет команды, уже выбранные из программной памяти шинным
интерфейсом и находящиеся во внутренней 6-байтной очереди ко­

155

манд. Шинный интерфейс выбирает команды из памяти, считыва­
ет операнды и записывает результаты. Оба устройства могут ра­
ботать параллельно и в большинстве случаев обеспечивают сов­
мещение выборки и выполнения команд, что повышает эффектив­
ную производительность МП.

В процессе выполнения программы между устройствами осу­
ществляется динамическое взаимодействие. Операционное устрой­
ство получает командные байты из очереди команд. Если команда
связана с обращением к памяти или вводу-выводу, оно запраши­
вает об этом шинный интерфейс. Когда последний свободен, он
сразу удовлетворяет запрос и производит требуемое обращение.
Но бывают редкие ситуации, когда шинный интерфейс занят сво­
им обращением к памяти и операционному устройству приходится
некоторое время ожидать. По мере считывания команд из очере­
ди в ней образуются свободные («пустые») байты. Как только
шинный интерфейс фиксирует два пустых байта, он самостоятель­
но инициирует выборку командного слова из программной памя­
ти. Конечно, очередь эффективно действует при естественном по­
рядке выполнения команд. Когда операционное устройство ис­
полняет команду передачи управления, шинный интерфейс сбрасы­
вает очередь, выбирает команду по новому адресу, сразу же пе­
редает ее операционному устройству, а затем начинает заполне­
ние (реинициализацию) очереди из следующих ячеек памяти. Ме­
ханизм опережающей выборки команд полностью скрыт от прог­
раммиста и никак не влияет на программирование.

Система команд МП К.1810 намного богаче системы команд
МП К580. Хотя число базовых команд увеличилось ненамного
(113 по сравнению с 79), фактически мощность системы команд
возросла в несколько раз. Например, одна базовая команда MOV
заменяет такие команды МП К580, как MOV, MVI, LXI, LHLD,
SHLD, LDA, STA, LDAX, STAX и SPHL. Если команды всех би­
нарных операций в МП К580 явно адресуют только один опе­
ранд, а второй подразумевается командой (в подавляющем боль­
шинстве им является содержимое аккумулятора А), то в МП
К1810 большинство команд бинарных операций явно адресуют оба
операнда. Это означает, в частности, что почти все функции ак­
кумулятора А может выполнять любой общий регистр.

МП К1810 имеет общую организацию регистр — память. Такое
определение подразумевает, что двухоперандные команды имеют
типы регистр — регистр, регистр — память и память — регистр, а
команды типа память — память отсутствуют (за исключением ко­
манд передачи и сравнения цепочек). В МП имеются все основ­
ные режимы адресации, характерные для современных процессо­
ров и ориентированные на эффективную реализацию языков вы­
сокого уровня: прямая (абсолютная), регистровая, регистровая
косвенная, непосредственная, базовая, индексная и некоторые их
модификации.
156

В обоих режимах работы адресное пространство памяти со­
стоит из 220 (1 048 576) байт — см. рис. 3.2. Физический адрес, вы­
даваемый МП при любом обращении к памяти, имеет длину
20 бит. По-прежнему два любых соседних байта в памяти обра­
зуют слово по принципу «младшее — по меньшему адресу» (по
этому же принципу размещаются адреса и непосредственные опе­
ранды в командах). МП К1810 передает слово, находящееся по
четному адресу, за один цикл шины, а по нечетному —за два цик­
ла. Поэтому целесообразно размещать слова данных по четным
адресам; особенно это относится к стеку, который оперирует толь­
ко словами. Особенности формирования 20-битных физических ад­
ресов памяти внутри МП рассмотрены в § 3.2.

В системах на базе МП К1810 можно организовать как изоли­
рованный ВВ, так и ВВ, отображенный на память. Для изолиро­
ванного ВВ применяются команды ввода IN и вывода OUT, при­

чем в них допускается прямая и косвенная адресация входных и
выходных портов, а передаваться могут байты и слова. Адресное
пространство ВВ для обоих режимов адресации показано на рис.
3.3. Прямой адрес порта содержится в команде как константа,
допуская адресацию 256 входных и 256 выходных портов. Иногда
такой способ обращения к портам называется статическим ВВ.
Косвенный адрес порта находится в одном из регистров МП и
имеет длину 16 бит. Поскольку изменение содержимого этого ре­
гистра заставляет одну и ту же команду обращаться к различ­
ным портам, этот способ ВВ называется динамическим. В самом

157

МП для вводимых и выводимых данных выделены два регистра —
8-битный аккумулятор AL и 16-битный аккумулятор АХ. Обыч­
ным образом в системе реализуется ВВ, отображенный на память;
в этом способе адреса входных и выходных портов, как и ячеек
памяти, имеют длину 20 бит.

Прямая адресация

то
0001
ООО!
0005
0004

адресация

Выходные порты
15(7)

FFFB
FFFC
FFFD
FFFE
FFFF

Рис. 3.3. Адресное пространство ввода-вывода микропроцессора
К1810ВМ86

Взаимодействие МП с другими компонентами системы осуще­
ствляется по системной шине, состоящей из шин адреса, данных
и управления. Ограниченное число контактов корпуса МП заста­
вило использовать в нем мультиплексированные (многофункцио­
нальные) линии, т. е. передавать/принимать по одним и тем же
линиям различные сигналы с разделением во времени. Главный
входной и выходной тракт МП образован шестнадцатью двуна­
правленными тристабильными линиями адреса/данных AD15—
AD0. На них в начале каждого цикла шины МП выдает младшие
16 бит физического адреса памяти или полный адрес порта ВВ.
Старшие 4 бит адреса памяти выдаются на однонаправленные ли­
нии A19/ST6—A16/ST3. Через некоторое время линии AD пре­
вращаются в шину данных, по которой либо вводятся данные из
памяти или ВВ, либо выводятся данные, подлежащие записи в
память или ВВ. В это же время на линиях A19/ST6—A16/ST3
действуют сигналы состояния («статуса»). Таким образом, вре­
менная диаграмма функционирования МП К1810 сложнее времен­
ной диаграммы работы МП К580 и требует специальных аппа­
ратных средств и управляющих сигналов для демультиплексиро­
вания шины адреса/данных, т. е. превращения ее в отдельные
шины адреса' и данных. Об этих тонкостях работы МП програм­
мисту знать не обязательно.
158

3.2. ПРОГРАММНАЯ МОДЕЛЬ МИКРОПРОЦЕССОРА

В программной модели МП, показанной на рис. 3.4, имеется
несколько групп регистров с различным функциональным назна­
чением.

Группа регистров общего назначения представлена регистра­
ми АХ, ВХ, СХ и DX. Их особенность заключается в том, что в
командах допускается указывать их старшую (High) и младшую
(Low) половины. Такой двой­
ственный характер регистров
АХ—DX позволяет многим
командам оперировать байта­
ми и словами. Остальные ре­
гистры можно использовать
только «целиком». Регистры
АХ—DX находятся в полном
распоряжении программиста и
единообразно участвуют в
арифметических и логических
операциях. Но в некоторых
командах они специализирова­
ны, что отражено в их назва­
ниях.

Регистр АХ используется в
операциях умножения, деления,
ввода-вывода слов и в некото­
рых операциях с цепочками.
Регистр AL участвует в анало­
гичных операциях с байтами, в
операциях преобразования и де­
сятичной арифметики. Регистр
АН используется в умножении

Рис. 3.4. Программная модель микро­
процессора К1810ВМ86

и делении байтов. Программы
получаются компактнее, если регистры АХ и AL максимально при­
влекаются для арифметических и логических операций и пересылок
данных.

Регистр ВХ интенсивно применяется для адресации данных в
памяти и участвует в операции преобразования.

Регистр СХ выполняет функции счетчика повторений в прог­
раммных циклах и в операциях с цепочками. Регистр CL служит
счетчиком сдвигов.

Регистр DX участвует в операциях умножения и деления слов;
кроме того, он содержит адрес порта в командах ВВ с косвенной
адресацией.

Регистры BP, SP, SI и DI образуют группу указательных и
индексных регистров. Такое название подчеркивает, что они пред­
назначены для хранения адресов, обеспечивая косвенную адреса­

159

цию памяти и участвуя в вычислениях эффективного адреса (об
адресации памяти см. далее). Но эти регистры могут привлекать­
ся для арифметических и логических операций так же, как и ре­
гистры первой группы. Поэтому регистры АХ—DX и ВР—DI на­
зываются общими регистрами. Всего получается восемь общих ре­
гистров и для выбора любого из них в командах достаточно трех
битов. Указатель стека SP адресует вершину TOS аппаратного
стека в памяти, и обе стековые операции (push и pop) автомати­
чески модифицируют SP. С помощью указателя базы ВР обеспе­
чивается простой доступ к данным, находящимся в стеке (не толь­
ко в вершине стека TOS). Наиболее часто регистр ВР привлека­
ется для адресации параметров, передаваемых через стек под­
программам. Индексные регистры SI и DI применяются для адре­
сации данных, а также цепочек в специальных командах.

Довольно нерегулярная структура общих регистров требует,
чтобы программист (или транслятор с языка высокого уровня)
тщательно распределял регистры и следил за их использовани­
ем. В то же время неявное указание некоторых регистров в опе­
рациях и режимах адресации позволяет компактнее закодировать
команды.

Формат регистра флажков МП К1810 приведен на рис. 3.5.

15 8 1 О
X X X х of OF и If Sf ZF X AF X PF X CF

Рис. 3.5. Формат регистра флажков микропроцессора
К1810ВМ86

Шесть арифметических флажков CF, PF, AF, ZF, SF и OF фик­
сируют определенные признаки результата арифметической или
логической операции. Команды МП воздействуют на них по-раз­
ному, но, в общем, эти флажки показывают следующие особенно­
сти результата (первые 5 флажков аналогичны флажкам МП
К580):

Флажок переноса CF фиксирует значение бита переноса (зае-
ма), возникающего при сложении (вычитании) байтов или слов,
а также значение выдвигаемого бита во всех операциях сдвигов.
Он же показывает особенность результата операций умножения и
деления. Как уже было видно в программах для МП К580, фла­
жок переноса играет исключительно важную роль.

Флажок паритета (четности) PF регистрирует установкой в 1
наличие четного числа единиц в 8 младших битах результата опе­
рации. Он применяется для контроля правильности передач дан­
ных.

Флажок AF вспомогательного переноса аналогичен флажку
CF, но фиксирует перенос или заем из младшей тетрады резуль-
160

тэта. Этот флажок необходим только в операциях десятичной
арифметики.

Флажок нуля ZF сигнализирует о получении нулевого резуль­
тата операции.

Флажок знака SF повторяет значение старшего бита резуль­
тата, который в дополнительном коде соответствует знаку числа.

Флажок переполнения OF отмечает потерю старшего бита ре­
зультата операции сложения или вычитания над знаковыми чис­
лами. Переполнение возникает, когда значения переносов в стар­
ший бит и из старшего бита не совпадают. Флажок OF показы­
вает также изменение старшего (знакового) бита в арифметиче­
ских сдвигах влево.

Три оставшихся флажка управляют некоторыми действиями
МП. Программист может одной или несколькими командами за­
дать состояние любого из них.

1. Флажок направления DF определяет сканирование (про­
смотр) цепочек от меньших адресов к большим (DF=0) или на­
оборот (DF=1).

2. Флажок прерывания IF задает реакцию МП на запрос пре­
рывания по входу INT. Если IF=0, запрос прерывания игнори­
руется, а если IF=1, МП распознает и соответственно реагиру­
ет на него. Флажок IF не влияет на восприятие немаскируемых
прерываний по входу NMI и внутренних прерываний.

3. Флажок трассировки TF при установке в 1 переводит МП
в покомандный режим работы, в котором МП автоматически ге­
нерирует внутреннее прерывание после выполнения каждой ко­
манды.

Указатель команды IP выполняет функции программного счет­
чика PC (далее используется последнее название). В процессе
выборки команд из программной памяти производится соответст­
вующая модификация PC для того, чтобы он адресовал следую­
щую команду.

Наличие в программной модели четырех сегментных регистров
кода CS, данных DS, стека SS и дополнительных данных ES объ­
ясняется способом адресации памяти. МП имеет 20-битную шину
внешнего физического адреса памяти, но в программной модели
нет ни одного регистра длиной 20 бит. Внутри МП адрес памяти
представлен двумя 16-битными словами, одно из которых назы­
вается базовым (начальным) адресом сегмента (эквивалентные
названия — сегментный адрес, сегмент, база), а второе — внутрисег­
ментным смещением (синонимы — относительный адрес, смеще­
ние). Эти два слова представляют собой логический адрес памяти.
Устройство преобразования адресов в составе шинного интерфей­
са при каждом обращении к памяти превращает логический адрес
в физический.

Для программы адресное пространство памяти (см. рис. 3.2)
состоит из четырех сегментов, являющихся логическими единица-
6—1021 161

ми памяти с максимальным размером 64К байт. Конечно, реаль­
ный размер сегмента не обязательно должен быть максимальным;
минимальный размер сегмента, как будет показано далее, равен
16 байт. На размещение сегментов в пространстве 1 Мбайт на­
кладывается только одно ограничение: базовый 20-битный адрес
сегмента должен быть кратен 16, т. е. его 4 младших бита долж­
ны быть нулевыми. Другими словами, базовый адрес сегмента име­
ет вид ХХХХОН. Нулевые биты можно не хранить, а подразуме­
вать, и тогда для базового адреса сегмента достаточно 16 бит.
Именно такие «урезанные» базовые адреса сегментов находятся
в регистрах CS, DS, SS и ES. Следовательно, при фиксированном
содержимом сегментных регистров максимальное рабочее прост­
ранство, к которому МП имеет доступ в любой момент времени,
состоит из 64Кбайт для кода (собственно программы), 64Кбайт
для стека и 128К байт для данных. Если программе требуется
большее рабочее пространство, она должна модифицировать со­
держимое сегментных регистров.

Память
Т; п

Рис. 3.6. Преобразование логического адреса в физический

Для локализации конкретного байта в сегменте служит вторая
компонента логического адреса-—смещение. Оно, являясь 16-бит­
ным целым беззнаковым числом, показывает расстояние этого
байта от начала сегмента. Следовательно, для образования из
пары сегмент: смещение физического адреса необходимо сдвинуть
базовый адрес сегмента влево на 4 бит и прибавить смещение
(рис. 3.6).
162

Шинный интерфейс получает логический адрес из ра ,личных
источников в зависимости от типа обращения к памяти. Возмож­
ные способы формирования физического адреса приведены в табл.
3.1.
Таблица 3.1. Источники логического адреса

Тип обращения к памяти База (по
умолчанию) Варианты Смещение

Выборка команды CS Нет РС
Стековая операция SS » SP
Обращение к переменной DS CS, SS, ES ЕА
Цепочка-источник DS CS, SS, ES SI
Цепочка-получатель ES Нет DI
ВР как базовый регистр SS CS, DS, ES ЕА

Команды всегда выбираются из текущего сегмента кода: ба­
зовый адрес сегмента находится в регистре CS, а смещение бе­
рется из регистра PC. Стековые команды всегда обращаются к
текущему сегменту стека — логический адрес есть SS:SP. Счита­
ется, что большинство переменных находится в текущем сегменте
данных с базовым адресом в регистре DS, но программист может
заставить Л1П в конкретной команде обратиться к переменной в
другом сегменте. Эта возможность показана в столбце «Вариан­
ты» табл. 3.1 и реализуется так называемым оператором замены
сегмента. Например, команда MOV АХ, [DI] обращается к сег­
менту данных, а команда MOV АХ, ES: [DI]—к дополнительно­
му сегменту. В обеих командах смещение берется из регистра DI,
что показано посредством заключения названия регистра в квад­
ратные скобки.

Смещение переменной вычисляет операционное устройство в
соответствии с заданным в команде режимом адресации. Резуль­
тат этого вычисления называется эффективным адресом ЕА. Эф­
фективный адрес может быть константой в команде, содержимым
одного из адресных регистров (ВХ, BP, SI, D1), суммой содержи­
мого двух адресных регистров (допускаются пары BX-SI, BX-DI,
BP-SI, BP-DI) и, наконец, суммой содержимого двух адресных
регистров и константы в команде. В командах с адресацией памя­
ти через регистр ВР обращение производится к сегменту стека,
а с оператором замены сегмента допускаются обращения к дан­
ным в любом из текущих сегментов.

Сегментная организация памяти имеет достоинства и недостат­
ки. К достоинствам ее относят модульность программ (в них чет­
ко выделены области данных, стека и собственно кода), простое
перемещение программ в пространстве памяти, что важно в муль­
типрограммной среде, простое переключение с одной программы
на другую. Один из недостатков заключается в трудности мани-.,
6* 163 \

пуляций физическими адресами, например в сравнении двух фи­
зических адресов (ясно, что неравенство логических адресов не
свидетельствует о неравенстве физических адресов). Кроме того,
требуются команды передачи управления как внутри текущего
сегмента кода (эти команды модифицируют только PC и имеют
тип NEAR), так и вне текущего сегмента кода (модифицируются
CS и PC, тип FAR). Наконец, несколько усложняется синтаксис
языка Ассемблера из-за появления нескольких директивов управ­
ления сегментами.

Режимы адресации. Если МП К580 обладает простейшими ре­
жимами адресации, то в МП К1810 их реализовано гораздо боль­
ше и для разработки прикладных программ режимы адресации
нужно знать. Назначение режима адресации заключается в иден­
тификации операнда команды, т. е. в указании способа формиро­
вания эффективного адреса ЕА. Он является либо адресом дан­
ных, либо адресом перехода (в командах передачи управления).
Как уже говорилось, ЕА представляет собой целое беззнаковое
число, являющееся смещением относительно базы некоторого сег­
мента.

Рис. 3.7. Типичные форматы команд

Команды МП К1810 адресуют максимум два операнда, но не
могут адресовать две ячейки памяти. Первым операндом в двух-
операндной команде обычно является содержимое регистра или
ячейки памяти, а вторым — содержимое регистра или непосредст­
венный операнд. Нумерация «первый» и «второй» довольно услов­
на. Общий формат двухоперандной команды приведен на рис.
3.7, а (пунктир показывает необязательные байты). Первый байт
содержит код операции (КОП) и два однобитных поля. Поле d
определяет направление передачи: если d=l, то направление «в»,
если d=0, направление «из». Само направление относится ко вто­
рому операнду — регистру, указанному в поле reg второго байта
команды, который называется постбайтом (или просто байтом)
164

режима адресации. Поле w идентифицирует тип операнда: слово
(®=1) или байт (ю = 0).

Участвующие в операции регистры или регистр и ячейку па­
мяти указывает постбайт, состоящий из трех полей. Поле reg
(регистр), как уже отмечалось, определяет второй операнд, нахо­
дящийся в регистре. Кодирование регистров МП в поле reg по­
казано в последних двух столбцах табл. 3.2.

Таблица 3.2. Постбаитные режимы адресации
А,

r/т Л 00 01 10
11

tei==O K>—1

000 (BX)-f-(SI) (BX) + (SI)+D8 (BX) + (SI)+DI6 AL AX
001 (BX) + (D1) (BX) + (D1)+D8 (BX) + (DI)+D16 CL CX
010 (BP) + (SI) (BP) + (SI)+D8 (BP) + (SI)+D16 DL DX
он (BP) + (DI) (BP) + (DI)+D8 (BP) + (DI)+D16 BL BX
100 (SI) (SI)+D8 (SI)+D16 AH SP
101 (DI) (DI)+D8 (DI)+D16 CH BP
по D16 (BP)+D8 (BP)+DI6 DH SI
111 BX (BX)+D8 (BX)+D16 BH DI

. Поле mod (режим) специфицирует режим адресации, показы­
вая, как интерпретируется поле r/т (регистр/пймять) при нахож­
дении первого операнда. Если mod=\\, операнд находится в ре­
гистре и поле r/т определяет регистр с таким же кодированием,
как и в поле reg. Три остальных комбинации в поле mod (00, 01,
10) относятся к адресации памяти и показывают, чему равно сме­
щение disp, содержащееся в команде как константа:

00, disp—Q — смещение отсутствует,

mod — 01, disp—dispL —один байт смещения (он расширяется со
знаком до двух байт),

10, dlsp=dispH, dispL—два байт смещения.

Смещение disp длиной в два байта можно считать и абсолют­
ным адресом (см. режим, в котором mod—00 и r/m=110).

В случае адресации памяти (moduli) поле r/т показывает,
как формируется ЕА, и его кодирование представлено в табл. 3.2.
Как видно из этой таблицы, операнд в памяти допускается адре­
совать прямо (два байта disp) или косвенно (возможно, с одно-
или двухбайтным смещением disp). Во втором случае память
можно адресовать через базовый регистр ВХ или ВР, через ин­
дексный регистр SI или DI, а также через комбинацию базового
и индексного регистров. Всего получается 24 режима адресации

165

памяти: три комбинации в поле mod и восемь комбинаций в поле
г/т.

В командах с непосредственным операндом (см. их формат на
рис. 3.7, б) второй операнд адресовать не нужно, так как он на­
ходится в команде, поэтому поле reg используется как расшире­
ние кода операции. Кроме того, здесь не нужен бит d, так как
результат можно поместить только на место первого операнда. Но
в этом формате необходимо определить тип непосредственного опе­
ранда data. Для этого служат поля s и w, интерпретируемые сле­
дующим образом:

ХО, data—dataL —один байт данных,
_ 01, data=-dataH, dataL —два байт (слово) данных,

И, data=dataL — один байт данных, который расширя­
ется со знаком до двух байт.

Поля mod и г/т имеют такой же смысл, как и в предыдущем
формате.

Наконец, на рис. 3.7, в показан формат однооперандной ко­
манды. В этом формате нет ничего нового по сравнению с рас­
смотренными вьТше.

В МП К1810 есть избыточные форматы, которые позволяют
сократить на один байт длину часто используемых команд. В ос­
новном они относятся к операциям с регистрами и особенно с ак­
кумуляторами AL и АХ. Программа-ассемблер всегда выбирает
более короткую команду.

Рассмотрим кратко стандартные режимы адресации с учетом
приведенных выше способов формирования ЕА.

Регистровая адресация. Операнд или операнды нахо­
дятся в общих регистрах МП, а в некоторых командах — в сег­
ментных регистрах. Команды, оперирующие содержимым регист­
ров, оказываются наиболее короткими и выполняются за мини­
мальное время.

Примеры ассемблерных команд с регистровой адресацией.

MOV АХ,SI ; Передать содержимое SI в АХ
MOV ES,AX ; Передать содержимое АХ в ES
ADD BX,DI ; Прибавить к ВХ содержимое DI
SUB CL,АН ; Вычесть из CL содержимое АН
RCL DX,1 ; Сдвинуть содержимое DX влево
OR CX,DX ; Объединить по ИЛИ содержимое СХ и DX

Как показывают эти примеры, регистры МП К1810 стали го­
раздо универсальнее регистров МП К580. По существу, каждый
8- или 16-битный общий регистр функционально можно считать
аккумулятором.

■ 166

t
Непосредственная адресация. Непосредственные опе­

ранды data представляют собой константы длиной в байт или
слово, находящиеся в командах. Благодаря постбайту режима ад­
ресации можно оперировать константами и содержимым регист­
ров или ячеек памяти (нет только команд загрузки констант в
сегментные регистры и включения констант в стек). Константы
применяются для инициализации регистров и ячеек памяти, в ка­
честве масок в поразрядных операциях, для сравнения с гранич­
ными значениями и т. д.

Примеры записи команд с непосредственными операндами на
языке Ассемблера:

; Загрузить в CL десятичное число 24MOV CL,24
XDR SI ,1 ; Инвертировать младший бит SI
AND AL,BOH ; Выделить старший бит AL
DR Di,8OOOH ; Установить в 1 старший бит DI
CMP CBXI,4OH ; Сравнить содержимое памяти с 64
TEST AL,ЗОН $ Проверить нахождение.в AL числа 48

Абсолютная адресация. В абсолютной (прямой) адре­
сации ЕА берется из поля disp команды. Этот режим применяется
для обращения к простым переменным (скалярам), например:

MOV AX,BETA Загрузить в AX переменную BETA

INC COUNT Инкремент счетчика

MUL MPL 1 Умножить на значение MPL

ROR TEMP 5 Сдвинуть значение TEMP вправо

Символические имена переменных BETA, COUNT, MPL и
TEMP должны быть определены в программе.

Отметим интересную особенность. В командах INC, MUL и
ROR невозможно узнать размер операнда — байт или слово. Это
примеры так называемых «анонимных» обращений к памяти. Что­
бы устранить неоднозначность, ассемблеру требуется дополнитель­
ная информация, которую сообщает оператор атрибута типа. Ес­
ли, например, команда INC COUNT должна производить инкре­
мент слова, необходимо записать INC WORD PTR COUNT; чтобы
команда ROR TEMP сдвигала байт, ее нужно записать как ROR
BYTE PTR TEMP.

Косвенная регистровая адресация. В этом режиме
ЕА находится в одном из регистров BP, ВХ, SI или DI. Следо­
вательно, адреса памяти можно вычислять во время выполнения
программы, что необходимо для обращения к элементам регуляр­
ных структур данных. При изменении содержимого регистра одна
и та же команда обращается к различным ячейкам памяти. Ис­

167

пользование регистра в качестве источника ЕА указывается за­
ключением его имени в квадратные скобки, например:

ADD AX,EDU Прибавить к AX содержимое ячейки

памяти, адресуемой DI

INC BITE PTR EBX3 ; Инкремент байта в памяти

DIV WORD PTR ESI3 ; Разделить на слово из памяти

XOR £BP3,DL s Операция с байтом в памяти

Базовая адресация. В базовой адресации ЕА равен сум­
ме значения disp, находящегося в команде, и содержимого ре­
гистра ВХ или ВР. Напомним, что при указании ВР шинный ин­
терфейс обращается к операнду в текущем сегменте стека; это
упрощает доступ к параметрам подпрограмм, передаваемым в
стеке.

Основное применение базовой адресации связано с обработкой
структур данных, когда смещение (номер) элемента структуры
известен при ассемблировании программы, а базовый (началь­
ный) адрес структуры определяется при выполнении программы.
Другими словами, структура данных может находиться в различ­
ных областях памяти, а модификация базового регистра обеспе­
чивает доступ к этим областям. В языке Ассемблера базовая ад­
ресация обозначается в виде BREG [DISP] или [BREG+DISP],
где BREG— один из базовых регистров. Е1римеры команд с базо­
вой адресацией:

MOV АХ,£ВР+1ОЗ 5 Передать в АХ шестое слово массива,
; базовый адрес которого в ВР

AD» EEX1TEMP,CL ; Прибавить содержимое CL к байту

; TEMP массива, адресуемого ВХ

Индексная адресация. В режиме индексной адресации
ЕА равен сумме смещения disp, находящегося в команде, и со­
держимого регистра SI или DL Обычно смещение определяет из­
вестный при ассемблировании начальный (базовый) адрес мас­
сива, а значение в индексном регистре адресует нужный элемент.
Простые манипуляции содержимым индексного регистра позволя­
ют обращаться к любому элементу массива.

Режимы базовой и индексной адресации аналогичны, так как
Длина базовых адресов и индексов равна 16 бит. Однако при раз­
работке МП предполагалось, что регистры ВХ и ВР будут ис­
пользоваться как базовые, а регистры SI и DI как индексные.
В соответствии с этим подразумевается их использование в неко­
торых командах.
168

В языке Ассемблера индексный режим обозначается в виде
DISP [IREG] или [IREG+DfSP], где IREG — один из индексных
регистров. Примеры команд с индексной адресацией:

MOV ARRAYСSI 3,AL ; Передать AL в элемент массива

ADD DI,MATRIXESI1 ; Операция с элементом массива

MOV DI,CDI+41 ; Загрузить в DI слово из памяти

Базовая индексная адресация. В этом режиме ЕА
равен сумме содержимого базового регистра ВР или ВХ, индекс­
ного регистра SI или DI и необязательного смещения disp, нахо­
дящегося в команде. Базовая индексная адресация является наи­
более гибкой, так как две компоненты адреса можно определять
и модифицировать при выполнении программы. В этом режиме
обеспечивается удобный способ адресации элементов массива, на­
ходящегося в стеке, а также доступ к двумерным массивам. В ас­
семблерных программах применяется обозначение [BREGJDISP
[IREG], т. е. как комбинация базовой и индексной адресации. До­
пускается также обозначение в виде [BREG + число][IREG +
± число]. Примеры команд с базовой индексной адресацией:

ADD tBFJALFHAtSIJ,АХ 5 Прибавить АХ к слову

INC BYTE PTR ЕВР+33ESI-103 ; Инкремент байта

CMP IBPIBETACDII,4000H ; Сравнить co словом

Относительная адресация. В режиме относительной
адресации, который не показан в табл. 3.2, ЕА вычисляется как
сумма смещения, находящегося в команде, и текущего содержи­
мого программного счетчика PC. При этом значение в PC равно
адресу байта после команды с относительной адресацией. В МП
К1810 этот режим применяется только в командах условных и
безусловных переходов и управления циклами. Смещение disp
длиной 8 или 16 бит представлено в дополнительном коде и име­
ет диапазоны —128 1—127 и —32768 [-32767 соответственно.
В ассемблерных командах указывается не значение смещения, а
метка той команды, которой передается управление. Требуемое
значение смещения disp автоматически вычисляет программа-ас­
семблер.

Адресация цепочек. Под цепочкой (строкой) понимает­
ся любая последовательность байтов или слов, находящихся в
смежных ячейках памяти. При обработке цепочек аппаратно пред­
полагается,- что регистр SI адресует байт или слово цепочки-ис­
точника (отсюда происходит его название «индекс источника»), а
регистр DI — байт или слово цепочки-получателя. В повторяющих­
ся цепочечных операциях МП автоматически корректирует регист­
ры SI и DI (инкремент или декремент в зависимости от состоя­
ния флажка DF) по мере перехода к следующим элементам цепо­

169

чек. Цепочка-источник может находиться в любом сегменте (по
умолчанию принимается сегмент данных), а цепочка-получатель —
только в дополнительном сегменте данных, базовый адрес которо­
го находится в регистре ES.

Адресация портов ввода-вывода. Для обращения к
входным и выходным портам в пространстве ВВ предусмотрены
два режима адресации (прямая и косвенная). В прямой адреса­
ции номер порта длиной в байт находится в команде, что обе­
спечивает доступ к портам 0—255. В косвенной адресации номер
порта содержится в регистре DX и имеет диапазон от 0 до 65535.
В самом МП для ВВ предназначены аккумуляторы АХ и AL.
Примеры команд ВВ:

IN AL,ВОН
OUT OX, АХ
IN АХ,OX
OUT 20H.AL

; Ввод байта из фиксированного порта

; Вывод слова по адресу из DX

; Ввод слова по адресу из DX
; Вывод байта в фиксированный порт

Режим адресации и время выполнения команд. Эффективный
адрес памяти получается в результате некоторых вычислений, на
которые расходуется время. Следовательно, время выполнения
команды оказывается зависящим от режима адресации, что по­
казано в табл. 3.3. Задание в команде оператора замены сегмен­
та увеличивает находящиеся в таблице величины еще на два так­
та синхронизации.

Таблица 3.3. Время вычисления эффективного адреса

Адресация Обозначение Число
тактов

Прямая
Косвенная регистровая
Базовая или индексная
Базовая индексная (без сме­

щения)
Базовая индексная (со сме­

щением)

disp
[ВХ], [ВР], [SI], [DI]
[ВХ, ВР, SI, DI] +disp

[BP] [DI], [BX][SI]
[BP] [SI], ---------

ВР
вх
ВР
вх

DI
SI
SI
DI

ВХ] [DI]
+disp
-}-disp
-\-disp
+disp

6
5
9
7
8

11

3.3. СИСТЕМА КОМАНД МИКРОПРОЦЕССОРА

Система команд МП К1810 состоит из 113 базовых команд,
многие из которых допускают различные режимы адресации и,
следовательно, порождают множество машинных команд. Будем
придерживаться такого же группирования команд, как и для МП
К580, и пользоваться следующими условными обозначениями:
170

reg — общий регистр МП,
ас—аккумулятор AL или ,АХ,
sreg — сегментный регистр,
тет—байт или слово в памяти с любым режимом адресации, ■
mem/rcg—ячейка памяти с. любым режимом адресации или

общий регистр,
data—непосредственные данные в команде (8 или 16 бит),
disp— смещение в команде (8 или 16 бит),
port—адрес .входного или выходного порта,
sre — операнд, который не изменяется при выполнении коман­

ды (источник),
dst — операнд, который изменяется при выполнении команды

(получатель).
Основные форматы команд МП KI810 были приведены па рис.

3.7.

3.3.1. КОМАНДЫ ПЕРЕДАЧ ДАННЫХ

Команды передач данных приведены в табл. 3.4. Они осущест­
вляют передачи регистр — регистр, регистр — память, память —

Таблица 3.4. Команды передач данных

Название Мнемоника Функция

Пересылка
данных

Обмен дан­
ных

Преобразо­
вание

Загрузка ад­
реса

Передача
флажков в АН

Передача АН
во флажки

Включение в
стек

Извлечение
из стека

MOV mem/regt, mem/regi
MOV mem/reg, data

MOV reg, data
MOV ac, mem
MOV mem, ac

MOV sreg, mem/reg
MOV mem/reg, sreg

XCHG mem/regi, mem/reg2
XCHG reg

XLAT

LEA reg, mem
LDS reg, mem
LES reg, mem

LAHF

SAHF

PUSH mem/reg
PUSH reg
PUSH sreg

PUSHF
POP mem/reg

POP reg

mem/reg\-*-(mem/regi}
mem /reg*-data

reg-^data
ac*-(mem)
mem*- (ac)

sreg*- (mem /reg)
mem /reg*- (sreg)

(m.em/regi) (mem/reg^)
(K\)**(reg)

AL^-((BX) + (AL))

reg*- EA
reg-, (mem), DS*-(mem-(-2)
reg- (mem), ES*-(mem-(-2)

Л11+- (младший байт флажков)

Младший байт флажков-»-
Ч-(АН)

SP-«-(SP)—2, TOS-*(mem/reg)
SP<-(SP)—2, TOS^-(reg)
SP-<-(SP)—2, TOS-c-(sreg)

SP-<— (SP)—2, TOS-<—флажки
mem/reg*-(TOS), SP-*-(SP)-f-

+2
re£w-(TOS), SP-e-(SP) +2

171

Продолжение табл. 3.4

Название Мнемоника Функция

Ввод

Вывод

POP sreg
POPF

IN ас, port
IN ас, DX

DIJT port, ас
OUT DX, ac

sreg+- (TOS), SP-t-(SP)+2
Флажкич-(TOS). SP-<-(SP)+2

ас-ь-((port))
ac-<-(porI(DX))

porc->-\uc)
por/(DX)-e-(oc)

регистр. Наиболее мощной среди них является команда MOV со
следующим обобщенным представлением:

MDV dst,src dst <— (srс)

Эта команда передает содержимое источника src в получатель
dst, не воздействуя при этом на флажки. Форматы команды MOV
показаны на рис. 3.8 (далее машинные форматы команд не при­
водятся) .

В мнемоникё MOV mem/regt, mem/reg2 подразумевается, что
источником и получателем может быть регистр или ячейка памя­
ти с любым режимом адресации, но адресовать две ячейки памя­
ти в командах МП К1810 нельзя.

Как видно из рис. 3.8, с помощью команды MOV можно осу­
ществить следующие передачи байта или слова: из регистра в ре-

1 О 7 7 О 7 ОО
MOV rnem/reg,, mem / reg?

172

гистр, из регистра в память и, наоборот, непосредственного опе­
ранда в регистр (за исключением сегментных регистров) или па­
мять. Имеются более короткие форматы команды MOV, в кото­
рых фигурирует аккумулятор ас. По существу, одна команда MOV
заменяет собой подавляющее большинство команд передач данных
в МП К580 (см. табл. 2.2).

Команда MOV sreg, mem/reg предназначена для инициализа­
ции сегментных регистров. Если, например, в сегментный регистр
DS необходимо загрузить A000H, то потребуются команды:

MDV АХ,ОАОООН ; Инициализировать

MOV* DS,AX j регистр DS на АОООН

Для инициализации сегментных регистров всегда используется
аккумулятор АХ, так как команда MOV ас, data короче более
общей команды MOV mem/reg, data.

Команда обмена XCHG со следующим общим описанием

XCHG dst,src (dst> <—> Csrc)

позволяет обменять содержимое (байты или слова) двух общих ре­
гистров, а также любого общего регистра и ячейки памяти. Од­
нако в ней нельзя указывать сегментные регистры.

Безоперандная команда преобразования XLAT заменяет со­
держимое аккумулятора AL на байт из 256-байтной таблицы, на­
чальный адрес которой находится в регистре ВХ (в сегменте дан­
ных). Исходное содержимое AL служит индексом таблицы и вы­
бираемый из нее байт передается в AL. Эта команда обычно при­
меняется для быстрого преобразования символов из одного кода
в другой.

Команды загрузки адреса LEA, LDS и LES предназначены
Для передачи в регистр (ы) адресов, поэтому их основное приме­
нение связано с инициализацией регистров-указателей. При вы­
полнении команды загрузки эффективного адреса LEA reg, mem
вычисляется ЕА и его значение передается в указанный общий
регистр, например в регистр ВХ для его инициализации перед ко­
мандой XLAT. Команды LDS и LES реализуют следующие дейст­
вия: вычисленный ЕА преобразуется в физический адрес и адре­
суемое им слово из памяти загружается в указанный общий ре­
гистр reg, а следующее слово из памяти передается в регистр DS
или ES. Обычно в команде LDS указывается регистр SI, а в ко­
манде LES — регистр DI, что согласуется с логикой цепочечных
команд.

Команды LAHF и SAHF введены для упрощения совместимо­
сти микропроцессоров К580 и К1810. Команда LAHF передает
младший байт регистра флажков в регистр АН, а команда SAHF
выполняет противоположную передачу. Команда SAHF участвует

173

также в передаче кода условия из арифметического сопроцессо­
ра К1810ВМ87 в регистр флажков МП К1810.

Стековые команды PUSH и POP осуществляют соответствую­
щие операции со стеком. Вершина TOS стека в сегменте стека ад­
ресуется регистрами SS и SP. Все стековые команды оперируют
только словами и сопровождаются автоматической модификаци­
ей SP: при включении в стек производится декремент, а при из­
влечении из стека — инкремент SP.

Команды ввода IN и вывода OUT передают байт или слово
между аккумуляторами AL или АХ и адресуемыми входными/вы-
ходными портами. Допускаются режимы прямой и косвенной ад­
ресации портов.

3.3.2. АРИФМЕТИЧЕСКИЕ КОМАНДЫ

Микропроцессор К1810 имеет достаточно широкий набор ариф­
метических команд, что позволяет применять его в сложных си­
стемах обработки данных. Арифметические операции выполняют­
ся над целыми числами четырех форматов: двоичные беззнако­
вые (байты и слова), двоичные знаковые (байты и слова), деся­
тичные упакованные (байты) и десятичные неупакованные (бай­
ты). В табл. 3.S приведены почти все арифметические команды,
а подробное рассмотрение команд десятичной арифметики дано
в п. 3.4.2. Сложение и вычитание двоичных чисел обоих типов осу­
ществляется одними и теми же командами, а для умножения и
деления предусмотрены отдельные команды. В арифметических
операциях особенности получающихся результатов фиксируются
в шести арифметических флажках, состояния которых (за ис­
ключением флажка AF) можно проверить командами условных
переходов.

МП К1810 имеет команду ADD собственно сложения и коман­
ду ADC сложения с переносом:

ADD dst,srс

ADC dst,src
dst <— (dst) + (src)

dst <— (dst) + (src) + CF

В качестве dst и src можно указывать общие регистры и ячей­
ки памяти в любом режиме адресации, а в качестве src еще и не­
посредственные операнды. Следовательно, любой общий регистр
(длиной 8 или 16 бит) и любая ячейка памяти могут выполнять
функции аккумулятора. Это обстоятельство значительно упроща­
ет программирование вычислительных алгоритмов.

К командам сложения обычно относят однооперандную коман­
ду инкремента INC:

INC dst dst <-- (dst) + 1

174

Таблица 3.5. Арифметические команды

Название Мнемоника Функция

Сложение

Сложение
с переносом

Инкремент

Вычита­
ние

Вычита­
ние с зае-
мом

Декремент

Измене­
ние знака

Умноже­
ние (беззна­
ковое)

Умноже­
ние (знако­
вое)

Деление
(беззнако­
вое)

Деление
(знаковое)

Преобра­
зование бай­
та в слово

Преобра­
зование сло­
ва в двой­
ное слово

Сравнение

ADD mem/reg,, mem/reg?
ADD mem/reg, data

ADD ac, data
ADC mem/regi, mem/reg?

ADC mem/reg, data
ADC ac, data
INC mem/reg

INC reg
SUB mem/regi, mem/reg?

SUB mem/reg, data
SUB ac, data

SBB mem/regi, mem/reg?

SBB mem/reg, data
SBB ac, data
DEC mem/reg

DEC reg
NEG mem/reg

MUL mem/reg

IMUL mem/reg

DIV mem/reg 8 бит:

IDIV mem/reg 16 бит :

CBW

CWD

CMP mem/regi, mem/reg?
CMP mem/reg, data

CMP ac, data

mem/reg^inem/reg’,) -|- (mem/reg?)
mem/reg-c-(mem/reg) -(-data

ac-t-(ac)-pdata
mem/regi^-(mem/regt) + (mem/

reg?)-pCF
mem/reg-i-(mem/reg) -J-data-f-CF

ac-<-(ac) -pdafa-pCF
mem /reg-с- (mem/reg)+1

reg+- (reg) -f-1
mem/regm-(mem/regi)—(mem/reg?)

mem /reg-с- (mem/reg) —data
ac-t- (ac) —data

mem/regi-e-(mem/regi)—(mem/
reg?)—CP

mem/reg+- (mem/reg) —data—CF
ac-e-(ac) —data—CF

mem /reg-^- (mem /reg)—1
reg-c-(reg)— 1

mem/reg-^-P— (mem/reg)

8 бит: AX-e~(AL)'X (mem/reg)
16 бит : DX : AX-<—(AX) X (mem/reg)

AH^AL7

DX-«-AXI5

(mem/regi)—(mem/reg?)
(mem /reg) —data

(ac)—data

В этой команде операнд dst, которым может быть общий регистр
или ячейка памяти, считается целым беззнаковым числом и при
ее выполнении состояние

Команды вычитания:
флажка переноса CF не изменяется.

SUB dst,src dst < — (dst)

SBB dst,src dst < — (dst)

РЕС dst dst < — (dst)

CF

175

отличаются от соответствующих команд сложения только выпол­
няемой операцией. По-прежнему флажки CF и AF становятся
флажками заема и устанавливаются в 1, когда уменьшаемое мень­
ше вычитаемого. Команда декремента DEC не модифицирует фла­
жок CF.

К командам вычитания относится также команда NEG изме­
нения знака:

NEC dst dst <— 0 - (dst)

Если операнд равен нулю, его значение не изменяется. Попытка
изменить знак максимального по модулю отрицательного числа
(80Н или 8000Н) не модифицирует операнд, но устанавливает в
1 флажок переполнения OF. При выполнении команды NEG фла­
жок CF всегда устанавливается в 1, кроме случая, когда операнд
равен нулю (тогда CF=0).

В МП КД810 имеются две команды умножения:
MUL

IMUL
ext:ac <— Сас> * (src)

предназначенных для умножения двоичных беззнаковых (MUL)
и знаковых (IMUL) целых чисел. Обе они выполняют умножение
содержимого аккумулятора ас на адресуемый операнд src, кото­
рым может быть регистр или ячейка памяти с любым режимом
адресации (но операнд не может быть непосредственным значе­
нием). В операции над байтами аккумулятором служит AL, а
произведение образуется в регистрах АН и AL, причем АН назы­
вается расширением ext аккумулятора AL. В операции со слова­
ми аккумулятором является АХ, а произведение образуется в ре­
гистрах DX и АХ. Здесь регистр DX выступает расширением ext
аккумулятора АХ. Если в команде MUL’ старшая половина произ­
ведения отличается от нулевой, а в команде IMUL является рас­
ширением знака младшей половины, флажки CF и OF устанавли­
ваются в 1; в противном случае CF, OF=0. Состояния остальных
арифметических флажков после выполнения команд умножения
не определены.

В двух командах деления операндами являются двоичные без­
знаковые (DIV) и знаковые (IDIV) целые числа:

DIV src ас <— quot ((ext:ac> / (src))

IDIV src ext <— rem ((extsac) / (src))

Здесь делимым служит содержимое аккумулятора ас и его
расширения ext, делителем — адресуемый операнд (содержимое
регистра или ячейки памяти), частное quot образуется в аккуму­
ляторе ас, а остаток — в его расширении ext. Дробное частное усе-
176

кается до целого.' Состояния всех арифметических флажков не оп­
ределены. Если размер частного превышает длину аккумулятора
или если делитель равен нулк^, МП генерирует внутреннее пре­
рывание типа 0 (см. далее) и автоматически переходит к соот­
ветствующей процедуре прерывания. При этом результат деления
не определен.

Особенность команд умножения и деления заключается в том,
что время их выполнения зависит от значений операндов. Напри­
мер, умножение 8-битных беззнаковых чисел (источником src слу­
жит регистр) может потребовать от 70 до 77 тактов синхрониза­
ции, а деление 32-битного делимого на 16-битный делитель (ис­
точником src является слово в памяти) требует (171—190)+ЕЛ
тактов синхронизации. Здесь ЕА — это время на вычисление эф­
фективного адреса (см. табл. 3.3).

Для расширения делимого предназначены две команды преоб­
разования: команда CBW преобразования байта в слово копирует
в регистр АН знак числа, находящегося в AL, а команда CWD
преобразования слова в двойное слово копирует в регистр DX
знак числа, находящегося в регистре АХ. Обе команды не изме­
няют текущих состояний арифметических флажков.

Команда СМР сравнения:

ЕМР dst,src (dst) - (src)

похожа па команду вычитания SUB, но результат вычитания нигде
не'сохраняется — команда производит неразрушающее сравнение
операндов. Состояния всех арифметических флажков определяются
значением получающейся разности.

3.3.3. ЛОГИЧЕСКИЕ КОМАНДЫ И КОМАНДЫ СДВИГОВ

Поразрядные логические операции в МП К1810 представлены
конъюнкцией AND, дизъюнкцией OR, сложением по модулю два
XOR, проверкой TEST и инверсией NOT. Соответствующие коман­
ды имеют следующее общее описание:

AND dst,src dst < — (dst) /\ (src)

OR dst,src 4 dst < — (dst) \/ (src)

XOR dst,src dst <-- (dst > + (src)

TEST dst,src (dst) /\ (src)

NOT src src < — (src)

Возможные способы адресации операндов показаны в табл.
3.6. В качестве dst и src можно указывать общие регистры и

177

Таблица 3.6. Команды логических операций

Название Мнемоника Функция

Конъюнк- AND mem/regi, mem/regi mem/regi-^- {mem/regi) Д {mem/regi)
ция AND mem/reg, data

AND ac, data
mem/reg+-{mem/reg) /\data

ac-r-(ac) /\data
Дизъюнк- OR mem/regi, mem/reg-2 mem/regi-^-{mem/regi) XJ {mem/regi)

ция OR mem/reg, data
OR ac, data

mem/reg*-{mem/reg) \/data
ac-*-(ac)\/data

Сложение XOR mem/regi, mem/regi mem/regc+-{mem/reg/) Ф {mem/regi)
mem/reg^-{mem/reg) ®data

ac-*-{ac)®data
по модулю 2 XOR mem/reg, data

XOR ac, data
Проверка TEST mem/regi, mem/regi

TEST mem/reg, data
TEST ac, data

{mem/regi) Д {mem/regi)
{mem/reg) /\data

{ac) /\data
Инверсия q NOT mem/reg mem /reg-*- {mem/reg)

ячейки памяти с любым режимом адресации, а в качестве src еще
и непосредственные данные (за очевидным исключением команды
NOT). Операндами могут быть байты и слова.

Команды бинарных операций воздействуют на арифметические
флажки следующим образом:

флажки CF и OF переводятся в нулевое состояние;
состояние флажка AF не определено;
состояния флажков SF, ZF и PF зависят от результата;
команда NOT не влияет на состояния флажков.
Команды AND и OR применяются в основном для установки

в 0 или 1 тех битов операнда dst, которые определяются другим
операндом src, называемым маской. С помощью команды XOR
можно инвертировать отдельные биты операнда dst (благодаря
тождеству 1фх—х), сравнивать операнды на абсолютное равен­
ство и перевести регистр в нулевое состояние (пользуясь тождест­
вом хфх=О).

Действия команд сдвигов показаны на рис. 3.9. Поле операн­
да всех команд имеет вид mem/reg, count. Здесь mem/reg обыч­
ным образом адресует общий регистр или ячейку памяти, содер­
жащие байт или слово, а счетчик count определяет число сдвигов.
Счетчик мбжет быть указан как константа 1 (статический сдвиг
на один бит) или как регистр CL (динамический сдвиг, в кото­
ром число сдвигов определяется содержимым CL). С помощью
команд сдвигов осуществляются циклические (кольцевые) и
«обычные» сдвиги. В циклических сдвигах выдвигаемый бит по­
мещается на место освобождающегося бита (см. первые 4 ко­
манды на рис. 3.9). Команды RCL и RCR называются цикличе­
скими сдвигами через перенос, так как в кольцо сдвига включен
флажок CF. «Обычные» сдвиги, в которых выдвигаемый бит те-

’178

ряется, подразделяются на логические (команды SHL и SHR) и
арифметические (команды SAL и SAR) сдвиги. В арифметиче­
ском сдвиге вправо знаковый бит не сдвигается, а копируется в
соседний справа бит. /

Рис. 3.9. Команды сдвигов микропроцессора К1810ВМ86

При выполнении команд сдвигов флажки модифицируются сле­
дующим образом:

флажок CF всегда содержит значение последнего выдвинутого
бита;

состояние флажка AF всегда не определено;
в статическом сдвиге OF=1, если знаковый бит операнда из­

менился, а в динамическом сдвиге состояние OF не определено;
циклические сдвиги воздействуют только на флажки CF и OF;
в «обычных» сдвигах флажки SF, ZF и PF модифицируются в

соответствии с полученным результатом.
Время выполнения команд динамических сдвигов зависит от

значения счетчика сдвигов, т. е. содержимого регистра CL. Если,
например; команда RCL АХ, 1 выполняется за два такта синхро­
низации, то выполнение команды RCL АХ, CL требует 8-|-4Х
X(CL) тактов синхронизации.

179

3.3.4. КОМАНДЫ ПЕРЕДАЧИ УПРАВЛЕНИЯ

В разветвляющихся и циклических программах, а также при
организации подпрограмм необходимо нарушать естественный по­
рядок следования команд и передавать управление по адресу пе­
рехода, т. е. модифицировать указатели программной памяти —
регистры CS и PC. Команды передачи управления, осуществляю­
щие это действие, не изменяют состояний флажков (за исключе­
нием команды IRET возврата из прерывания, которая возвраща­
ет из стека сохраненные в нем состояния всех флажков).

Сегментная организация памяти определяет две разновидно­
сти команд передачи управления. Передача управления в преде­
лах текущего сегмента кода называется внутрисегментной (тип
NEAR); при этом модифицируется только PC и адрес перехода
представлен одним словом. Передача управления за пределы те­
кущего сегмента кода называется межсегментной, (тип FAR); здесь
необходимо модифицировать CS и PC и адрес перехода представ­
лен двумя словами сегмент: смещение (или seg:off). Такие
команды позволяют передать управление в любую точку всего ад­
ресного пространства 1М байт. Отметим, что в ассемблерных про­
граммах операндом команд передачи управления служит метка
той команды, которой передается управление.

Команды безусловных переходов. МП К1810 имеет пять фор­
матов команд безусловного перехода с одной и той же мнемони­
кой JMP и одинаковым общим представлением JMP target. Тип
команды программа-ассемблер выбирают в соответствии с атри­
бутами операнда target.

Двухбайтная команда JMP содержит в первом байте код опе­
рации, а во втором — знаковое смещение с диапазоном значений
от —128 до +127. При выполнении команды смещение прибавля­
ется к содержимому PC, которое соответствует адресу команды,
находящейся после команды JMP. Переход с таким форматом
удобен для организации коротких программных циклов. Трех­
байтная команда JMP производит такое же действие, как и пре­
дыдущая команда, но она имеет 16-битное смещение. Оно по-
прежнему считается целым знаковым числом, поэтому область пе­
рехода расширяется до —32768 R32767 байт.

Команда JMP типа NEAR осуществляет косвенный безуслов­
ный переход. Здесь адресом перехода, загружаемым в PC, служит
содержимое общего регистра или слова в памяти, определяемых
постбайтом режима адресации. Например, команда JMP ВХ за­
гружает в PC содержимое регистра ВХ, а команда JMP NEAR
PTR [SI] загружает в PC слово из памяти, которое находится в
текущем сегменте данных и имеет смещение в регистре SL

Последние две команды JMP реализуют прямой и косвенный
межсегментные переходы, т. е. имеют тип FAR. Одна из них со­
держит два слова прямого адреса перехода: первое из них за-
180

гружается в PC, а второе — в CS. В команде косвенного межсег­
ментного перехода, например JMP FAR PTR [SI], допускается
адресовать только память. При ее выполнении слово из адресуе­
мой ячейки загружается в PC, а следующее слово — в CS.

Команды условных переходов. При выполнении команды ус­
ловного перехода проверяется некоторое условие, представленное
текущим состоянием флажков (а в команде JCXZ— содержимым
регистра СХ) и в зависимости от удовлетворения условия пере­
ход осуществляется или нет. Эти команды позволяют проверить
состояния всех арифметических флажков, кроме AF, а также ряд
комбинаций состояний нескольких флажков. Если условие истин­
но, управление передается по адресу перехода путем прибавле­
ния к PC однобайтного знакового смещения, находящегося во
втором байте команды, а если условие ложно, выполняется сле­
дующая по порядку команда. Следовательно, все условные пере­
ходы являются короткими и их диапазон перехода составляет
—128 [-127 байт. Многие команды условных переходов имеют
две мнемоники, подчеркивающих содержательный смысл прове­
ряемого условия. Обычно условные переходы применяются после
команды сравнения и позволяют проверить все отношения между
знаковыми и беззнаковыми числами (см. табл. 3.7). Термины

Таблица 3.7. Условные переходы после сравнения

Опе­
ратор Знаковые Беззнаковые

JE, JZ Равно или нуль JE, JZ Равно или нуль
JNE, JNZ Не равно, не

нуль
JNE, JNZ Не равно, не

нуль
JG, JNLE Больше (не мень­

ше или равно)
JA, JNBE Выше (ниже или

равно)
JGE, JNLE Больше или рав­

но (не меньше)
JAE, JNB Выше или рав­

но (не ниже)
<с JL, JNGE Меньше (не боль­

ше или равно)
JB, JNAE Ниже (не выше

или равно)
JLE, JNG Меньше или рав­

но
JBE, JNA Ниже или рав­

но (не выше)

«больше» и «меньше» относятся к знаковым числам, а «выше» и
«ниже» — к беззнаковым. Например, число ОВЕН «меньше» и «вы­
ше» числа 37Н.

Кроме команд, указанных в табл. 3.7, имеются еще команды
JC и JNC (проверяют флажок CF) JO и JNO (проверяют флажок
OF), JP/JPE и JNP/JPO (проверяют флажок PF), JS и JNS
(проверяют флажок SF).

Время выполнения команд условных переходов составляет 4

(перехода нет) или 8 (переход происходит) тактов синхрониза­
ции.

Команды вызовов подпрограмм. В поле операнда команды
CALL вызова подпрограммы находится метка первой команды
вызываемой подпрограммы и заключительное действие этой ко­
манды заключается в загрузке значения метки (т. е. адреса пе­
рехода) в регистр PC (тип NEAR) или в регистры CS и PC (тип
FAR). Однако при переходе к подпрограмме необходимо времен­
но запомнить точку, откуда она вызывается, т. е. адрес возвра­
та— адрес команды, находящейся после команды CALL. Завер­
шающая подпрограмму команда RET должна передать управле­
ние по запомненному адресу возврата. Удобным «хранилищем»
адресов возвратов является стек. Поэтому первое действие ко­
манды CALL заключается в том, чтобы включить в стек содер­
жимое PC (тип NEAR) или содержимое регистров CS и PC (тип
FAR) с соответствующей модификацией SP.

Команда CALL допускает такие же режимы адресации, что и
команда JMP, но короткий вызов (с байтным смещением) отсут­
ствует. Действие наиболее сложной команды косвенного межсег­
ментного вызова показано на рис. 3.10.

Рис. 3.10. Команда косвенного межсегментного вызова

Команды возвратов из подпрограмм. Каждая подпрограмма
должна иметь минимум одну команду RET возврата, передающую
управление вызывающей программе. Для этого из стека извлека­
ется адрес возврата, включенный в него командой вызова под­
программы. В соответствии с типами команды CALL предусмот­
рены однобайтные команды возвратов двух типов — внутрисег­

ментный и межсегментный. Выполнение команды межсегментно­
го возврата заключается в следующих действиях: слово из вер­
шины стека TOS передается в PC; производится инкремент SP
на 2; слово из новой TOS передается в CS; осуществляется за­
ключительный инкремент SP на 2.

Две трехбайтные команды возвратов содержат код операции и
два байта данных, интерпретируемых как беззнаковое целое чис­
ло. Дополнительное действие этих команд заключается в прибав­
лении к SP находящегося в команде числа после извлечения из
стека адреса возврата. Они упрощают возврат из тех подпрог­
рамм, параметры которым передаются в стеке, так как увеличе­
ние SP эквивалентно «удалению» параметров из стека.

Команды управления циклами. Три двухбайтных команды уп­
равления циклами упрощают организацию программных циклов.
В них предполагается, что счетчиком цикла служит регистр СХ.
Второй байт представляет собой целое знаковое число, которое
для перехода к началу цикла прибавляется к содержимому PC.
Следовательно, диапазон перехода этих команд составляет—128 —
-j-127 байт. В ассемблерных программах поле операнда команд
управления циклами содержит метку первой команды цикла. При
выполнении команды LOOP производится декремент регистра СХ
и, если (СХ) =5^0, второй байт команды прибавляется к PC, т. е.
происходит переход к началу цикла; в противном случае выпол­
няется следующая по порядку команда. Таким образом, команда
цикла LOOP MORE эффективно заменяет две команды: РЕС СХ
и J.NZ MORE.

Мнемоники LOOPE и LOOPZ определяют одну и ту же ма­
шинную команду, которая производит декремент СХ, а затем пе­
редает управление в начало цикла, если (СХ)=0=О и ZF=1. В ко­
мандах LOOPNE и LOOPNZ дополнительным условием перехода
к началу цикла (помимо (СХ)=^=0) является нулевое состояние
флажка ZF.

Команды прерываний. В МП К1810 имеется три команды про­
граммных прерываний. Их выполнение напоминает реакцию МП
на запросы внешних прерываний по входам INT и NMI, но без
циклов шины подтверждения прерывания: в стек последователь­
но включается содержимое регистров флажков, CS и PC, а затем
в соответствии с типом прерывания осуществляется косвенный
межсегментный переход через память к нужной процедуре пре­
рывания. Двухбайтная команда INT type во втором байте содер­
жит тип прерывания, который программист задает в поле операн­
да как беззнаковое целое число со значением от 0 до 255. Если
поле операнда пустое, формируется однобайтная команда преры­
вания с типом 3 — это прерывание контрольной точки или конт­
рольного останова. Наконец, команда INTO прерывания при пе­
реполнении вызывает прерывание с типом 4, если флажок пере­
полнения OF установлен в 1.

183

Возврат из процедуры прерывания осуществляется однобайт­
ной командой IRET, извлекающей из стека запомненное при пре­
рывании содержимое регистров PC, CS и флажков.

3.3.5. ЦЕПОЧЕЧНЫЕ КОМАНДЫ

Цепочка — это последовательность байтов или слов, находя­
щихся в смежных ячейках памяти. МП К1810 имеет 5 однобайт­
ных команд, оперирующих одним элементом цепочки (эти коман­
ды иногда называются примитивами). Однако команде может
предшествовать префикс повторения REP, вызывающий повторе­
ние действия команды над следующим элементом. Благодаря пре­
фиксу повторения цепочки обрабатываются значительно быстрее,
чем при организации цикла. Повторение рассчитано на максималь­
ную длину цепочки 64К байт и заканчивается по одному или
двум условиям: Аппаратно подразумевается, что цепочка-источник
по умолчанию находится в сегменте данных (но возможна замена
сегмента) и смещение ее текущего элемента содержится в регист­
ре SL Цепочка-получатель всегда находится в дополнительном
сегменте данных, а смещение ее текущего элемента содержится
в регистре DL Ассемблер игнорирует поле операнда цепочечных
команд. При выполнении команды индексные регистры автомати­
чески модифицируются, чтобы адресовать следующие элементы
цепочек. Флажок направления DF определяет их автоинкремент
(DF=0) или авто декремент (DF=1).

При задании префикса повторения в каждом выполнении ко­
манды производится декремент счетчика СХ. Когда СХ достига­
ет нуля, управление передается следующей по порядку команде.

Префикс повторения. Префикс повторения имеет 5 мнемониче­
ских обозначений, которые определяют всего два кода байта пре­
фикса. Префикс REP в командах MOVS и STOS означает «повто­
рить до достижения конца цепочки», т’. е. до получения (СХ)=0.
Префиксы REPE (REPZ) в командах CMPS и SCAS для иници-
ипования следующего повторения дополнительно требуют ZF=E
Префиксы REPNE (REPNZ) для повторения команды требуют
ZF=0.

Команда MOVS. Команда MOVS передачи цепочки передает

MOVS dst tsrc dst <— (src)

байт (слово) из цепочки src в цепочку dst и соответственно моди­
фицирует регистры SI и DL Эта команда с префиксом REP осу­
ществляет блоковую передачу память — память. Тип элементов
цепочек обычно указывается мнемониками MOVSB (В — байт) и
MOVSW (W— слово).
184

Команда CMPS. Команда сравнения цепочек CMPS имеет сле­
дующее общее описание:

CMPS dst,src (src) - (dst)

По результату вычитания устанавливаются все арифметические
флажки, сами операнды не изменяются, а регистры SI и DI про­
двигаются на следующие элементы цепочек. Префикс REPE
(REPZ) придает команде смысл «сравнивать до тех пор, пока не
достигнут конец цепочек или элементы цепочек будут не равны», а
префикс REPNE (REPNZ) —«сравнивать до тех пор, пока не до­
стигнут конец цепочек или элементы цепочек будут равны». Для
явного указания типа элементов цепочек допускаются мнемони­
ки CMPSB и CMPSW.

Команда SCAS. Команда сканирования (просмотра) цепочки

SCfiS dst <ас> - <dst)

вычитает элемент цепочки dst, адресуемый DI, из содержимого
аккумулятора AL/AX. Разность определяет состояния арифмети­
ческих флажков, но сами операнды не изменяются. С префиксом
REPE (REPZ) команду SCAS можно использовать для поиска эле­
мента цепочки, отличающегося от заданного значения, а с префик­
сом REPNE (REPNZ) —равного заданному значению. Тип элемен­
тов обычно указывается мнемониками SCASB и SCASW.

Команда LODS. Команда загрузки элемента цепочки в акку­
мулятор

LODS ас <— (src)

передает элемент цепочки, адресуемый SI, в аккумулятор AL/AX и
продвигает SI на следующий элемент. Обычно команда LODS с
префиксом повторения не применяется, но ее удобно использовать
в программных циклах вместо команд MOV ас, src и INC SI (или
DES SI). Допускаются мнемоники LODSB или LODSW, явно ука­
зывающие тип элемента.

Команда STOS. Команда запоминания аккумулятора в цепочке

STDS dst dst <— (ас)

передает байт (слово) из аккумулятора AL/AX в элемент цепочки,
адресуемый DI, и продвигает DI на следующий элемент. С пре­
фиксом REP можно инициализировать всю цепочку на фиксиро­
ванное значение, например пробел или нуль. Мнемоники STOSB и
STOSW явно определяют тип элемента цепочки.

185

3.3.6. КОМАНДЫ УПРАВЛЕНИЯ МИКРОПРОЦЕССОРОМ

Часть команд этой группы предназначена для управления со­
стояниями флажков. С их помощью можно установить (STC), сбро­
сить (CLC) и инвертировать (СМС) флажок переноса CF; уста­
новить (STD)'n сбросить (CLD) флажок направления DF; уста­
новить (STI) и сбросить (CLI) флажок прерывания IF.

Команда HLT останова прекращает действия МП и переводит
его в состояние останова. Из этого состояния МП выводится сиг­
налом CLR сброса, а также прерываниями на входах NMI и INT.

Команда WAIT ожидания заставляет МП периодически про­
верять сигнал на входе TEST. При появлении активного (низко­
го) уровня сигнала TEST выполняется команда, находящаяся за
командой WAIT.

Команда I^OCK, называемая префиксом блокировки, застав­
ляет МП сформировать активный сигнал LOCK па время выпол­
нения команды, находящейся за префиксом LOCK- В мультипро­
цессорных системах сигнал LOCK подается в арбитр шипы, кото­
рый блокирует запросы доступа к шине других процессоров.

Холостая команда NOP (нет операции) не производит никаких
действий и обычно применяется в программных циклах задержки.

Команда ESC переключения на сопроцессор позволяет сопро­
цессору получать предназначенные для него команды и операнды
в процессе работы МП К1810. Сам МП по этой команде не делает
ничего, кроме обращения к памяти за операндом и выдачи его па
шину данных (если, конечно, обращение к памяти определено в
коде операции команды ESC).

3.3.7. ПРОГРАММНАЯ СОВМЕСТИМОСТЬ МИКРОПРОЦЕССОРОВ
KS8O И К1810

В тех редких случаях, когда необходимо переместить разрабо­
танное для МП К580 программное обеспечение на МП К1810, воз­
никает проблема их программной совместимости. Прямая прог­
раммная совместимость (и даже совместимость вверх) между ними
отсутствует. Однако подавляющее большинство команд МП К580
можно однозначно заменить соответствующими командами МП
К1810. Но у МП К580 имеются команды, которые для выполнения
эквивалентных действий требуют две, а иногда три команды МП
К.1810, например команды условных вызовов и возвратов, команды
DAD, XTHL и др. Это связано в основном с особенностями воз­
действия этих команд на флажки. Обычно принимаемое соответ­
ствие регистров обоих микропроцессоров приведено в табл. 3.8.

При указанном соответствии регистров для любой команды
МП К580 нетрудно построить эквивалентную команду или после­
довательность команд МП K18I0. Следовательно, принципиально
186

Таблица 3.8. Соответствие регистров ■

Регистры
МП К580

Регистры
МП К1810

Регистры
МП К580

Регистры
МП K18I0

А AL D пн
Н ВН Е DL
L BL SP SP
В СН PC PC
С CL PSW Младший

байт ре­
гистра

флажков
и AL

возможно осуществить покомандное преобразование ассемблер­
ных программ для МП К580 в ассемблерные программы для МП
К18Ю. Однако при таком преобразовании не используются более
широкие возможности системы команд МП К1810, например ко­
манды умножения, деления и др., и оно оказывается малоэффек­
тивным. Кроме того, МП К1810 имет больше регистров, которые
можно применять в качестве указателей памяти. Чтобы показать
хотя бы часть новых возможностей МП К1810, рассмотрим прог­
раммы 3.1 и 3.2 умножения и деления чисел произвольной длины,
функционально эквивалентные программам 2.11 и 2.15 для МП
К580. Для наглядности сохраним общие схемы умножения и де­
ления и воспользуемся одинаковыми метками.

Программы для МП К580 имеют длину 70 и 99 команд, а число
команд в программах для МП К1810 составляет 41 и 59 соответ­
ственно. Таким образом, приближенная оценка показывает, что
программы для МП К1810 оказываются в 1,5—2 раза короче (по
числу команд) аналогичных программ для МП К580.

3.4. АЛГОРИТМЫ И ПРОГРАММЫ АРИФМЕТИЧЕСКИХ
ОПЕРАЦИЙ

Микропроцессор К1810 поддерживает следующие типы числен­
ных данных: двоичные целые беззнаковые и знаковые числа дли­
ной 8 и 16 бит, упакованные десятичные числа (байт содержит две
Десятичные цифры в коде 8421) и неупакованные десятичные чис­
ла (байт содержит в младшей тетраде одну десятичную цифру).
Система команд обеспечивает выполнение арифметических опера­
ций над числами всех типов, за исключением умножения и деле­
ния упакованных десятичных чисел. При переходе к другим типам
чисел, например многобайтным числам или к числам с плавающей
точкой, для арифметических операций приходится разрабатывать

187

Программа 3.1. Умножение беззнаковых целых чисел произволь­
ной длины:

; Начальный адрес множимого в регистре ВХ, начальный

; адрес множителя в регистре ВР, длина сомножителей а АН.

; Старшая половина произведения начинается с адреса HIGH,

; а младшая находится на месте множителя-
; Предполагется, что в регистрах DS и ES находятся одинаковые

; значения.

MPRND: ; Проверить нулевую длину сомножителей.

OR АН,АН ; Установить флажки
JZ EXIT ; Возврат, если длина равна нулю

5
; Образовать конечные адреса старшей половины

; произведения и множителя.
MOV CL, AH ; Длина в регистре CX

MOV CH,И
ADD BP,CX ; В BP конечный адрес множителя
MOV SI,HIGH ; В SI конечный адрес
ADD SI ,CX ; старшей половины произведения

; Образовать с четчик бит.
MOV DL,AH ; Длина в регистре DX
MOV DH,0
mov CL,3 ; Умножить ее на 6,
SHL DX,CL ; счетчик бит в регистре DX

; Очистить старшую половину произведения.
MOV CL, AH ; Счетчик байт в регистре СХ
MOV DI,HIGH ; Начальный адрес в регистре DI
CLD ; Продвижение перед
MOV AL, И ; Значение для инициализации

REP STOSB

J

; Заполнить нулями

; Подготовка к умножению закончена,

CLC ; флажок переноса должен быть сброшен

; Сдвинуть вправо старшую половину произведения.
LOOPM: MOV CL,AH ; Счетчик байт в регистре СХ
SHIFTP: DEC SI ; Продвинуть указатель

RCR BYTE PTR CSII,,1 ; Сдвинуть байт
LOOP SHIFTP ; Продолжать сдвиг

У
; Сдвинуть вправо множитель.
MOV CL,AH ; Длина в регистре СХ
ADD SI,CX ; Восстановить конечный адрес

SHIFTMs DEC BP ; Продвинуть указатель
RCR BYTE PTR DSiEBPl,! ; Сдвинуть байт

; Продолжать сдвиг
; Сохранить флажки

LOOP SHIFTM

PUSHF

f
• BD КЬлаЖКО ПЕП ЕНОС а.

MOV

ADD
POFF

JNC

CL, AH

BP,ex

DECR

; Длина в регистре СХ

; Восстановить конечный адрес

; Восстановить флажки

5 Бит множителя равен нулю

ADDL:

г
; Прибаеить множимое

MOV DI,HIGH ;

CLC ;
MOV AL,EBX3 ;

ADC EDI 3,AC :

INC BX ;

INC DI
LOOP ADDL ;
MOV CL,AH ;

SUB BX,CX ;

к произведению.
Начальный адрес произведения

Сбросить флажок переноса

Очередной байт множимого

Г!р иб ав ит ь к пр оизв едению

Продвинуть указатели

Продолжать сложение

Длина в регистре СХ

Восстановить адрес множимого

DECR:

EXIT:

5
; Декремент и анализ

DEC DX ;

JNZ LOOPM ;

RET ;

счетчика бит.

Декремент счетчика бит

Повторять умножение

Возврат;

специальные подпрограммы. Как правило, в них сохраняется об­
щая циклическая структура, которая была показана в подпрограм­
мах для МП К580. Благодаря мощной системе команд, большей
универсальности регистров и гибким режимам адресации подпрог­
раммы для МП К1810 оказываются компактнее соответствующих
подпрограмм для МП К580. На длину подпрограмм влияет выбор
рабочих регистров, используемые режимы адресации и применение
специальных команд, например, команд управления циклами и
операций с цепочками. В операциях со знаковыми числами помо­
гает наличие флажка переполнения OF.

При программировании операций с мгюгобайтпыми числами
необходимо помнить о способе хранения их в памяти: адресом чис­
ла является меньший адрес, по которому хранится младший байт.
Для обращения к отдельным байтам чисел удобно пользоваться
косвенной регистровой адресацией, в которой указателями памяти
выступают регистры BP, ВХ, SI и DI. В качестве счетчика цикла
почти всегда привлекается регистр СХ, так как именно он участ­
вует в команде управления циклом LOOP. Целесообразно по воз­
можности использовать для обработки многобайтпых чисел цепо­
чечные команды LODS и STOS, в которых передача байта (слова)
сопровождается автоматической модификацией регистров SI и DI.

189

Программа 3.2. Деление беззнаковых чисел произвольной
длины:

; Начальный адрес делимого в регистре ВР, начальный адрес
; делителя в регистре ВХ, длина операндов в регистре АН.
; Частное возвращается на месте делимого, начальный адрес

; остатка в регистре SI.
; Предполагается,, что в регистрах DS и ES находятся

; одинаковые значения.
DIVRND: ;

•; Проверить нулевую длину операндов.
OR АН,АН ; Установить флажки

REP

REP

JZ OK ; Возврат, если длина равна нулю

5
; Образовать счетчик бит в регистре DX.

MOV DL,АН ; Длина в регистре'ВХ
MOV $ DH,0

MOV CL,3 ; Умножить ее на В

SHL DX, CL­

ING DX ; Счетчик бит в регистре DX

5
Очистить буферные области.

MOV AL,0 ; Начальное значение

MOV СН,И ; Длина в регистре СХ
MOV CL,АН

MOV DI,BUFFI ; Начальный адрес текущего буфера

STOSB ; Очистить буфер

MOV DI,BUFF2 ; Начальный адрес другого буфера

MOV CL,АН ; Длина в регистре СХ

STOSB ; Очистить буфер

9
; Инициализировать

MOV SI,BUFFI

MOV DI.BUFF2

указатели буферов,
и

J Проверить делитель на нуль.
MOV CL,AH ; Счетчик байт в регистре СХ

CHECK: OR AL,CBX3 Объединить по ИЛИ очередной байт
INC BX » Продвинуть указатель
LOOP CHECK Повторять до завершения
OR AL, AL Установить флажки
JZ err' Ошибка, делитель равен нулю
MOV CL, AH 5 Длина в регистре СХ
SUB BX,CX i Восстановить адрес делителя

; Подготовка к циклу деления закончена.

; флажок пере» юса сброшен-

LOOFD: MOV CL,AH ; Счетчик байт в регистре СХ

; Сдвинуть делимое влево с учетом флажка переноса.

SHIFTls RCL BYTE PTR DSsEBF3,i • Сдвинуть текущий байт
INC BP ; Продвинуть - указатель

LOOP SHIFT1 ; Повторять до завершения
MOV CL, АН ; Длина в регистре СХ
SUB ВР,СХ ; Восстановить» адрес делимого

5 Проверить достижение конца цикла деления,

DEC 1)Х ; Декремент счетчика бит &

JS ОК ; Деление законченом

CONT:

SHIFTZ:

SUBL:

ERR:

OK:

EXIT:

5
; Сдвинуть содержимое текущего буфера влево,

; передать флажок переноса в младший бит-

RCL BYTE PTR ESI 3.1 : Сдвинуть байт

INC SI : Продвинуть указатель

LOOP SHIFT2 : Повторять до завершения

MOV CL,АН ; Длина е регистре СХ
SUB SI ,СХ ; Восстановить адрес текущего буфера

; Произвести вычитание, помещая разность в другой буфер»

; Счетчик байт в СХ, флажок заема сброшен.

MOV AL,£SIJ ; Произвести вычитание

SBB ALjCBXJ } и запоминание разности

MOV EDI J,AL.
INC SI ; Продвинуть указатели

INC DI
INC BX

L.OOP SUBL. ; Повторять до завершения

3 Во флажке переноса инверсия бита частного.

PUSHF Сохранить флажок в стеке

MOV CL,АН ; Длина в регистре СХ

SOB SI,CX ; Восстановить начальные адреса

SUB DI,CX

SUB ВХ,СХ
POPF ; Восстановить флажки

СМС ; Образовать бит частного

JNC LDOPD ; Разность отрицательна

XCHG SI,DI : (^коммутировать буферы

JMP LOOPD ; Повторять цикл деления

г
; Ошибка - деление на нуль,
STC ; Установить флажок переноса

JMP EXIT

; Нормальный ЗД#с>д.
CL.C ; Сбросить флажок переноса

RET ; Возврат

131

В настоящем параграфе, построенном аналогично § 2.4, рас­
смотрены алгоритмы и программы операций над числами в раз­
личных форматах.

3.4.1. ОПЕРАЦИИ НАД ДВОИЧНЫМИ ЦЕЛЫМИ ЧИСЛАМИ

Сложение и вычитание. При программировании операций сло­
жения и вычитания многобайтных чисел, как обычно, потребуются
два указателя памяти для адресации слагаемых, если, конечно,
сумма замещает одно из слагаемых. В качестве указателей реко­
мендуется максимально использовать регистры SI и DI, а рабочим
регистром выбирать аккумулятор AL (для байтов) или АХ (для
слов).

В программе сложения 3.3 предполагается, что начальные ад­
реса операндов находятся в регистрах SI и DI, длина их переда­
ется в регистре СХ, а сумма замещает слагаемое, адресуемое ре­
гистром DI.

Программа 3.3. Сложение двоичных целых чисел (байтами):

Начальные адреса операндов в регистрах SI и DI,

длина (в байтах)' в регистре СХ.

СуммА замещает операнд, адресуемый регистром DI-

ADDS: CLC 5 Сбросить флажок переноса

ALOOF: MOV AL,LSI J ; Текущий байт первого операнда

ADC EDU,AL ; Прибавить к байту второго операнда

INE SI ; Продвинуть указатели
INC DI ; операндов

LOOP ALOOF ; Повторять до завершения

RET ; Возврат

Аналогично выглядит программа 3.4 сложения многобайтных
чисел, если воспользоваться командами сложения для слов. Ко­
нечно, в регистре СХ должна находиться длина слагаемых в сло­
вах. Для ускорения операции следует обеспечить четные началь­
ные адреса операндов (напомним, что слова с четными адресами
передаются в одном цикле шины, а слова с нечетными адресами
требуют двух циклов шины).

Отметим, что использовать вместо двух команд инкремента INC
одну команду ADD SI,2 нельзя, так как она будет сбрасывать
флажок переноса CF, состояние которого должно учитываться при
сложении следующих слов.
192

Программа 3.4. Сложение двоичных целых чисел (словами):

Начальные адреса операндов в регистрах SI и DI,

длина (в словах) в регистре СХ.

Сумма замещает операнд, адресуемый регистром DI.

ADDW: . CLC ; Сбросить флажок переноса
ALOOF: MOV AX,CSI1 ; Текущее слово первого операнда

ADC CDI3,AX. ; Прибавить к слову второго операнда
INC SI ; Продвинуть указатели операндов
INC

INC

INC

SI
DI

DI

1 на следующее слово

LOOP

FET

ALOOF ; Повторять до завершения

; Возврат

Применение регистров SI и DI как указателей памяти, а ак­
кумулятора AL/AX как рабочего регистра позволяет реализовать
компактные программы с цепочечными командами LODS и STOS.
Помимо своих основных функций загрузки и запоминания содер­
жимого аккумулятора эти команды производят модификацию ре­
гистров SI и DI на длину элемента цепочки (1—для байтов и
2 — для слов). Выполнение инкремента или декремента зависит
от состояния флажка направления DF. Следует .помнить, что ко­
манда LODS обращается к текущему сегменту данных (через ре­
гистр DS), а команда STOS — к текущему дополнительному сег­
менту (через регистр ES). Поэтому, если оба операнда находятся
в сегменте данных, необходимо обеспечить одинаковое содержи­
мое регистров DS и ES. Для этого потребуются команды MOV АХ,
DS и MOV ES, АХ. Кроме сокращения длины программы коман­
ды LODS и STOS уменьшают и время ее выполнения. Вот как
трансформируются программы 3.3 и 3.4, когда в них применяются
цепочечные команды.

Программа 3.5. Сложение двоичных целых чисел (байтами):

• Начальные адреса операндов в регистрах SI и DI,

» длина (в байтах) в регистре СХ.
; Сумма замещает операнд, адресуемый регистром DI.

ADDS: CLC

CLD

; Сбросить флажок переноса

; Задать инкремент указателя

ALOOF: LODSB . Текущий байт первого операнда

ADC AL,EDII • Прибавить байт второго операнда

STOSB ; Запомнить байт суммы

LOOP ALOOF

ROT

; Повторять до завершения

; Возврат

7—1021 193

Программа 3.6. Сложение двоичных целых чисел (словами):

I Начальные йдр^са операндов в регистрах SI и DI,
; длина (в словах) в регистре СХ.

; Сумма 'замещает операнд, адресуемый регистром DI.

ADDW: CLC

CLD
•; Сбросить флажои переноса

; Задать инкремент указателей
ALODF: LODSW ; Текущее слово первого операнда

ADC АХ,tDI 3

STOSW
; Прибавить слово второго операнда

; Запомнить слово суммы
LOOP ALOOF

RET
; Повторять до завершения

; Возврат

Цикл из 7 команд в программе 3.4 имеет длину 10 байт и вы­
полняется за 60 тактов синхронизации, а в программе 3.6 такой
цикл состоит из 4 команд, имеет длину 6 байт и выполняется на
54 такта синхронизации.

Способ обнаружения переполнения в программах 3.3—3.6 за­
висит от форматов операндов. Если слагаемые являются беззнако­
выми числами, то о переполнении сигнализирует установленный
в 1 флажок переноса CF; при сложении знаковых чисел, представ­
ленных в дополнительном коде, переполнение фиксирует установ­
ленный в 1 флажок переполнения OF.

Для превращения программ 3.3—3.6 в программы вычитания
целых беззнаковых или знаковых чисел необходимо только заме­
нить команду ADC на команду SBB. При вычитании беззнаковых
чисел состояние флажка CF—1 означает получение отрицательной
разности (опа представлена в дополнительном коде), а при вычи­
тании знаковых чисел установленный в 1 флажок OF по-прежне­
му свидетельствует о переполнении.

Наличие в МП К1810 четырех указателей памяти, находящихся
в распоряжении программиста, позволяет очень просто организо­
вать сложение (вычитание) без разрушения одного из операндов.
В программе 3.7 слагаемые адресуют регистры SI и ВХ, а сумма
(разность) помещается в область памяти, адресуемую регистром
DI.

В этой программе цикл сложения (вычитания — при замене ко­
манды ADC па команду SBB) состоит всего из 5 команд. В ана­
логичной же программе для МП К.580 (программа 2.2) цикл со­
стоит из 10 команд.

Программа 3.7. Сложение двоичных целых чисел:

5 Адрес первого операнда находится в 51, адрес второго

; операнда ез ВХ, адрес суммы в DI. Число байт операндов

; в регистре СХ. Содержимое регистров DS и ES одно и то же.

ADDM1 CLC
OLD

; Сбросить флажок переноса
; Задать инкремент указателей

ALOOF: LODSB ; Текущий байт первого операнда

ADC AL.LBXT ; Прибавить байт второго, операнда

5ТО5Б ; Запомнить байт суммы

INC BX ; Продвинуть указатель

LOOP ALOOF ; Повторять до завершения

RET ; Возврат

В заключение отметим, что каждая из программ 2.3 и 2.4 для
МП К580, которые осуществляют сложение и вычитание знаковых
16-битных чисел в дополнительном коде, реализуется всего одной
командой МП К1810— ADD и SUB, операнды которых могут на­
ходиться в любых общих регистрах. О переполнении сигнализиру­
ет установленный в 1 флажок OF.

Умножение. Для умножения двоичных 8- и 16-битных беззна­
ковых и знаковых чисел в МП К1810 имеются команды MUL и
IMUL. Напомним, что они предполагают размещение множимого
в аккумуляторе AL при умножении байт или АХ при умножении
слов, а множитель указывается в команде в любом режиме адре­
сации, за исключением непосредственного. Произведение двойной
длины образуется в регистрах АН : AL при умножении байтов и
в регистрах DX : АХ при умножении слов. Следовательно, програм­
мы умножения для МП К580 с соответствующими операндами
(программы 2.7—2.10) заменяются всего одной командой MUL или
IMUL. Только переход к более длинным сомножителям требует
разработки специальных программ. Рассмотрим две таких прог­
раммы: первая из них предназначена для умножения 32-битпых
сомножителей с получением 64-битного произведения, а вторая —
Для умножения двоичных чисел произвольной длины.

Предположим, что 32-битные сомножители в формате беззна­
ковых целых чисел размещаются в области памяти, показанной
на рис. 3.11, а ее начальный адрес содержится в регистре ВХ. Опе­
рация осуществляется четырьмя умножениями 16-битных сомно­
жителей и суммированием частичных произведений с учетом их
положения в полном произведении. Полагаем, что первоначально
байты области для произведения содержат нули.
7* 1<К

Множимое X

Множитель У
3! 1В 15 О

I g I И
I с) g I

Произ Ведение

t*d

а * d

2=ХУ

Рис. 3.11. Умножение 32-битных сомножителей

Программа 3.8. У множение 32-битных сомножителей:
; Регистр ВХ адресует область памяти, в которой

; размешаются сомножители и произведение.

MULT32: MOV AX,tBX3 ; Умножить b*d

MUL WORD PTR CBX+43
MOV CBX+B3,AX ; Сохранить
MOV f СВХ + КЗЗ , DX ; произведение b*d
MOV AX, ГВХЗ ; Умножить b*c

MUL WORD PTR CBX+BO

ADD EBX+103,AX ; Сложить

ADC EBX+123,DX ; b*d и р*с

ADC EBX+143,0 ; Учесть перенос
MOV AX,CBX+23 ; Умножить a*d

MUL. WORD PTR CBX+43
ADD [BX+103,AX ; Прибаь»<1 i b
ADC EBX+123,DX ; к полному произведению

ADC EBX+143,0 ; Учесть перенос

MOV AX,CBX+23 ; Умножить а*с-
MUL WORD PTR CBX+63

add CBX+123,AX .; Прибавить.
ADC £BX+14J,DX ; к полному Произведению
RET ; Возврат

196

Для умножения многобайтных двоичных чисел в МП К1810
можно воспользоваться общим способом умножения множимого на
отдельные биты множителя и ёуммирования частичных произведе­
ний, как это было сделано для МП К580 (программа 2.11). Одна­
ко в этом способе не используются возможности команды MUL.
Поэтому для умножения многобайтных чисел целесообразно при­
менить способ умножения байтов множимого на отдельные байты

, множителя с накоплением получающихся произведений, учитывая
их правильное положение в полном произведении. Программа 3.9
несколько усложняется необходимостью учета межбайтных пере­
носов в процессе накопления частичных произведений. Вместе с
тем благодаря гибкой адресации МП К1810 программа оказыва­
ется довольно короткой.

Программа 3.9. Умножение многобайтных целых беззнаковых
чисел:

Абсолютные начальные адреса множимого, множителя

и произведения есть MPCND, MPL и PROD.
Длина сомножителей N байт, произведения 2N байт.
Область для произведения должна содержать нули и

BMULTN: MOV Cx.N ; Счетчик байт множителя
DI,DI ; Сбросить индекс множителяXDR

MLOOP: MOV DH,N ; Счетчик байт множимого •
XOR SI,SI ; Сбросить индекс множимого

MCBYTE: MOV BX,DI ; Индекс частичных произведений
MOV Al_,MPCNDtSI 1 ; Текущий байт множимого
MUL BYTE PTR MPLCDI3 ; Умножить на байт множителя
ADD EBXIPRCDCDI] , АХ ; Прибавить в произведение
INC ВХ ; Продвинуть индекс
INC ВХ ; частичных произведений
MOV DL,N-1 ; Счетчик оставшихся байт

CARRY: ADC EBX1PRDDESI3,0 ; Учесть возникающие
DEC DL ; переносы
JNC CARRY
IMC SI ; Умножить остальные байты
DEC DH ; множимого

JN7 МСВУТЕ
INC DI ; Умножить на все
LOOP MLOOP ; байты множителя
RET

В программе 3.9 имеются три цикла (см. поясняющий рис. 3.12).
Внешний цикл (его начало идентифирует метка MLOOP) связан
с выбором для умножения очередного байта множителя. Счетчи­
ком цикла служит регистр СХ, а индексирование байтов множите-

ля осуществляется с помощью регистра DI. Следующий вложен­
ный цикл (метка MCBYTE) производит умножение отдельных бай­
тов множимого на выбранный байт множителя. Получающееся
при этом в регистре АХ частичное произведение (точнее, двухбайт­
ное произведение отдельных байтов множимого и множителя) при­
бавляется к сумме частичных произведений. Счетчик этого цикла.

। *У Вайт» j

Множимое X х Ид 1*д-4 Iх? I Л<~1
Множитель Y I Уп |Уп->| Ito Itoi

|Z?tf|Z^-i|~_________ __ ______________
। ____________ПроизЕеЗение 2N Вайт

Рис. 3.12. Умножение многобайтных чисел с помощью команды

организован в регистре DH, а регистр SI используется для индек­
сирования байтов множимого. Учет правильного положения про­
изведений отдельных байтов в полном произведении осуществляет­
ся с помощью регистра ВХ. Самый внутренний цикл, начинаю­
щийся в строке с меткой CARRY, предназначен для учета межбайт­
ных переносов, возникающих при сложении.

Программа умножения многобайтных чисел состоит всего из
20 команд; аналогичная программа для МП К580 потребовала
70 команд. Воспользуемся таким же приемом, как в программе 3.9,
для умножения многоразрядных неупакованных десятичных чисел
(программа 3.15).

Деление. Команды деления DIV и IDIV, операндами которых
198

являются целые знаковые и беззнаковые числа различной длины,
закрывают почти все практические потребности в операции деле­
ния. Если делимое и делитель имеют одинаковую длину, то перед
командой деления потребуется расширять делимое с помощью
команд CBW и CWD. В тех случаях, когда длина операндов не
удовлетворяет требованиям команд DIV и IDIV, приходится раз­
рабатывать обычные циклические программы, которые были доста­
точно подробно рассмотрены в § 2.4. Кроме того, один из вариан­
тов программы деления целых чисел произвольной длины был
приведен в § 3.3 (программа 3.2).

3.4.2. ОПЕРАЦИИ С ДЕСЯТИЧНЫМИ ЧИСЛАМИ

Система команд МП К1810 ориентирована на оба формата де­
сятичных чисел: упакованный и неупакованный. В обоих форматах
многоразрядные десятичные числа представляются последователь­
ностями байтов. Команды десятичной арифметики ориентированы
только на обработку байтов, причем основным рабочим регистром
во всех десятичных операциях является регистр AL, эквивалент­
ный аккумулятору А в МП К580. Для поддержки десятичной ариф­
метики предусмотрено несколько команд коррекции, благодаря ко­
торым относительно легко реализуются сложение и вычитание упа­
кованных десятичных чисел и все арифметические операции над
неупакованными десятичными числами. Далее ради простоты
предполагаются беззнаковые операнды.

Операции с упакованными десятичными числами. Рассмотрим
вначале, как обрабатываются упакованные десятичные числа, учи­
тывая, что здесь много общего с операциями в МП К580.

Сложение. Сложение упакованных десятичных чисел про­
изводится в два этана:

байты операндов суммируются в регистре AL как двоичные чис­
ла одной из команд двоичного сложения,

полученная в регистре AL сумма корректируется командой DAA
(теперь эта мнемоника означает «десятичная коррекция для сло­
жения»); после нее в регистре AL образуется правильное упако­
ванное представление суммы, а флажок переноса CF показывает
десятичный перепое.

Действия команд DAA в МП К580 и К1810 одни и те же, поэто­
му программа 3.10 сложения многоразрядных десятичных чисел
Для МП К1810 практически не отличается от соответствующей
программы для МП К580 (см. программу 2.16). Здесь имеется
больше режимов адресации памяти, а для управления циклом
обычно применяется команда LOOP. Предположим, что начальные
адреса слагаемых находятся в регистрах SI и DI, а регистр СХ
содержит длину операндов в байтах. Пусть сумма замещает опе­
ранд, адресуемый регистром DI.

199

Программа 3.10. Сложение упакованных десятичных чисел про­
извольной длины:

; Начальные адреса операндов в регистрах SI и DI,

q длина €в байтах) в регистре СХ.
; Сумма Замешает операнд, адресуемый регистром D1 .

ADLPCK: CLC Сбросить флажок переноса

ALOOF: MOV AL,ESI] ; Текущий байт первого операнда

ADC AL,EDI] ; Прибавить байт второго операнда

DAA ; Скорректировать сумму

MOV EDI],AL ; Запомнить байт суммы

INC SI ; Продвинуть указатели

INC DI

LOOP ALOOF ; Повторять до завершения

re5 ; Возврат

После возврата из подпрограммы о переполнении сигнализиру­
ет установленный в 1 флажок CF.

Адресация операндов с помощью регистров SI и DI в цикличе­
ских программах с привлечением регистра AL позволяет применить
цепочечные команды LODS и STOS. Конечно, при этом в сегмент­
ных регистрах DS и ES должны находиться одни и те же значе­
ния. Кроме того, состояние флажка направления DF должно учи­
тывать направление обработки отдельных байтов операндов. Обыч­
но оно соответствует направлению от меньших адресов к большим,
но в программе деления требуется обратное направление. Програм­
мы с использованием цепочечных команд становятся короче и вы­
полняются быстрее. Например, программа 3.10 приобретает сле­
дующий вид.

Программа 3.11. Сложение упакованных десятичных чисел про­
извольной длины:

; Начальные адреса операндов в регистрах SI и DI,

; длина операндов (в байтах) в регистре СХ.

; Сумма замещает операнд, адресуемый регистром DI.

; Содержимое регистров DS и ES должно быть одним и тем же.

ADDPCK: CLC

CLD

; Сбросить флажок переноса

; Движение от младшего байта
ALOOP: LODSB ; Текущий байт первого операнда

ADC AL,EDI1 ; Прибавить байт второго операнда
DAA ; Скорректировать сумму
STOSB ; Запомнить байт суммы
LOOP ALOOP ; Повторять до завершения
RET ; Возврат

Вычитание. Операция вычитания упакованных десятичных
чисел реализуется аналогично сложению благодаря наличию спе­
циальной команды DAS десятичной коррекции для вычитания. Эта
200

команда помещается после одйой из команд двоичного вычитания
и образует в аккумуляторе AL правильную десятичную разность,
причем флажок CF показывает заем из соседнего старшего деся­
тичного разряда.

Действия команды DAS заключаются в следующем:
если AF=1 или младшая тетрада регистра AL содержит за­

прещенную комбинацию, из содержимого AL вычитается 06Н и
флажок AF устанавливается в 1;

если CF=1 или старшая тетрада регистра AL содержит запре­
щенную комбинацию, из содержимого AL вычитается 60Н и фла­
жок CF устанавливается в I.

Необходимо отчетливо представлять несколько непривычные
действия команды DAS. Когда МП выполняет команду вычита­
ния, он фактически прибавляет к уменьшаемому дополнительный
код вычитаемого. При этом флажки AF и CF устанавливаются в
1 тогда, когда при фактическом сложении значения переносов рав­
ны нулю. Приведем несколько примеров.

Пример 3.1. Десятичное вычитание
Уменьшаемое 93 86 25 54

1001 ООП 1000 оно 0010 0101 0101 0100
Вычитаемое 21 07 84 96

0010 0001 0000 0111 1000 0100 1001 ОНО
Двоичный дополнитель- 1101 1111 1111 1001 0111 1100 эмо 1010
ный код вычитаемого

В десятичной системе счисления примеры имеют вид:

Сложение к 1001
1101

ООП
1111

, 1000
+ 1111

ОНО ,
1001

0010
0111

0101 ,
1100 +

0101
оно

0100
1010

0111 0010 шо 1111 1010 0001 1011 1110
Состояния CF=0,
флажков

AF=0 CF= 0, AF== 1 CF= 1, AF= 0 CF= 1, AF=1

Коррекция
командой DAS

Нет — 0111
0000

1111
ОНО

1010
ОНО

0001
0000

1011
оно

1110
ОНО

0111 0010 0111 1001 0100 0001 0101 1000
Состояние CF 0 0 1 1

Заема нет Заема нет Есть заем Есть заем

39 - 86
07

25 54
~ 21 ~ 84 ~ 96

72 79 41 * 58
Заем= 1 Заем= 1

Здесь значение заема 1 необходимо учитывать как —100, по­
этому фактический результат, например, вычитания (25—84) ра­
вен (—100+41)=—59. Можно также полагать, что отрицательная
разность представлена в дополнительном коде.

Программа 3.12. Вычитание упакованных десятичных чисел про­
извольной длины:

201

; Начальные адреса операндов в регистрах SI ЦЕТ,
; длина (в байтах) в регистре СХ.
; Разность замещает уменьшаемое, адресуемое регистром SI.

SUBPCKj CLC ; Сбросить флажок переноса

SLOOPi MOV AL,ESI 3 ; Текущий байт уменьшаемого

SBB AL,CD13

DAS

; Вычесть байт вычитаемого

; Скорректировать разность

MOV ESI 3,AL ; Запомнить байт разности

INC SI
INC DI

; Продвинуть указатели

LOOP SLOOP

RET

; Повторять до завершения

; Возврат

Если после возврата из подпрограммы флажок CF установлен
в 1, то разность является отрицательной и представлена в десятич­
ном дополнительном коде. Целесообразно сравнить программу
3.12 с аналогичной программой для МП К580 (программа 2.17) и
убедиться в удобстве и простоте использования команды DAS.

Умножение и деление. Команды коррекции для умно­
жения и деления упакованных десятичных чисел в МП К1810 от­
сутствуют. Следовательно, все трудности Программирования этих
операций для МП К580, о которых говорилось в гл. 2, распростра­
няются и на программирование для МП К1810.

Операции с неукапованными десятичными числами. Напомним,
что в этом формате байт содержит одну десятичную цифру (в
младшей тетраде), а старшая тетрада содержит либо ООН (сим­
вольный код), либо нули. Первая комбинация ООП допустима в
операциях сложения и вычитания, по в операциях умножения и де­
ления старшие тетрады операндов должны содержать нули.

Сложение. Неупакованные десятичные числа, как и упако­
ванные, складываются в два приема: сначала байты операндов
суммируются как двоичные числа командами ADD или ADC с по­
лучением в регистре AL промежуточного результата, а затем
команда коррекции для сложения ААА преобразует промежуточ­
ный результат в неупакованный формат. Действия команды ААА,
как и других команд коррекции для неупакованного формата, по­
строены с учетом простоты выполнения операций над многоразряд­
ными числами. Коррекция для сложения включает в себя следую­
щие шаги:

1) если младшая тетрада регистра AL содержит допустимую
комбинацию и AF = 0, перейти к шагу 3;

2) если младшая тетрада регистра AL содержит запрещенную
комбинацию или AF=1, то необходимо прибавить 06Н к содержи­
мому регистра AL, прибавить единицу к содержимому регистра АН
и установить AF=1;

3) сбросить старшую тетраду регистра AL;
202

4) установить флажок CF н то же состояние, в каком находится
флажок AF.

Рассмотрим пример выполнения команды ААА. Пусть в регист­
ре АХ находится число 0535Н, а в регистре BL — число 39Н. Тогда
после команды ADD AL, BL в регистре AL будет получено число
6ЕН и флажок AF=0. Следовательно, команда ААА прибавит 06Н
к содержимому регистра AL с получением в нем 74Н, произведет
.инкремент регистра АН (в нем будет число 06Н), установит фла­
жок AF в 1, затем сбросит старшую тетраду регистра AL (в нем
образуется 04Н) и передаст состояние флажка AF во флажок CF
(CF=1). Окончательный результат: (АХ)=0604Н и CF=1, что со­
ответствует сложению 5+9=14.

Отметим, что после выполнения команды ААА содержательный
смысл имеют только состояния флажков AF и CF, а состояния ос­
тальных арифметических флажков не определены.

Остановимся на сложении многоразрядных чисел. Обозначим
£Zn-i£n-2 — а1Яо первое слагаемое, bn-ibn-2 ••• bjb0 второе слагаемое
и Cn-iCn-2 С1Со их сумму. Тогда алгоритм сложения а-\-Ь состоит
из следующих этапов:

1) сбросить флажок переноса CF;
2) повторить следующий цикл п раз (i=0, 1, ..., п—1 — пере­

менная цикла):
— загрузить щ- в регистр AL;
— прибавить к AL цифру bi, пользуясь командой ADC;
— скорректировать результат в регистре AL командой ААА;
— передать содержимое регистра AL в с;-.

Программа 3.13. Сложение неупакованных десятичных чисел
произвольной длины:

Начальные адреса операндов в регистрах SI и DI ,

длина <в байтах) в регистре СХ. Коды цифр ЗИН — 39Н.

Сумма гзамещаёт операнд, адресуемый регистром ST-

AUNFCK: CL С у Сбросить флажок переноса

ALOOFs MOV AL,CSI3 ; Текущий байт первого операнда

ADC AL,EDIT

AAA
LAHF

; Прибавить байт второго операнда

; Скорректировать сумму

; Сохранить флажок переноса

OR AL,ЗИН

SAHF

; Образовать код цифры

; Восстановить флажок переноса

MOV ESIl.AL ; Запомнить байт суммы

INC SI

INC EI

; Продвинуть указатели

LOOP ALOOF

RET

• Повторять до завершения

; Возврат

203

В приведенной выше программе 3.13 предполагается, что на­
чальные адреса слагаемых находятся в регистрах SI и DI, длина
операндов в регистре СХ, а сумма замещает первое слагаемое. Опе­
ранды представлены в символьном коде (цифры ЗОН—39Н), сумма
имеет такой же формат. Отметим наличие в программе команд
LAHF и SAHF. Введение их объясняется тем, что для образования
символьного кода цифры суммы требуется команда OR, сбрасываю­
щая в 0 флажок CF. Если в байтах результата допускаются нуле­
вые старшие тетрады, команды LAHF и SAHF можно убрать.
После возврата из подпрограммы о переполнении сигнализирует
установленный в 1 флажок CF.

Вычитание. Команда коррекции для вычитания AAS форми­
рует в регистре AL правильное представление двоичной разности
байтов операндов, полученной командами SUB или SBB. Команда
A AS действует следующим образом:

1) если младшая тетрада регистра AL содержит допустимую
комбинацию и AF=0, перейти к шагу 3;

2) если младшая тетрада регистра AL содержит запрещенную
комбинацию или AF=1, необходимо вычесть 06 Н из содержимого
регистра AL, вычесть 1 из содержимого регистра АН и установить
AF=1;

3) сбросить старшую тетраду регистра AL;
4) установить флажок CF в такое же состояние, в каком на­

ходится флажок AF.
Поясним действия команды AAS на примере. Пусть (АХ) =

=0432Н и выполняется команда SUB AL, 35Н. В регистре AL об­
разуется разность OFDH и AF=1, а команда AAS образует в ре­
гистре AL правильный результат 07Н и флажок CF=1 показыва­
ет заем. Кроме того, из содержимого регистра вычитается 1 и он
будет содержать ОЗН. Команда AAS, как и команда ААА, воздей­
ствует только на флажки AF и CF.

Для операции вычитания многоразрядных чисел предположим,
что an-ian-2... a1£Z0 — уменьшаемое, bn-ibn~2... bib0 — вычитаемое,
a Cn-iCn-2 — CiCo — разность. Алгоритм вычитания включает в себя
такие шаги:

1) сбросить флажок CF;
2) выполнить цикл п раз (i=0, 1,..., п—1 — переменная цикла);

— загрузить at в регистр AL;
— вычесть из AL цифру bi, пользуясь командой SBB;
— скорректировать результат в AL командой AAS;
— передать содержимое регистра AL в с,.

Этот алгоритм реализует программа 3.14 (ради простоты пред­
полагается, что старшие тетрады байтов операндов содержат нули;
в таком же формате будет представлена и разность).
204

Программа 3.14. Вычитание неупакованных десятичных чисел
произвольной длины: 1

- Начальный адрес уменьшаемого в регистре SI,
; начальный адрес вычитаемого в регистре DI ,
• длина операндов (в байтах) е регистре СХ.
; Разность замещает уменьшаемое. Цифры операндов ИИ — И1?.

SUNPCK: CLC j Сбросить флажок переноса
SLDDP: MDV AL,ESI] ; Текущий байт уменьшаемого

SEE AL, E.DI1 ; Вычесть байт уменьшаемого

AAS ; Скорректировать разность

MOV ESI],AL ; Запомнить байт разности
INC SI ; Продвинуть указатели
INC DI
LOOP SLOOP ; Повторять до завершения

RET ; Возврат

Если после возврата из подпрограммы флажок CF установлен
в I, то получена отрицательная разность.

Умножение. Умножение неупакованных десятичных чисел,
как сложение и вычитание, выполняется в два этапа:

умножение одноразрядных сомножителей (обязательно с нуле­
выми старшими тетрадами) командой MUL, которая формирует
в регистре AL двоичное произведение;

команда коррекции для умножения ААМ преобразует получен­
ный результат в двухбайтное произведение, находящееся в регист­
рах АН (старший разряд)и AL (младший разряд).

Команда ААМ осуществляет деление содержимого регистра AL
на десять (ОН) и помещает частное в регистр АН, а остаток в ре­
гистр AL. Состояния флажков SF, ZF и PF зависят от содержимо­
го регистра AL, а состояния флажков OF, AZ и CF не опреде­
лены.

Пусть, например, регистр AL содержит 07Н, а регистр BL—09Н.
Тогда после выполнения команд MUL BL и ААМ в регистре АН бу­
дет образовано число 06Н, а в регистре AL—ОЗН. Они соответству­
ют правильному результату 7x9=63.

С помощью команды ААМ реализуется умножение многораз­
рядного множимого ап-\ап-2 ... аха0 на одноразрядный множитель
с получением произведения спсп-х ... схс0. Алгоритм умножения име­
ет следующий вид (в предположении, что старшие тетрады байт
множимого и множителя ненулевые):

1) сбросить старшую тетраду множителя Ь\
2) сбросить цифру с0;
3) повторить следующий цикл п раз (i=0, 1, ..., п—1 — перемен­

ная цикла):
— сбросить старшую тетраду щ;

205

— передать щ- в регистр AL;
- —умножить командой MUL содержимое AL на 6;
— скорректировать произведение командой ААМ;
- —прибавить к содержимому AL значение сг;
— скорректировать сумму командой ААА;
— передать содержимое регистра AL в сг,
— передать содержимое регистра АН в с,+ь

Действия этого алгоритма реализует программа 3.15.
Программа 3.15. Умножение многоразрядного множимого на

одноразрядный множитель:

; Начальный адррс множимого_е регистре SI,

; множитель в регистре DL, длина множимого в регистре СК.

; Произведение помещается fl область памяти,

; начальный адрес которой находится в регистре DI.

MUNPCK:
9

AND DL,OFH 5 Подготовить множитель

MOV [Dll,0 5 Очистить младшую цифру произведения

MLDDF: MOV AL,[SI3 j Текущий байт множимого

INC SI ; Продвинуть указатель множимого

AND AL,ИРН Сбросить старшую тетраду

M’JL DL > Осуществить умножение

AAM j Скорректировать произведение

ADD AL,CDI3 ; .Прибавить к произведению из памяти

AAA 5 Скорректировать сумму

MOV [Dll,AL I Запомнить байт произведения

INC DI 5 Продвинуть указатель произведения

MOV [Dll,AH ? Учесть старшую цифру произведения

LOOP MLOOP 5 Повторять до завершения

RET 3 Возврат

Умножение многобайтных сомножителей усложняется необхо­
димостью учета межразрядных переносов в процессе суммирова­
ния произведения цифр множимого и множителя с суммой частич­
ных произведений. Суммирование должно производиться с учетом
положения двухразрядного частичного произведения в накаплива­
емом полном произведении. Программирование операции умноже­
ния несколько упрощает гибкая адресация памяти в МП К1810.
Принцип работы приводимой ниже программы 3.16 для трехбайт-
пых сомножителей иллюстрируется на рис. 3.13.

Деление. Деление неупакованных десятичных чисел отлича­
ется от предыдущих операций тем, что необходимая коррекция де­
лимого производится до собственно деления. В команде коррекции
для деления AAD предполагается, что в регистрах АН и AL нахо­
дится двухразрядное делимое (АН-—цифра десятков, AL — цифра
единиц), причем старшие тетрады обоих регистров нулевые. Ко­
манда ADD выполняет следующие действия:
206

Рис. 3.13. Умножение многоразрядных неупакованных
десятичных чисел

I) содержимое регистра АН умножается на десять (ОАН);
2) полученный результат прибавляется к содержимому регист­

ра AL (т. е. в AL образуется двоичный код делимого);
3) регистр АН сбрасывается.
Состояния флажков SF, ZF и PF будут зависеть от результата

в регистре AL, а состояния флажков OF, AF и CF не определены.
Если, например, (АХ)=0604Н, то после выполнения команды AAD
в регистре АХ будет образовано число 0040Н, т. е. десятичное число
64 в двоичном коде.

После коррекции полученный в регистре АХ двоичный код де­
лимого делится на одноразрядный делитель командой двоичного
деления DIV.

207

Программа 3.16. Умножение многоразрядных неупакованных
десятичных чисел:

; Начальные адреса множимого, множителя
; и произведения есть MFCND, MPLER и PRDD |

; Длина в байтах сомножителей N, произведения 2N.
; Область для произведения предполагается очищенной.
; Старшие тетрады байт сомножителей и произведения нулевые.

MNUNPK S MOV
XOR

CX,N ;
DI,DI ;

Образовать счетчик цифр множителя
Сбросить индекс цифр множителя

MLOOP: MOV

XOR

DU. N ;

SI,SI ;

Счетчик цифр множимого

Сбросить индекс множимого

MCNDTG: MOV

MOV
MUL

AAM

ADD

AAA

MOV

INC

MOV

ADC

AAA

MOV

INC

MOV

BX,DI ; Еще один индекс множимого
AL,MFCNDESI3 5 Текущая цифра множимого
MPLEREDI3 ; Умножить на цифру множителя

: Скорректировать произведение

AL,ЕВX3FRODEDI3 : Прибавить двухразрядное
; произведение к сумме

ГВХЗ,PRODCDI3,AL ; частичных произведений
ВХ

* AL,АН

AL,ЕВХ3FRODESI3

EBX3FRODEDI3,AL

ВХ

DL,N-1 ; Образовать счетчик оставшихся байтов
CARRY: MOV

ADC

AAA

MOV

INC

DEC

JNZ
INC

DEC

JNZ
INC

LOOP

RET

AL,EBX3FRODES

0

EBX3PRODESI3,
ВХ
DL

CARRY

■SI ;
DH ;

MCNDIG

DI ;

MLOOP ;

i

13 ; Учесть возникшие переносы

; в сумме частичных

; произведений
AL

1

Умножить остальные

цифры множимого

Продвинуть указатель множителя

Повторять до завершения
Возврат

. С помощью команды AAD легко осуществляется деление мно­
горазрядного делимого на одноразрядный делитель. Обозначим че­
рез an-ian-2 — а,а0 делимое, b — одноразрядный делитель и
Сп-1Сп-2 — С1С0 — частное. Деление производится по следующему ал­
горитму (в предположении, ради общности, что делимое и делитель
представлены в символьном неупакованном формате, т. е. старшие
тетрады их байтов ненулевые):
208

\ 1) сбросить старшую тетраду Ь;
\ 2) сбросить регистр АН;
\ 3) выполнить следующий цикл «раз (i=n—1, п—2, ..., 1, О—
переменная цикла):

— сбросить старшую тетраду щ;
— пер.едать в регистр AL;
■ —скорректировать содержимое АХ командой AAD;
— разделить содержимое регистра AL на b с помощью

команды DIV;
■ — передать содержимое регистра AL в с,-.

Действия алгоритма реализуются программой 3.17.
Программа 3.17. Деление многоразрядного делимого на одно*

разрядный делитель:
I Начальный адрес делимого в регистр® SI,

j делитель находится в региктре DL, длин*

- делимого в регистре СХ- Частное помешается

в область памяти, начальный адрес которой в DI.

; Регистры SI и DI содержат адреса младших байтов

DUMPСК: AND DL,0FH j Подготовить делитель

XOR AH, AH Сбросить регистр АН

ADD SI ,CX J Образовать в регистре SI адрес

DEC SI ! старшего разряда делимого

ADD DI ,CX Образовать в регистре DI адрес

DEC DI старшего разряда частного

DLODPs MOV al9esii J Текущий байт делимого

DEC SI * Продвинуть указатель делимого

AND

AAD

AL,OFH

S

Подготовить делимое
Скорректировть для деления

DIV DL Разделить на делитель

DR AL,3BH Образовать код цифры частного

NOV CDI3,AL 5 Запомнить цифру частного

DEC DI J Продвинуть указатель частного

LOOP

RET

DLDDP • Повторять до завершения

Возврат

В этой программе приходится учитывать, что частное получа­
ется, начиная со старших разрядов. Поэтому сначала в регистрах
SI и DI образуются адреса старших разрядов делимого и частного.

Алгоритм и программа деления с многоразрядными делимым и
делителем оказываются довольно громоздкими, так как в них не­
возможно применить команду AAD.

3.4.3. ОПЕРАЦИИ НАД ЧИСЛАМИ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Для операций над числами с плавающей точкой приходится
разрабатывать специальные подпрограммы. Расширенные возмож-

209

Программа 3.18. Сложение чисел с плавающей точкой:
; Первый операнд X в регистрах BXsSI, второй Y в регистрах DXsDI

; сумма возвращается в регистрах BXsSI.
; При переполнении флажок CF устанавливается в 1.

ADDF:

; Сравнить знаки-
MOV AL,BH

XOR AL,DH
JNS ADDF 1

XOR DH,ВИН
JMP SUBF

операндов и определить операцию.
; Сравнить

; знаки операндов
; Знаки операндов одинаковы

; Знаки различны,
; перейти к вычитанию

ADDF1:

»
; Проверить операнды на нуль.

MOV AX,DX ; Проверить на нуль
OR A*X,DI ; второй операнд

JZ ADDFB ; Результат в BXsSI

MOV АХ,ВХ 5 Проверить на нуль

DR AX,SI ; первый операнд

JNZ t ADDF2 ; Оба операнда ненулевые

XCHG BX,DX ; Первый операнд равен нулю,
XCHG sf,DI ; сумма равна

ЛМР ADDF8 ; второму операнду

ADDF2:
: Оба

MOV

SHL

STC

• RCR

SHL

STC

RCR

операнда ненулевые, можно складывать.

АН,ВН ; Сохранить общий знак в АН

ВХ,1 ; Восстановить скрытый бит

BL, 1
DX , 1

DL , 1

, о операнда

; Восстановить скрытый бит

; мантиссы второго операнда
т

; Сравнить порядки, образовать разность порядков.
СМР

JNC

XCHG

XCHG

BH,DH
ADDF3

BX ,DX

SI ,DI

; Сравнить порядки

; Порядок числа в BX:SI больше

; Передать большее число

; в BXsSI
ADDF3: SUB BH,DH ; Образовать разность порядков

JZ ADDF6 ; Порядки одинаковы
CPI BH,24 ; Сравнить разность порядков с 24
JC ADDF5 ; Разность порядков меньше 24
JMP ADDF7 у Результат в BXsSI

i
; Heo6:<: одимо сдвигать вправо мантиссу меньшего числа в DL:Dl«

ADDF5: SHR DL, 1 ; Сдвинуть мантиссу
RCR DI , 1

INC
DEC
JNZ

DH
BH
ADDF5

; Увеличить меньший порядок
; Декремент разности порядков
; Повторять сдвиг

j Можно складывать мантиссы. В регистре DH обший порядок.

ADDF6: ADD SI ,DI ; Сложить младшие части мантисс

ADC BL , DL ; Сложить старшие части мантисс

JNC ADDF7 ; Нарушения нормализации влево нет

INC DH ; Скорректировать порядок

CPI
STC

DH,255 ; Проверить переполнение

JZ ADDF8 ; Возникло переполнение

RCR BL, 1 ; Сдвинуть

RCR SI , 1 ; мантиссу вправо

MOV BH , DH ; Передать порядок в DH

; форматировать результат.

ADDF7: ADD AH,AH ; Знак во флажке переноса

RCR BH,1 ; Знак числа на месте

RCR AH,1 ; Младший бит порядка в АН7

DR AH,7FH j Образовать маску

AND BL, AH ; Образовать второй байт числа

ADDF8: RET ; Возврат

ности МП 1810 позволяют запрограммировать эти операции намно­
го короче, чем для МП К580. Тем не менее учет всех требований
стандарта на числа и арифметику с плавающей точкой (см. гл. 1)
и операции над числами двойной точности приводят к довольно гро­
моздким подпрограммам. Поэтому рассмотрим подпрограммы ариф­
метических операций для формата одинарной точности, так как в
этом случае операнды можно разместить в регистрах МП. Напом­
ним, что в этом 32-битпом формате старший бит является знако­
вым, затем следует 8-битпый смещенный порядок (смещение равно
127) и после него находятся 23 бит дробной части мантиссы. Раз­
ряд целой части мантиссы, содержащий 1, явно в исходных числах
не фигурирует (скрытый бит). Для удобства сравнения программ
мы воспользуемся алгоритмами и схемами из § 2.4 и сохраним те
же самые метки.

Сложение. В программе 3.18 сложения числа с плавающей точ­
кой предполагается следующее распределение регистров МП: пер­
вое слагаемое в регистрах ВХ: SI, второе в регистрах DX : DI и
сумма образуется на месте первого слагаемого. В подпрограмме
ADDF ^складываются только числа с одинаковыми знаками; если
же знаки операндов различны, происходит переход к подпрограм­
ме вычитания SUBF (с изменением знака второго числа).

Сравнение программы 3.18 с соответствующей программой 2.26
для МП К580 может вызвать некоторое удивление. Действитель­

но, программа для МП К1810 состоит из 50 команд, а программа'
для МП К580 — «всего» из 46 команд. Объясняется эта парадокг
сальная ситуация двумя причинами. Во-первых, в программах 2.26
и 3.18 используются различные форматы чисел. Если для МП К580
принять такой же 32-битный формат, какой принят для МП К1810,
его программа заметно усложнится. Во-вторых, программа 2.26 на­
писана с привлечением подпрограмм SWAP (длина 7 команд, вы­
зывается четыре раза), SHIFT (длина 7 команд, вызывается два
раза), REC (длина 9 команд, вызывается два раза) и РАСК (дли­
на 15 команд, вызывается один раз). Без этих подпрограмм дли­
на программы 2.26 увеличилась бы более чем в два раза. В то
же время в программе 3.18 нет ни одной подпрограммы, так как
действия указанных выше подпрограмм кодируются небольшим
числом команд МП К1810. Например, подпрограмма SWAP обме­
на операндов состоит всего из двух команд:

XCHG BX,DX Обменять операнды
XCHG SI,DI

Вычитание. Операция вычитания, как уже говорилось, похожа
на операцию сложения, но теперь мантисса меньшего числа после
выравнивания порядков вычитается из мантиссы большего числа
и соответственно корректируется знак результата. При вычитании
чисел с одинаковыми знаками, на что рассчитана программа SUBF,
необходимо проверять, не возникло ли антипереполнение.

В программе 3.19 вычитания чисел с плавающей точкой пред­
полагается следующее распределение регистров МП-, уменьшаемое
находится в регистрах ВХ : SI, вычитаемое в регистрах DX : DI, раз­
ность образуется на месте уменьшаемого. Вычитаются только чис­
ла с одинаковыми знаками; если же знаки различны, происходит
переход к программе ADDF (с изменением знака вычитаемого).
Суть операции заключается в том, что из большего по модулю чис­
ла вычитается меньшее.

Умножение. Умножение чисел с плавающей точкой заключает­
ся в сложении порядков и умножении мантисс. Рассмотрим два ва­
рианта умножения: в первом из них реализован стандартный ал­
горитм с циклом умножения на отдельные биты множителя, а во
втором применяется команда умножения MUL.

В программе 3.20 предполагается стандартное распределение
регистров: первый сомножитель в регистрах ВХ : SI, второй — в ре­
гистрах DX :DI и произведение образуется на месте первого со­
множителя.

Приведем теперь фрагмент умножения мантисс, в котором при­
меняется команда умножения MUL (программа 3.21). Фрагмент
начинается с метки MULF4 и продолжается до метки MULF6.

Программа 3.19. Вычитание чисел с плавающей точкой:
212

; Первый операнд X (уменьшаемое) находится • регистрах BXsBI
; второй Y (вычитаемое) в регистрах DX:DI, разность

; возвращается в регистрах BX;SI.
; При антипереполнении флажок CF установлен в I.

SUBF: ; Сравнить знаки, операндов и определить операцию.

MOV AL,BH 5 -Сравнить знаки операндов

XOR
JNS

AL,DH

SUBFI 5 Знаки операндов одинаковы

XOR DH,8ИН * Знаки различны.

JMP ADDF j перейти к сложению

; Проверить операнды на нуль.

SUBFls MOV AX,DX 1 Проверить на нуль

OR AX,DI J второй операнд

JZ SUBFA ; Результат в регистрах BX:SI

MOV AX,BX ; Проверить на нуль

OR AX,SI ; первый операнд

JNZ SUBF2 ; Оба операнда ненулевые

ХСНБ BX,DX ; Первый операнд равен нулю,

XCHG SI,DI ; разность равна

XOR BH,80H j второму операнду

J MR SUBFA ; с измененным знаком

; Оба операнда ненулевые, можно вычитать.

SUBF2: MOV AH,BH j Сохранить знак уменьшаемого

SHL BX, 1 j Восстановить скрытый бит

STC

RCR

SHL

BL, 1

DX , 1

5 мантиссы уменьшаемого

; Восстановить скрытый бит

STC ; мантиссы вычитаемого

RCR DL,1

J
; Проверить отношение между числами.

CMP BH,DH ; Сравнить порядки чисел

JNZ SUBF3 ; Порядки не равны

CMP BL, DL ; Сравнить старшие байты мантисс

JNZ SUBF3 ; Они не равны

CMP SI ,DI ; Сравнить младшие слова мантисс

JNZ SUBF3 ; Они не равны

MOV BX, 0 ; Числа равны,

MOV SI ,0 ; разность равна нулю

jmR SUBFA j Результат в регистрах BX:SI

J
; Операнды не раены, необходимо вычитать.

SUBF3: JNC SUBF4 ; Уменьшаемое больше вычитаемого

ХСНВ BX,DX 1 Вычитаемое больше уменьшаемого,

XCHG SI, DI 1 обменять числа

XOR АН,ВОН ь Изменить знак результата

; Образовать разность» пор ядков.

SUBF4: SUB BH,DH 1 Разность порядков в ВН

JZ SUBF7 ? Порядки одинаковы

СТИР ВН,24 ; Проверить диапазон разности

JC SUBF6 5 Можно выравнивать порядки

JMP SUBF9 9 Результат в BXsSI

; Сдвигать мантиссу меньшего числа вправо.

SUBF61 SHR DL,i 5 Сдвигать мантиссу

RCR DI,1 в регистрах DL:DI

INC DH Увеличить меньший порядок

DEC BH J Декремент разности порядков

JNZ SUBF6 9 Повторять сдвиг

MOV BH,DH 5 Передать общий порядок в ВН

r
; Вычитание мантисс а образование результата.

SUBF7s SUB SI,DI 1 Вычесть мантиссы

SBB BL,DL

SUBF8: OR BL, BL 1 Проверить старший бит мантиссы

JS SUBF9 я Результат нормализован

DEC BH Декремент порядка

CMP BH,255 5 Проверить антипереполнение

STC 1 Установить флажок CF

JZ SUBFA ? Возникло антипереполнение

SHL SI, 1 F Сдвинуть мантиссу влево

RCL BL, 1

JMP SUBF8 f Повторять? до нормализации

SUBF9: ADD AH, AH 5 Знак во флажке переноса

RCR BH, 1 » Знак результата на месте

RCR AH.l J Младший бит порядка в АН7

OR AH,7FH 5 Образовать маску

AND BL, AH (Образовать второй байт разности

SUBFAs -RET F Возврат

214

Программа 3.20. Умножение чисел с плавающей точкой:
у Первый операнд X находится в регистрах BXsSI.

; ’второй Y в регистрах DX:DI, произведение
; возвращается в регистрах BX:SI.

I При возникновении особого случая флажок CF содержит 1

»
MULF: у Проверить операнды на нуль-

MOV AX,BX ; Проверить на нуль

OR ax9si ; первый операнд
JZ MULF8 ; Произведение равно нули
MOV AX,DX ; Проверить на нуль
OR AX,DI У второй операнд
JNZ MULF1 у Операнды не равны нулю
XCHG BX.DX ; Произведение, равно нулю
XCHG SI ,DI
JMP MULFB

Оба операнда ненулевые, можно умножать.

Образовать знак произведения, восстановить мантиссы.
MULFls MOV CH,BH у Знак произведения

XOR CH,DH у в регистре CH
SHL BX, 1. С у Восстановить скрытый бит
STC у мантиссы первого операнда
RCR BL, 1

SHL DX, 1 у Восстановить скрытый бит
STC у мантиссы второго операнда
RCR DL,1

у Сложить порядки.

MOV AL,BH } Сложить в AL
ADD AL,DH у смещенные порядки
JC MULF2
SUB AL,127

JNC MULF3

у Возник перенос
у Вычесть смещение

у Можно умножать

MULF2;

JMP MULFB

ADD AL,129

у Возникло антипереполненйе

у Учесть потерю 256 из-за переноса

MULF3:

JNC MULF3 у Можно умножать

JMP MULFB у Возникло переполнение

J
у Можно умножать мантиссы.

MOV BH,AL. у Порядок произведения в ВН

MULF4:

XOR DH,DH

XOR 'АХ , АХ
MOV CL,24

у Здесь начинается
RCR DL,1

у Подготовить место

у для произведения

•у Образовать счетчик бит

цикл умножения.
у Сдвинуть множитель

RCR DI,1 ; влево на один бит

JNC MULF5 ; Бит множителя равен нулю

MULF5I

ADD AX, SI
ADC DH,BL

RAR DH,1

; Прибавить множимо*
; к произведению

; Сдвинуть сумму

MULFfcs

RAR AX,1 ; частичных произведений

DCR CL | Декремент счетчика бит
JNZ MULF4 ; Повторять до завершения

MOV BL,DH ; Вернуть произведение

MOV SI,АХ ; в регистры BLг SI

э
; Проверить нарушение нормализации влево.

OR BL,BL ; Проверить старший бит мантиссы

MULFZs

JNS MULF7

INC ВН

STC$

J Z MULFS

JMP MULFA

SHL SI,1

; Нарушения нормализации нет

; Увеличить порядок на 1

; Установить флажок CF
; Возникло переполнение

; Переполнения нет

; Сдвинуть мантиссу

MULFAi

RCL BL,1

1
i форматировать

add ch,ch

; влево на один бит

результат

; Знак во флажке переноса

MULFBs

RCR BH,1

RCR CH,1
OR CH,7FH

AND BL,CH

RET

; Знак числа на месте
; Младший бит порядка в СН7

; Образовать маску
; Образовать второй байт произведения

; Возврат

Применение команды MUL ускоряет умножение мантисс при­
мерно в 1,5 раза. Приведенный фрагмент выполняется в среднем
за 500 тактов синхронизации, а соответствующий фрагмент в про­
грамме 3.20 — в среднем за 750 тактов синхронизации.

Деление. Чтобы разделить числа с плавающей точкой, необ­
ходимо из порядка делимого вычесть порядок делителя, а мантис­
су делимого разделить на мантиссу делителя. В операции деления
возможны оба особых случая — переполнение и антипереполнение.
В программе 3.22 принято стандартное размещение делимого в ре­
гистрах ВХ : SI и делителя в регистрах ДХ : DI, частное возвраща­
ется на месте делимого.

Сначала в программе анализируются нулевые операнды, а за­
тем восстанавливаются скрытые биты мантисс, вычитаются поряд­
ки (с проверкой особых случаев). Начиная с метки DIVF3 реали­
зован цикл деления мантисс. Если получен ненормализованный ре­
зультат, производится нахождение дополнительного бита мантис­
сы частного. Заключительные команды стандартным образом фор­
матируют результат.
216

Программа 3.21. Умножение мантисс с применением команды
MUL:

; Мантиссы находятся в BLsSI, знак в СН,
; порядок в БН.

MOV CL,DL ;

MULF4: MOV AX,S1 ;

Освободить регистр DX

Умножить

MUL DI :

MOV TEMP,DX ;

MOV AL,BL ;

MOV АН,И
MUL DI

ADD TEMP,AX j

JNC NEXT ;
INC DX

NEXT: MOV TEMP-n2,DX ;

младшие слова мантисс

Сохранить старшую часть произведения

Умножить BL на DL

Учесть результат

в полном произведении

Сохранить произведение

MOV AL,CL

MOV AH,E ;

MUL SI

ADD TEMP,AX ;

JNC NEXT1 ;

INC DX

NEXT!: ADD DX,TEMP+2

MOV AL,EL ;
MUL CL ;

ADD AX,DX ;

MOV BL,AH ;
MOV AH,AL ;

MOV AL,TEMP+1

MOV SI,AX

MULF6s ;

Умножить

следующие части мантисс

Учесть результат

в полном произведении

Умножить

старшие байты мантисс
Образовать полное произведение

и разместить его

в регистрах BL.SI

Далее как прежде

К сожалению, использовать команду DIV для деления мантисс
чисел с плавающей точкой не представляется возможным.

Программа 3,22. Деление чисел с плавающей точкой.
Делимое X находится в регистрах BX:SI, делитель У
в регистрах DXsDI, частное возвращается на месте делимого.
При возникновении особого случая флажок CF содержит 1.

DIVF:

DIVF1:

DIVF3:

Проверить операнды на нуль
MOV AX,EX ; Проверить на нуль
OR AX,SI ; делимое
JZ DIVF7 ; Ненулевой результат в BX:SI
MOV AX,DX ; Проверить на нуль
OR AX,DI ; делитель
STC 9 Если деление на нуль,
JZ DIVF7 ; установить флажок CF

; Оба операнда йенулевые.
MOV СН,ВН ; Образовать знак частного
XDR CH,DH ; в регистре СН
SHL ВХ,1 • Восстановить скрытый бит
STC
RCR ^L,i

мантиссы делимого

SHL DX , 1 ; Восстановить скрытый бит
STC «
RCR DL,1

; Вычесть порядки.

мантиссы делителя

MOV AL,BH ; Образовать разность порядков
SUB AL,DH ; в регистре AL
JNC DIVF1 ; Порядок делимого больше
ADD AL,127 ; Пр ибав ить с мешение
CMC S Если нет переноса,
JC DIVF7 ; возникло антипереполнение
ЛМР DIVF2 ■ Перейти к делении мантисс
add AL,127 ; Прибавить смещение
JC DIVF7 ;
; Деление мантисс»

Возникло переполнение

MOV ВН,И ; Очистить старшие байты
MOV DH, a ; перед мантиссами
MOV CL,24 ; Образовать счетчик бит
SUB SI,DI ; Вычесть мантиссу делителя
SBB BX,DX ; ио мантиссы делимого
CMC 5 Образовать в CF бит частного
PUSHF J Сохранить его в стеке
JC DIVF4 ; Остаток положительный
ADD SI,DI - Восстановить предыдущий
ADC BX,DX S положительный остаток

218

; Вернуть бит частного в СЕDIVF4: POFF

RCL
RCL
SHL

RCL

2?ЕС

BP, 1

AH, 1

sr,i

BX,1

Cl

DIVES

i

J
7

Передать ВИТ "ввсТНсЗГО

в буферные регистры АН:ЗЗР

Сдвинуть остаток

Декремент Счс^ЧИКД й«Т

Повторять ДО ЗЗВерИ1еНЙ0

DIVF5:

; Проверить нарушение ноомализацИИ ЕПрзер.

TEST АН,&ЙН ; Проверить старший ёит МаНТИССМ

JHZ DIVF5 ; Нарушения нормализации нет

DEC! AL ; Декремент порядка

; Проверить возможность

«ЭХ DIVF7 ; антипереполнения

SUB 51,Ы ; Определить еще один ЙИТ

SBB ; мантиссы частного
СМС ; 1 юместить бит частного

RCL BF,1 ; в нужное место

RCL АН,1
MOV BL,АН : Разместить частное

MOV SI,ВР ; в регистрах BXsSI

MOV BH,AL

; Форматировать

ADD CH,CH

RCL EH,1

RCL CH,1

OR CH,7FH

результат.
; Передать знак во флажке CF

; Знак числа на месте

; Младший бит порядка в С.47

; Образовать маску

DIVF7:

AND

RET

BL, CH

г

Образовать втором сайт частного

Возврат

3.4.4. ВСПОМОГАТЕЛЬНЫЕ ПРОГРАММЫ

Преобразование форматов. Не будем приводить многочислен­
ные программы преобразования форматов, аналогичные програм­
мам, рассмотренным в п. 2.4.4. При необходимости читатель может
без труда разработать их самостоятельно. Остановимся только на
преобразованиях, в которых участвуют числа с плавающей точкой.

Пусть в регистрах BL : SI находится целое знаковое число в
дополнительном коде и требуется образовать в регистрах ВХ : SI
его представление в 32-битном формате с плавающей точкой, кото­
рый был принят в п. 3.4.3 для программ арифметических операций
(знак, байт смещенного порядка и три байта мантиссы со скрытым
битом).

В программе ITOF (3.23) преобразуемое число вначале прове­
ряется на пуль; если оно равно нулю, осуществляется возврат с

219

истинным нулем в регистрах ВХ : SI. При ненулевом числе его знак
сохраняется в регистре AL, в регистрах BL : SI образуется абсо­
лютное значение числа. Отметим здесь использование команды
ADD SI, 1 вместо традиционной команды инкремента INC SI; выз­
вано это тем, что последняя команда INC не воздействует на фла­
жок переноса, состояние которого нужно учесть при преобразовании
содержимого регистра BL.

Далее организуется цикл сдвига числа влево до тех пор, пока
мантисса не будет нормализованной. С каждым сдвигом происходит
декремент смещенного порядка на 1; за исходный смещенный по­
рядок принято число 151 (127+24). Заключительные действия
программы, начиная с метки FORM, связаны с форматированием
результата.

Программа 3.23. Преобразование целого числа в формат с пла­
вающей точкой'

: Исходное число в регистрах BL:SI, результат

; возвращается в регистрах BXsSI.

ITDF: MOV BH,0 ; Сбросить регистр BH
MOV AX,SI ; Проверить исходное число
DR AX,EX ; на нуль
JZ EXIT ; Число равно нулю
MOV AL, BL ; Сохранить знак в регистре AL
TEST AL,E0H ; Проверить знак числа
JC NDC ; Число положительное
NOT SI ; Число отрицательное.
NOT BL ; образовать его
ADD SI,1 ; абсолютное значение
J ND NDC
INC BL

NDCs MOV EH,151 ; Исходный порядок
SLOOPS TEST BL,E0H ; Проверить старший бит

JNZ FORM ; Нормализация закончена
SHL SI , 1 ; Сдвинуть число влево
RCL BL, 1
DEC BH ; Декремент порядка
JMP SLOOP ; Повторять нормализацию

FORM: ADD AL, AL ; Передать знак во флажок CF
RCR BH,1 ; Знак числа на месте
RCR AH, 1 ;Младший бит порядка в АН7
OR AH,7FH ; Образовать маску
AND BL, AH ; Образовать второй байт числа

EXITS RET ; Возврат

Обратное преобразование числа с плавающей точкой требует
отдельного представления его целой и дробной частей. Целая часть
числа преобразуется в 24-битное знаковое число в дополнительном
220

коде, причем точка фиксирована после младшего значащего раз­
ряда. Для дробной части примем такое же представление в до­
полнительном коде, но зафиксируем точку после знакового бита
Предлагается, что исходное число находится в регистрах ВХ : SI,
а после преобразования целая часть находится в регистрах BL : SI
и дробная часть — в регистрах DL : DI.

В программе FTOI (3.24) исходное число вначале проверяется
на нуль и, если оно равно нулю, в регистры DX : DI загружаются
нули, флажок CF устанавливается в 1, показывая успешное пре­
образование, и осуществляется возврат. Затем проверяется нахо?к-
дение исходного числа в диапазоне представимых чисел выходного
формата. Для этого в регистре ВН образуется байт смещенного
порядка, который сравнивается с максимальным значением I27-J-
4-23=150 и минимальным значением 127—23=104. Если исходный
смещенный порядок находится вне этих границ, подпрограмма за­
канчивается со сброшенным в 0 флажком CF.

Когда число находится в допустимом диапазоне, определяется,
имеет ли оно целую часть. Для этого смещенный порядок вычита­
ется из 150. Если разность превышает 23, т. е. целая часть отсут­
ствует, в регистр целой части загружаются нули и осуществляется
переход к преобразованию дробной части (метка FRAC). В случае
ненулевой целой части мантисса сдвигается вправо так, чтобы раз­
ряд единиц оказался в младшем разряде регистра SL В зависи­
мости от знака числа происходит образование дополнительного
кода.

Преобразование дробной части начинается с получения в ре­
гистре ВН истинного порядка. Затем анализируется его знак и оп­
ределяется необходимость сдвига мантиссы влево или вправо.
С учетом знака числа в регистрах DL : DI образуется дополнитель­
ный код дробной части.

Извлечение квадратного корня. В инженерных и научных рас­
четах довольно часто возникает необходимость извлечения квад­
ратного корня из целого числа. Традиционно эта операция реали­
зуется алгоритмом, очень похожим на алгоритм деления, но про­
граммирование его в терминах системы команд МП встречает оп­
ределенные трудности. Вместе с тем известен итерационный метод
последовательных приближений или метод Ньютона, который дает
результат за приемлемое число итераций. В этом методе доказано,
что если Xi является приближенным значением квадратного корня
из числа N, то число

-^<+1 = (N/л,- 4-лг,)/2
является лучшйм следующим приближением. Обычно за первое
приближение принимается значение x=N/2004-2. Покажем приме­
нение рассмотренного метода на следующем примере.

Программа 3.24. Выделение целой и дробной частей числа с
плавающей точкой:

221

J Исходное числа с плавающей тачкой в регистрах lJX:SI.r
$ Целая часть образуется в регистрах BLxSI, дробная часть

4 в регистрах DL:DI (обе в дополнительном коде).
; О выходе за диапазон сигнализирует флажок CF*B.

5
FTOIs MOV АХ,SI ; Проверить исходное число

OR АХ, В X ; на нуль

MOV DX,АХ ; Передать возможный нуль
MOV DI,АХ ; в регистры DXsDI

J2 QUIT ; Результат равен нулю
MOV АН,ЕН ; Сохранить знак в регистре АН
SHL ВХ,1 ; Восстановить

STC ; скрытый бит

RCR BL,1 ; мантиссы

й»
; Проверить нахождение числа в допустимом диапазоне.

СИР

JNC

СМР

СМС
JNC

EH, ISC;

EXIT

EH,104

EXIT

5

s

Сравнить с максимальным порядком

Выход за верхнюю границу

Сравнить с минимальным порядком

Выход за нижнюю границу

S
« Преобразование
MOV DI,SI
MOV DX,BX

MOV AL,150

SUB AL,BH

CMP AL,23
JC INTEG

MOV BL,И

MOV SI,0
JMP FRAC

5
: Преобразование

возможно.

; Сохранить число для получения

; дробной части

; Образовать в регистре AL

; счетчик сдвиг ов

; Имеется ли целая часть?

; Да, преобразовать ее
; Целая часть равна нулю

1

; Преобразовать дробную часть

целой части.
INTEG: SHR BL, 1 5 Сдвигать мантиссу вправо

RCR SI, 1 5 до правильной позиции
DCR

3NZ
TEST

JZ

NOT

NOT

ADD
JNC

INC

AL
INTEG

AH,80H

FRAC

SI

BL

SI , 1

FRAC

BL

3

?

целой части

Проверить знак числа

Учесть знак числа

ООП

; Г|рвойраоо»ани« дровноП части.
FRAC: SUB BH,127 1 Образовать истин«к1Й порядок числа

3Z NOSH 5 Он равен нулю
3NC SHILA 5 Мантиссу сдв-иг*т1» влево
NEG BH 1 Образовать счетчик для сдвига (вправо

RlOOPs SHR DL, 1 1 Сдвигать мантиссу вправо
RCR DI ,1 5 в прйвильную позицию
dgr BH
•3NZ RLOOP
ЛМР S££N 1 Учесть знак числа

SHILA: SHL DI?i J Сдвигать мантиссу влево
RCL DL,1 » в правильную позицию
DEC BH
JNZ SHILA
ЛМР SIGS J Учесть» знак числа

NOCH: AND DL.7FH Подвить единицу целой части
SIGN: TEST ah,63H i Проверит^ знак числа

3Z NQC1 г и при Необходимости образовать
NOT VJ ; дополнительный код
NOT DL
ADI SI,1
<3NC QUIT
INC DL

QUIT: STC 5 Отметить успешное преобразование
EXIT: RET J Возврат

Пусть N —14 400 и точное значение квадратного корня равно 120.
Тогда Xi — 14 400/200 + 2 = 74. Затем последовательно получаем:

х.2=(14 400/74 + 74)/2 = 134,

х3—(14400/134 4-134)/2= 120,

х4==(14400/120+120)/2 = 120.

Здесь всего за две итерации (не считая вычисления первого
приближения) получено точное значение квадратного корня, кото­
рое в дальнейшем изменяться не будет.

Для того чтобы окончить процедуру последовательных приб­
лижений, Целесообразно сравнить два соседних значения Xi и хн.
Итерации прекращаются, если они равны или отличаются на еди­
ницу. Рассмотренный метод извлечения квадратного корня реа­
лизует программа 3.25.

223

Программа 3.25. Извлечение квадратного корня из 32-битного
числа:

; Исхпднпе число находится в регистрах DX:AX,

; результат возвращается в регистре ВХ.

SORT PROC ; Начала процедуры

PUSH BP 5 Освободить рабочий регистр ВР

PUSH DX. Сохранить исходное число

PUSH AX в стеке

MOV BP,SP ВР адресует число в стеке

MOV ВХ,2ИИ Вычислить в регистре АХ

DIV
ADD

БХ

AX ,2
5 первое приближение

; Итерационный цикл.

NEXTs
¥ MOV BX,AX ; Передать XI в регистр БХ

MOV AX, CBP3 ; Вернуть число из стека

MOV DX,CBP+22 ; в регистры DX:AX

DIV BX ■ ; Вычислить

ADD AX ,BX ; следующее

SHR AX, 1 ; приближение Х(1+1)

CMP AX,BX ; Сравнить XI и XCI+1)

3E DONE ; и либо закончить,

SUB BX,AX ; либо повторять итерации

CMP BX, 1
ЛЕ DONE

CMP BX,-1
JNE NEXT

DONE: MOV BX.AX ; Передать результат в регистр ВХ
POP AX ; Восстановить
POP BX ; исходное число
POP BP ; и рабочий регистр ВР
RET ; Возврат

SORT ENDP ; Конец процедуры

Контрольные вопросы и упражнения

1. Покажите адресные пространства памяти и ввода-вывода МП К1810ВМ86.
2. В чем заключается принцип опережающей выборки команд? Назовите

его достоинства. Есть ли у него недостатки?
3. Что такое физический и логический адреса в МП К1810ВМ86? На какие

сигнальные линии он выдает физический адрес памяти?
4. Каким образом адресное пространство памяти МП К1810ВМ86 превра­

тить в такое же адресное пространство, какое имеет МП К580?
5. Какие регистры МП могут участвовать в формировании физического ад­

реса памяти при выборке команд? при обращении к переменным?
6. Предположим, что в регистрах МП содержатся следующие данные:

(CS)=0100H, (IP)=2000H, (DS) = 1300H, (SI)=0020H, (DI)=0040H,
(ВХ)=ЗОООН. Определите физические адреса памяти следующей команды и
224

данных, если в ассемблерных командах имеются такие спецификации операн­
дов: [SI], [DI], [BX][SI], [ВХ—ЮН], [BX-J-5] [DI—20Н].

7. Какова минимальная и максимальная длина команд в МП К1810ВМ86?
8. Какие три атрибута имеет переменная?
9. Какой флажок показывает переполнение в арифметических операциях со

знаковыми числами? с беззнаковыми числами?
10. Являются ли допустимыми следующие команды: MOV CH, 500Н; MOV

DX.AL; ADD ВН, CH; POSH AL?
11. Напишите команды для пересылки слова из ячейки XI в ячейку Х2.
12. Напишите команды для включения в стек константы 200Н, включения

в стек значений от 1 до 10.
13. Напишите бесконечный цикл, который выводит в выходной порт PORT

последовательность чисел, начинающуюся с нуля.
14. Опишите последовательность действий, выполняемых командами CALL

и RET (внутрисегментных и межсегментных).
15. Эквивалентны ли команды RET 10 н ADD SP, 10 и RET? Напишите

команды, действия которых в точности соответствуют действиям команды RET 10.
16. Напишите команду(ы), которая (ые):
устанавливают в 1 три старших бита регистра ВХ;
сбрасывают в 0 четыре младших бита регистра ВН;
устанавливают в 1 те биты регистра АХ, состояния которых отличаются

от состояний соответствующих битов регистра СХ;
сдвигают содержимое регистра ВХ влево на 8 бит;
делят содержимое регистра АХ на 16;
реализуют логические операции HE-ИЛИ, НЕ-И над содержимым регист­

ров АХ и ВХ;
обменивают старшую и младшую тетрады регистра АН.
17. Постройте машинные коды команд MOV ВХ, АХ; ADD SI, DI; ADD

AX, 8000H; XOR BH, CH; OR AX, 1; SUB BP SI; SBB AX, 20H; SBB AX, 2000H.
18. Каким образом задается направление сканирования Цепочки?
19. При каких условиях можно сравнивать цепочки различной длины?
20. Напишите фрагмент инициализации области памяти с начальным адре­

сом BUFFER на код пробела (20Н), пользуясь и не пользуясь цепочечными
командами.

21. Напишите программный фрагмент, который в цепочке из 200 символов
с начальным адресом STRING заменяет десятичные цифры на код пробела
(20Н).

22. Разработайте программу преобразования беззнакового двоичного числа
из регистра АХ в цепочку из четырех 16-ричных цифр и размещения ее в об­
ласти BUFF.

23. Приведите результаты команд ADD АХ, ВХ и SUB АХ, ВХ, если ре­
гистры АХ и ВХ содержат следующие пары чисел: 07FFH и F150H, 0010Н и
2000Н. 8000Н и 8000Н, FFFFH и FFFFH, ЕЕЕЕН и 3456Н.

24. Найдите результаты команд MUL ВН и IMUL ВН, если в регистрах
AL и ВН содержатся следующие пары чисел: 01Н и FFH, F3H и 04Н, FFH и
FFH, ООН и 2АН.

25. Найдите результаты команд DIV СИ и IDIV CFI, если в регистрах АХ
и СП находятся следующие пары чисел: FFFFH и FFH, 0375Н и A0H, 8000Н
и 7FH, 0060Н и 05Н.

26. Можно ли использовать команды CBW и CWD для беззнаковых чисел?
27. Оцените время выполнения программ 3.3—3.6, считая параметром длину

операндов N в байтах или словах.
28. Почему в программах 3.1 и 3.2 нельзя использовать метки LOOP?

Почему в них требуется одинаковое содержимое регистров DS и ES?
29. Трансформируйте программу 3.7 для сложения слов.
30. Как зафиксировать переполнение в программе 3.8?
31. Постройте схему действий команды DAS.
32. Команды DAA и DAS будут «корректировать» результаты двоичного

8—1021 225

сложения и вычитания, даже если операнды не являются десятичными числа­
ми. Определите, какой результат будет получен в аккумуляторе AL после вы­
полнения пар команд ADD AL, BL и DAA, SUB AL, BL и DAS, если в регист­
рах AL и BL находятся числа 0F6H и 7АН, ОЕСН и 8FH.

33. Постройте схемы действий команд AAA, AAS, ААМ и AAD.
34. Почему в программе 3.16 необходимо очищать область памяти для про­

изведения?
35. Как изменится программа 3.16, если не предполагать старшие нулевые

тетрады байтов сомножителей?
36. Какой результат даст команда AAD, если в младшей тетраде регистра

АН находится запрещенная комбинация?
37. Разработайте более простой фрагмент форматирования результата в

программе 3.18 (начиная с метки ADDF7).
38. Разработайте схему округления результата в программах 3.18 и 3.19.
39. Извлеките квадратный корень из чисел 10201, 1048576 и 225 в соответ­

ствии с программой 3.15.

ГЛАВА 4 ,/

АРИФМЕТИЧЕСКИЙ СОПРОЦЕССОР К1810&ЯМ87

В данной главе рассмотрен арифметический сопроцес­
сор К1810ВМ87, рассчитанный на использование только
совместно с центральным процессором К1810ВМ86. Появ­
ление микросхемы К1810ВМ87 расширяет сферы примене­
ния микропроцессоров на область математических расче­
тов, в которых требуются очень широкий диапазон и высо­
кая точность представления чисел, т. е. переход к
аппаратному формату с плавающей точкой. Показана
такая особенность сопроцессорной конфигурации, как не­
обходимость синхронизации центрального процессора и

сопроцессора по командам и данным.
Рассмотрены программная модель сопроцессора, внеш­

ние и внутренний форматы чисел и система команд, вклю­
чающая в себя сложные математические операции.

Отдельный параграф посвящен специальным, числам и
автоматической регистрации особых случаев; допускается
маскирование особых случаев и сопроцессор при этом об­
разует математически наиболее приемлемый результат.

Приведены программы суммирования элементов масси­
ва, статистической обработки экспериментальных данных,
возведения в произвольную степень, логарифмирования
и др. В заключение показаны особенности представления
чисел в персональных компьютерах.

4.1. ОСОБЕННОСТИ СОПРОЦЕССОРНЫХ КОНФИГУРАЦИЙ

Как было показано в гл. 2 и 3, однокристальные МП оперируют
числами, представленными в простейших форматах — двоичные зна­
ковые и беззнаковые числа, и ограниченно поддерживают десятич­
ные целые числа. Вычислительные возможности их ограничены
арифметическими операциями. Расширение форматов чисел в таких
МП с увеличением количества команд ведет к их чрезмерному ус­
ложнению и трудностям программирования. Программная реализа­
ция сложных операций и операций над числами с плавающей точкой
значительно снижает производительность. Стандарты на численные
данные (см. гл. 1) усложнили форматы чисел и потребовали учета

по-?

различных особых случаев. Программы операций над числами в
стандартных форматах становятся весьма громоздкими. Применение
секционных МП с микропрограммным управлением требует значи­
тельного числа микросхем и связано с увеличением потребляемой
мощности.

В этой ситуации плодотворным оказался принцип специализа­
ции, который давно применяется в процессорах средних и крупных
компьютеров. Суть его заключается в разработке вспомогательных
специализированных процессоров, ориентированных на конкретные
прикладные области. Такие процессоры работают под управлением
центрального (главного) процессора и разделяют с ним основную
память. Специализация позволяет достичь высокого быстродейст­
вия вспомогательных процессоров и повысить эффективную произ­
водительность системы благодаря параллельной работе нескольких
процессоров. в

В сопроцессорной конфигурации вспомогательный процессор
(сопроцессор) подключается к системной шине параллельно с цент­
ральным процессором (ЦП). Сопроцессор не имеет своей отдель­
ной программы и не может считывать команды из памяти, но мо­
жет обращаться к ней для записи и считывания данных, запраши­
вая для этого шину у ЦП. Кроме того, сопроцессор контролирует
системную шину и может «перехватывать» адреса и данные, когда
к памяти обращается ЦП. Часть кодов операций ЦП резервирует­
ся для команд сопроцессора и действия ЦП при их выполнении
сводятся к вычислению физического адреса и к обращению в па­
мять. Сопроцессор не может выполнять команды ЦП, но свои
команды выполняет очень быстро (по сравнению с их программной
эмуляцией в командах ЦП). Программа оказывается смесью
команд ЦП и сопроцессора, причем выборку команд из памяти
осуществляет только ЦП, а затем команды подаются в оба процес­
сора. Каждый из них выбирает из общего командного потока и вы­
полняет свои команды. Такое своеобразное «разделение труда»
позволяет достичь очень высокой производительности в тех зада­
чах, на которые ориентирован сопроцессор.

Процессор численных данных или арифметический сопроцессор
К1810ВМ87 предназначен для работы с ЦП К1810ВМ86. Он рас­
считан на применение в таких системах, где числа изменяются в
очень широком диапазоне, требуется высокая точность вычислений
и необходима такая производительность, которая превышает воз­
можности ЦП. Относительная простота программирования и пора­
зительные возможности сопроцессора К1810ВМ87 делают его до­
ступным большой группе пользователей, не знакомых с тонкостя­
ми программирования сложных вычислительных задач. Достаточ­
но сказать, что он оперирует числами из диапазона ±10±5000 и
обеспечивает точность 18 десятичных разрядов. Сопроцессор имеет
команды таких сложных операций, как извлечение квадратного
корня, возведение в степень, логарифмирование и др.
228

Сопроцессор К1810ВМ87 tie может работать изолированно от
ЦП К1810ВМ86. Вместе они образуют мощный тандем, производи­
тельность которого в задачах численной обработки в 10—50 раз и
более выше производительности одного ЦП. В этом тандеме объе­
динены системы команд, внутренние регистры и форматы чисел
обоих процессоров. Его вычислительная мощность сравнима с вы­
числительной мощностью миникомпыотеров.

Сопроцессор представляет собой аппаратное расширение ЦП и
не может работать автономно. Схема объединения их в систему
показана на рис. 4.1. При этом ЦП К1810ВМ86 должен работать в
максимальном режиме.

Рис. 4.1. Система с арифметическим сопроцессором

Когда выбранная из памяти команда оказывается командой ЦП
(для простоты не учитываем опережающую выборку команд), он
выполняет ее обычным образом, а сопроцессор не привлекается—-
он просто игнорирует такие команды. Когда же выбирается коман­
да сопроцессора (в системе команд ЦП они обозначены мнемони­
кой ESC), действия ЦП зависят от специфики конкретной команды.
Если она не связана с обращением к памяти, ЦП игнорирует ее
(«проскакивает») и переходит к следующей команде. Но если
команда требует обращения к памяти, ЦП вычисляет физический
адрес операнда в соответствии с указанным в команде режимом
адресации и обращается к памяти. При этом сопроцессор перехва­
тывает с общей шины физический адрес операнда, а в операции со
считыванием из памяти еще и данные. После этого сопроцессор
реализует конкретные действия по выполнению команды. Они мо­
гут производиться параллельно с дальнейшими действиями ЦП,
что повышает эффективную производительность системы.

Такое объяснение взаимодействия ЦП и сопроцессора необхо­
димо уточнить для тех ситуаций, когда их совместная работа тре­
бует синхронизации. ЦП «выполняет» команду ESC гораздо быст­
рее сопроцессора. Например, команду FSQRT извлечения квадрат-

229

кого корня ЦП «выполняет» всего за два такта синхронизации,
а сопроцессору требуется 180 тактов. Поэтому в двух случаях не­
обходимо синхронизировать действия процессоров.

Синхронизация по командам. Очевидно, команда сопроцессора
не может начинаться до завершения им предыдущей команды, т. е.
ЦП не должен пропускать в сопроцессор его команды быстрее, чем
сопроцессор может выполнять их. Следовательно, перед каждой
командой сопроцессора в программе должна быть специальная
команда ЦП, которая только проверяет текущее состояние сопроцес­
сора и, если он занят, переводит ЦП в состояние о?кидания. Этой
командой является команда WAIT проверки и ожидания. Когда со­
процессор занят выполнением команды, он формирует па своей вы­
ходной линии BUSY сигнал высокого уровня, подающийся на вход
TEST ЦП. При выполнении команды WAIT ЦП опрашивает сиг­
нал на входе TEST и, пока им не будет сигнал низкого уровня, не
переходит к следующей команде. Дешифрирование команды, на­
ходящейся за командой WAIT, оба процессора осуществляют од­
новременно. Отметим, что введение этих команд WAIT в объек­
тивную программу может произвести программа-ассемблер авто­
матически, без специальных указаний программиста.

Принципиалйно команду WAIT можно помещать и после каж­
дой команды сопроцессора. Но в этом случае ЦП не будет выпол­
нять никаких (даже своих!) команд до тех пор, пока сопроцессор не
освободится и степень параллелизма в работе процессоров ухуд­
шается.

Синхронизация по данным. Если выполняемая сопроцессором
команда записывает результат в ячейку памяти, то перед последую­
щей командой ЦП, обращающейся к этой же ячейке, также необхо­
дима команда WAIT. Другими словами, ЦП не должен выполнять
команду со считыванием из памяти операнда, адресуемого сопроцес­
сором, до тех пор, пока сопроцессор не закончит запись в выбран­
ную ячейку. Автоматически учесть такие ситуации довольно сложно,
поэтому вводить команды, проверяющие состояние сопроцессора и
при необходимости заставляющие ЦП ожидать, здесь должен про­
граммист. Благодаря этому сопроцессор обязательно закончит за­
пись данного в память до того, как к нему обратится ЦП.

Мы пояснили синхронизацию работы двух процессоров без учета
опережающей выборки команд и наличия в МП К1810ВМ86 очере­
ди команд. Очевидно, для правильной совместной работы ЦП и со­
процессора в последнем также дол?кна быть внутренняя очередь
команд Чтобы обеспечить синхронизм работы двух очередей, вы­
ходные сигналы состояния очереди QS микропроцессора К1810ВМ86
должны быть поданы на соответствующие входы сопроцессора.

Когда команда сопроцессора должна считывать из памяти бо­
лее одного слова или записывать любые данные в память, сопро-
цессор запрашивает у ЦП шину сигналом на линии RQ/E. При
230

считывании из памяти сопроцессор запрашивает шину сразу после
операции считывания ЦП, а в ^команде с записью в память — после
того, как результат готов к записи, т. е. преобразован в формат
получателя. В любом случае сопроцессор производит передачи
данных в последовательных циклах шины, а затем освобождает
шину. Обычно линия RQ/E0 сопроцессора подключается к линии
RQ/E1 ЦП.

Сопроцессор запрашивает прерывание ЦП выходным сигналом
INT, который обычно подается на один из входов программируемо­
го контроллера прерываний. Прерывание генерируется при возник­
новении особого случая, т. е. некоторой аномалии в вычислительном
процессе, например переполнении, при условии, что особый случай
не замаскирован и прерывания от сопроцессора разрешены. Если
особый случай замаскирован, сопроцессор реализует маскирован­
ную реакцию и не прерывает ЦП.

Остановимся на достоинствах и недостатках сопроцессорной кон­
фигурации. Ее альтернативой является разработка ЦП со всеми
функциональными возможностями сопроцессора. Такая задача ока­
зывается довольно сложной — сопроцессор имеет на кристалле
75 000 транзисторов по сравнению с 30 000 транзисторов ЦП. По­
этому ЦП и сопроцессор в отдельности разработать проще, а при
умелом программировании оба процессора могут работать парал­
лельно. Наличие двух процессоров обеспечивает разработчикам
микросистем дополнительную гибкость — сопроцессор применяется
только там, где он нужен. Кроме того, никаких специальных прие­
мов и ограничений на программирование систем с сопроцессором
нет.

Конечно, сопроцессорный подход имеет и ряд недостатков. От­
метим среди них вынужденное дублирование в сопроцессоре схем
обращений к памяти, трудности построения систем с несколькими
сопроцессорами (ЦП имеет только один вход TEST) и, наконец,
реализацию условных передач управления по результатам опера­
ций сопроцессора только через ЦП, что несколько снижает произ­
водительность системы.

4.2. ВНУТРЕННЯЯ ОРГАНИЗАЦИЯ И ПРОГРАММНАЯ
МОДЕЛЬ СОПРОЦЕССОРА

Микросхема К1810ВМ87 производится по высококачественной
ЦМОП — технологии, имеет 40-контактный корпус типа DIP, на­
пряжение питания составляет +5 В+5%, потребляемая мощность
около 2 Вт. Механизм взаимодействия ЦП и сопроцессора требует,
чтобы они синхронизировались от одного и того же источника сих-
хроимпульсов.

Временная диаграмма работы сопроцессора и его управляющие
сигналы совместимы с МП К1810ВМ86, поэтому они подключаются

231

к системной шине и взаимодействуют друг с другом без согласую­
щих схем. Сопроцессор имеет почти такую же разводку сигнальных
линий, что и МП К1810ВМ86, но с учетом особенностей его работы
имеются следующие различия в определении сигнальных линий:
сигналы NMI, LOCK и MN/M.X отсутствуют, вход TEST заменен на
выход BUSY, сигнал INT стал выходным, а сигналы QS — вход­
ными.

Структурно сопроцессор состоит из двух практически автоном­
ных устройств: устройства управления (шинного интерфейса) и
численного (операционного исполнительного) устройства. Устройст­
во управления предназначено для восприятия команд, считывания
и записи данных, выполнения команд управления сопроцессором,
а также согласования действий сопроцессора и ЦП. Уже говори­
лось, что команды сопроцессора в потоке команд, выбираемых из
программной памяти только ЦП, чередуются с командами самого
ЦП. Сопроцессор определяет цикл выборки команды по сигналам
состояния ST и при появлении байта или слова команды на шине
адреса/данных устройство управления подключается к ней парал­
лельно с ЦП и воспринимает команду. Она попадает в очередь
команд сопроцессора, которая благодаря соединению линий QS
работает параллельно с очередью команд ЦП. Первые пять битов
кода операции всех команд сопроцессора одинаковы (код
ПОП) —они определяют команду ESC переключения на сопроцес­
сор. Мнемоника ESC в системе команд ЦП как бы заменяет собой
мнемоники всех команд сопроцессора и в программах не применя­
ется— вместо нее указывается мнемоника одной из команд сопро­
цессора. «Свою» команду устройство управления либо выполняет
само, либо передает в численное операционное устройство, а
команды ЦП оно игнорирует.

ЦП различает несколько типов команды ESC. Если в команде
требуется обращение к памяти, он вычисляет физический адрес,
а затем инициирует цикл обращения к памяти. Считываемые дан­
ные ЦП игнорирует, т. е. для него действие оказывается «фиктив­
ным» считыванием. Но отсюда следует, что в командах сопроцессо­
ра допустимы все режимы адресации памяти ЦП, хотя сам сопро­
цессор никаких адресных манипуляций делать не может. Когда же
команда ESC не связана с обращением к памяти, ЦП просто пере­
ходит к следующей команде.

Команда ESC может потребовать загрузки операнда из памяти
или записи результата в память, но может быть и не связана с об­
ращением к памяти. В первых двух случаях устройство управления
сопроцессора использует цикл «фиктивного» считывания, иницииру­
емый ЦП. Оно воспринимает и сохраняет 20-битный физический
адрес операнда, который ЦП выдает на шину адреса/данных/состо-
яния. Если команда определяет загрузку, устройство управления
воспринимает первое, и, возможно, единственное слово операнда в
момент появления его на шине адреса/данных. Когда же длина
232

операнда превышает одно слово, устройство управления сразу за­
прашивает шину у ЦП и считывает остальную часть операнда.
Команда с записью в памятЬ заставляет устройство управления
только зафиксировать физический адрес памяти. Если сопроцессор
готов к операции записи, устройство управления запрашивает ши­
ну у ЦП и записывает результат по ранее «перехваченному» адре­
су. В зависимости от длины результата инициируется необходимое
число последовательных циклов шины.

В устройстве управления имеются два программно доступных
16-битных регистра, в которых хранятся слово управления и слово
состояния. Еще четыре 16-битных регистра указателей содержат
физические адреса команды и операнда, а также 11 бит кода опе­
рации (старшие 5 бит кода операции всех команд сопроцессора
содержат ПОП). Указатели предназначены для процедур обработ­
ки особых случаев, предоставляя возможность узнать, какая
команда и с каким операндом вызвала особый случай.

Рис. 4.2. Программная модель сопроцессора

Численное операционное устройство выполняет все команды об­
работки чисел, так или иначе связанные с внутренним регистровым
стеком. В его составе есть несколько быстродействующих специали­
зированных модулей, реализующих операции над мантиссами и
порядками, а также параллельные сдвиги. Передачи чисел по внут­
ренней шине данных осуществляются с очень высокой скоростью.

С точки зрения программиста сопроцессор можно считать просто
расширением ЦП К1810ВМ86 в части регистров, допустимых форма­
тов чисел и системы команд. Взаимодействие между ними на аппа­
ратном уровне «невидимо» для программ.

Основу программной модели сопроцессора, показанной на рис.
4.2, образует регистровый стек из восьми 80-битных регистров
R0—R7, иногда называемые арифметическими регистрами. В них
хранятся числа, представленные в так называемом временном

233

вещественном формате (см. § 4.3). В любой момент времени трех­
битное поле ST (Stack Тор) в слове состояния определяет регистр,
являющийся текущей вершиной стека и обозначаемый ST (0) или
просто ST (в гл. 3 мы пользовались аббревиатурой TOS). Опера­
ция включения в стек (push) осуществляет декремент- поля ST и
загружает адресуемые данные в новую вершину стека. В операции
извлечения из стека (pop) в получатель передается содержимое
вершины стека, а затем производится инкремент поля ST. Таким
образом, в стандартных стековых операциях поле ST выполняет
функции традиционного указателя стека SP.

В организации регистрового стека сопроцессора имеется не­
сколько отличий от «обычного» стека, который в большинстве
современных процессоров аппаратно реализуется в оперативной
памяти. Во-первых, стек имеет круговую (кольцевую) организа­
цию: если поле ST содержит ООО и производится его декремент, но­
вым содержимый ST будет 111, а если поле ST содержит 111 и осу­
ществляется его инкремент, новым содержимым ST будет ООО.
Контроль за использованием стека должен вести программист.
Во-вторых, в командах сопроцессора допускается явное или неяв­
ное обращение к регистрам стека с модификацией или без модифи­
кации поля ST. Явная адресация регистров осуществляется только
относительно текущей вершины стека и обозначение ST (i) опре­
деляет г-й регистр в стеке, 0^г^7, считая от ST (0). Примером
может служить команда

ADD ST,ST<5) ST<О) <— ST<Oi - ST<5>

Наконец, во многих командах сопроцессора не выдерживаются
обычные соглашения о стеке, т. е. о том, что любая стековая опера­
ция автоматически модифицирует указатель стека. Например,
команда FST (сохранить в памяти) передает содержимое вершины
стека в память, но не производит инкремента поля ST.

С каждым регистром стека ассоциирован двухбитный тэг (приз­
нак), а их совокупность для всех регистров образует слово тэгов.
Тэг регистра R0 находится в младших битах слова, а тэг регистра
R7 в старших битах. Тэг фиксирует наличие в регистре «обычного»
числа -— код 00, истинного нуля — код 01, специального числа — код
10 и отсутствие данных—код 11. В последнем случае регистр назы­
вается пустым и попытка извлечь число из пустого регистра фикси­
руется как особый случай недействительной операции. Аналогич­
ный особый случай регистрируется и при попытке загрузить число
в непустой регистр. Таким образом, наличие регистра тэгов позво­
ляет сопроцессору обнаруживать особые случаи и эффективнее
обрабатывать специальные числа.

Остальными регистрами в программной модели сопроцессора
являются 16-битные регистр управления CW, регистр состояния
SW, два регистра указателя команды и два регистра указателя
234

данных (операнда). Все эти регистры предназначены для систем­
ных программистов, разрабатывающих процедуры обработки осо­
бых случаев, а для большинства прикладных программистов нали­
чие этих регистров можно безопасно игнорировать. Определенный
интерес представляет регистр управления, содержимое которого
задает режим работы сопроцессора, например, способ округления,
точность вычислений и интерпретацию бесконечности. Однако для
подавляющего большинства программ наиболее благоприятны ре­
жимы, задаваемые по умолчанию при аппаратной (сигналом сбро­
са) или программной (командой FINIT) инициализации сопроцес­
сора. В регистре состояния наибольший интерес представляют би­
ты кода условия, в которых фиксируются особенности результата
команд проверки, сравнения и анализа. С их помощью осуществля­
ются передачи управления по результатам вычислений сопроцессо­
ра. Мы кратко рассмотрим функции этих регистров в § 4.5.

4.3. ФОРМАТЫ ЧИСЕЛ

Арифметический сопроцессор К1810ВМ87 оперирует числами
трех классов: двоичные целые, упакованные десятичные целые и
двоичные вещественные числа (числа с плавающей точкой). Может
показаться неожиданным, что сопроцессор работает с целыми
числами, так как их может обрабатывать ЦП. Но если исключить
этот тип чисел, сопроцессор не смог бы вычислять выражения, в ко­
торых фигурируют целые и вещественные числа. ■

Форматы чисел показаны на рис. 4.3, а их основные характери-

Рис. 4.3. Форматы чисел сопроцессора
235

стики (диапазон и точность) приведены в табл. 4.1. На рис. 4.3 знак
вставки (д) показывает позицию неявной точки, отделяющей це­
лую часть числа от дробной. Во всех форматах старший бит отве­
ден для знака числа со стандартным кодированием: «О» означает

Таблица 4.1. Основные характеристики численных форматов

Формат Диапазон Точность Особенность

Целое слово Ю4 16 бит Дополнительный код
Короткое целое 109 32 бит То же
Длинное целое 10‘9 64 бит »
Упакованное десятичное 1018 18 цифр Прямой код
Короткое вещественное Ю±38 24 бит Неявный бит Fo
Длинное вещественное Ю±308 53 бит Неявный бит Fo
Временное вещественное }Q±4932 64 бит Явный бит Fo

плюс, а «1» — минус. На рис. 4.3 и в дальнейшем приняты следую­
щие сокращения: ЦС — целое слово, КЦ — короткое целое, ДЦ—-
длинное целое, УПК—упакованное десятичное, КВ — короткое ве­
щественное, ДВГ—длинное вещественное и ВВ — временное веще­
ственное.

Двоичные целые числа. Три формата целых двоичных чисел
(ЦС, КЦ и ДЦ) отличаются только длиной, влияющей на диапазон
представимых чисел. Только в этих форматах применяется стан­
дартный дополнительный код. Число нуль имеет единственное пред­
ставление 00...000 (положительный пуль). Формат целого слова
соответствует основному формату чисел микропроцессора
К1810ВМ86.

Упакованные десятичные целые числа. В этом формате каждый
байт содержит две десятичные цифры в коде 8421. Старший бит
левого байта отведен для знака числа, а остальные биты этого бай­
та игнорируются, а при записи в память в них помещаются нули.
Для десятичных чисел принят прямой код, который проще преобра­
зовывать в последовательность символов для индикации по сравне­
нию с дополнительным кодом. В прямом коде появляются два
представления нуля—положительный и отрицательный нули, ко­
торые сопроцессор не различает. Младшая тетрада в старшем бай­
те не используется, что объясняется стремлением к совместимости
со стандартами некоторых языков программирования.

Отметим, что при наличии в тетрадах запрещенных комбинаций
1010—1111 результат операции с десятичным операндом не опреде­
лен. Другими словами, сопроцессор не контролирует правильность
десятичных цифр.

Вещественные числа. Для вещественных чисел применяется фор­
мат с плавающей точкой (КВ, ДВ и ВВ). Значащие цифры числа
236

находятся в поле мантиссы М, доле порядка Е показывает факти­
ческое положение двоичной точки в разрядах мантиссы, а бит зна­
ка S определяет знак числа. Мантисса, называемая также дробью
F (Fraction), представлена в прямом коде.

Порядок Е дается в смещенной форме:
Е = истинный порядок+смещение.

Величина смещения для соответствующих форматов равна 127,
1023 и 16 383. Значение числа равно:

(—... F„.

Представления чисел в коротком и длинном вещественных фор­
матах удовлетворяют требованиям стандарта на арифметику с
плавающей точкой (см. § 1.4). Отметим наличие в мантиссе бита
единиц Fo. Сопроцессор обычно поддерживает представление ман­
тиссы в нормализованной форме, т. е. ее старший бит Fo равен 1.
Следовательно, за исключением числа нуль мантисса состоит из
целой части и дроби в виде 1. F1F2—Fn, где Fi равно 0 или 1. Бла­
годаря нормализации устраняются старшие нули в числах, меньших
единицы, что максимизирует количество значащих цифр мантиссы
при ее фиксированной длине.

В коротком и длинном вещественных форматах бит Fo при пе­
редачах чисел и хранении их в памяти отсутствует. Это так назы­
ваемый скрытый или неявный бит, который в нормализованных
числах содержит 1. Числа во временном вещественном формате
имеют явный бит Fo. Такой формат позволяет повысить скорость
выполнения операций. Числа во временном вещественном формате
называются еще числами с расширенной точностью.

Покажем представление десятичного числа —247.375 в вещест­
венных форматах сопроцессора. Двоичный код его равен
—11110111.011 и истинный порядок +7. Смещенные порядки в трех
вещественных форматах равны 134, 1030 и 16 390. С учетом бш\^
Fo имеем следующие представления:

Знак Порядок Мантисса
Короткое вещественное
Длинное вещественное
Временное вещественное

1 10000110 11101110110.-0
1 10000000110 11101110110 ...0
1 100000000000110 111101110110 ...о

Независимо от исходного формата при загрузке числа из памя­
ти в регистр сопроцессора оно автоматически преобразуется во
временный вещественный формат, а при записи в память осущест­
вляется обратное преобразование в формат получателя. Таким об­
разом, временный вещественный формат является единственным
внутренним форматом представления чисел, причем в нем абсолют­
но точно кодируются любые загружаемые из памяти числа. Числа
во временном вещественном формате можно передавать в память;

237

это приходится делать для хранения промежуточных результатов
из-за нехватки внутренних регистров.

благодаря аппаратному преобразованию всех внешних форма­
тов во временный вещественный формат программист может не
заботиться с явных преобразованиях форматов. Умножение числа
с плавающей точкой на упакованное десятичное число (после за­
грузки его в сопроцессор) осуществляется так же просто, как ум­
ножение целых чисел. Конечно, при возвращении результата в па­
мять программист должен обеспечить, чтобы формат получателя
был достаточен для восприятия результата.

Разумеется, сопроцессор не может представить все веществен­
ные числа из диапазонов своих форматов. Между любыми двумя
соседними числами всегда существует промежуток, и результат
операции может попасть именно в этот промежуток. В таких ситуа­
циях сопроцессор скругляет истинный результат до числа, которое
он может представить. Следовательно, вещественное число с боль­
шим количеством значащих цифр, чем допускает сопроцессор, бу­
дет представлено неточно. Как обычно, в формате с плавающей
точкой, между любыми последовательными степенями двух нахо­
дится одно и то же количество представимых чисел. Например,
между 4 и 8 находится столько же представимых чисел, как и меж­
ду 524 288 и 1 048 576. Другими словами, промежутки между пред­
ставимыми числами расширяются по мере увеличения чисел. Одна­
ко целые числа из диапазона —264--- Р264 (примерно ±Ю’8) пред­
ставляются во временном вещественном формате абсолютно точно.

Хранение чисел в памяти. В сопроцессоре принят такой же спо­
соб хранения чисел в памяти «младшее —по меньшему адресу»,
как и в МП К1810ВМ86. Логически во всех форматах левый бит
является старшим, а правый младшим. В физической памяти пер­
вым, т. е. по меньшему адресу, хранится младший байт; адрес это­
го байта считается и адресом всего числр. Последним, т. е. по боль­
шему адресу, хранится старший байт. Передача данных обычно на­
чинается с младшего байта.

Рекомендации по применению. В подавляющем большинстве
применений для исходных данных и результатов рекомендуется ис­
пользовать длинный вещественный формат. Он обеспечивает доста­
точные для получения правильных результатов диапазон и точ­
ность, требуя от программиста минимальных усилий. Короткий
вещественный формат целесообразен в системах с ограничениями
на память, но, конечно, он имеет меньшие диапазон и точность. Его
удобно применять для отладки программ, так как ошибки округле­
ния проявляются в этом формате наиболее быстро. Временный
вещественный формат не предназначен для представления входных
и выходных данных, его следует применять для промежуточных
результатов, в циклических фрагментах и для представления кон­
стант. Его фантастически огромный диапазон и высокая точность
гарантируют защиту окончательных результатов от ошибок округ-
238

ления, а также уменьшают вероятность возникновения переполне­
ний и антипереполнений. Как правило, такие ситуации свидетель­
ствуют об ошибках в данных или программе.

4.4. СИСТЕМА КОМАНД СОПРОЦЕССОРА

Система команд сопроцессора содержит 69 базовых команд, ко­
торые удобно разделить на шесть групп: команды передач данных,
арифметические команды, команды сравнения, команды трансцен­
дентных операций, команды загрузки констант и команды управ­
ления сопроцессором.

Типичная команда воспринимает один или два операнда, выпол­
няет свою операцию и формирует результат. Операндами наиболее
часто служит содержимое регистров, но может привлекаться и со­
держимое ячеек памяти. Операнды некоторых команд определяют­
ся неявно, например «безоперандная» команда FSQRT извлечения
квадратного корня имеет операндом содержимое вершины стека
ST (0) и возвращает результат также в вершине стека, замещая
операнд. Другие команды допускают или требуют явного задания
операндов. Например, имеются команды с одним явным и одним
неявным операндом, которым бывает содержимое вершины стека.

Команды бинарных операций допускают несколько альтернатив­
ных форм. В случае пустого поля операнда операция выполняется
с двумя верхними элементами стека ST (0) и ST(1). После произ­
водства операции осуществляется инкремент указателя стека и ре­
зультат помещается в новую вершину, т. е. замещает исходное со­
держимое ST (1). Другими словами, два операнда заменяются в
стеке одним результатом; такое действие считается классической
операцией в стековых машинах.

Когда в бинарной операции определен один операнд, она выпол­
няется с привлечением указанного в команде регистра (или ячейки
памяти) и содержимого вершины стека. Результат загружается в
«старую» вершину стека и указатель стека не модифицируется.

Если же в бинарной операции указаны два операнда, ими явля­
ется содержимое двух регистров стека ST(0) и ST (г). Всего полу­
чается три варианта интерпретации команды:

источником является ST(0), а получателем ST (г),
источником выступает ST(i)> а получателем ST(0),
источником служит ST (0), получателем ST (i) и производится

извлечение из стека, т. е. содержимое ST(0) удаляется из стека.
При программировании удобно наличие обратной формы команд

вычитания и деления. Например, в обычной форме команды деле­
ния получатель делится на источник, а в обратной форме источник
делится на получатель. Конечно, в обеих формах команд результат
помещается в получатель. Благодаря обратной форме команд опе­
рации вычитания и деления становятся симметричными.

Таким образом, многие команды, в частности команды всех ариф-
239

метических операций, допускают несколько способов задания опе­
рандов. Например, команда FADD сложения вещественных чисел
разрешает запись без операндов, только с источником или с источ­
ником и получателем. Альтернативные формы операндов условно
показываются с помощью наклонной или косой черты (ее также
называют чертой деления). Например, команда FADD имеет сле­
дующий общий вид:

f'ADD //src /dst, src

Такое обозначение подразумевает три возможных формы коман­
ды: без операндов, с одним источником, с получателем и источни­
ком.

В мнемониках команд приняты следующие соглашения:
первая буква всегда F (Floating); она позволяет легко иденти­

фицировать команды сопроцессора в программе;
вторая буква I (Integer) обозначает операцию с целым двоичным

числом, буква В (Binary-coded decimal) — операцию с десятичным
операндом, а «пустая» вторая буква определяет операцию с вещест­
венными числами;

предпоследняя или последняя буква R (Reverse) указывает об­
ратную операцию;

последняя буква Р (Popping) показывает команду, заключитель­
ным действием которой является извлечение из стека.

Для программирования систем с сопроцессором следует расши­
рить стандартный ассемблер МП К1810ВМ86 средствами поддерж­
ки сопроцессора. Расширенные форматы данных сопроцессора тре­
буют введения в ассемблер специальных директив определения
данных. Для резервирования и инициализации памяти для перемен­
ных и констант сопроцессора применяются директивы:

DW — определить слово (16 бит); ,
DD — определить двойное слово (32 бит);
DQ — определить счетверенное слово (64 бита);
DT — определить десять байтов (80 бит).
Иногда программисту необходимо воспользоваться командой,

тип операнда которой не объявлен директивой. Но поскольку ас­
семблер все же должен знать тип операнда, его можно задать в
команде с помощью атрибутного оператора PTR. Например, в
команде

FLD tBXJtSIJ

не ясно, какое вещественное число загружается из памяти. В коман­
де же с указателем

FLO QWOORD PTR CBX1TSI3

определена загрузка длинного вещественного числа.
240

Ассемблер не контролирует тип операнда в командах управле­
ния сопроцессором, так как в них структура операнда подразуме­
вается смыслом команды. Например, команда восстановления пол­
ного состояния сопроцессора FRSTOR [ВР] предполагает, что
регистр ВР адресует 94-байтную область в сегменте стека, в кото­
рой ранее было запомнено полное состояние сопроцессора.

4.4.1. КОМАНДЫ ПЕРЕДАЧ ДАННЫХ

Команды этой группы производят передачи данных между ре­
гистрами стека, а также между вершиной стека и памятью. Одной
командой число из памяти, представленное в любом формате со­
процессора, преобразуется во временный формат и загружается
(включается) в стек; аналогичным образом, но в обратном поряд­
ке, осуществляется передача числа в память. При выполнении
команд автоматически модифицируется тэг регистра, отражая его
новое содержимое.

Команды загрузки. Три команды загрузки имеют следующий
вид:

вещественное: FLD src 1
двоичное целое: FILD src > ST-<-(ST)—1, ST(0)ч-(src)
десятичное целое: FBLD src J

Как видно из общего описания, эти команды осуществляют де­
кремент указателя стека и передачу в новую вершину стека содер­
жимого источника, т. е. производят включение в стек. Для предот­
вращения переполнения стека перед загрузкой проверяется тэг
регистра. Если регистр не отмечен как пустой, генерируется особый
случай недействительной операции и загрузка не производится.

В команде FLD источником может быть один из регистров сте­
ка или вещественное число с любым форматом в памяти, а в
командах FILD и FBLD — только операнд в памяти. При выполне­
нии всех команд (за естественным исключением команд вида
FLD ST (г) и с операндом в памяти во временном вещественном
формате) производится автоматическое преобразование операнда
во временный вещественный формат с сохранением специальных
чисел.

Команды запоминания. Две команды запоминания
вещественное: FST dst bs^ST(0)

двоичное целое: FIST ast J '

производят передачу содержимого вершины стека в память без мо­
дификации указателя стека ST и, разумеется, содержимого ST(0).

В команде FST получателем может быть регистр стека или ве­
щественная переменная в памяти (только короткий или длинный
формат). Мантисса округляется, а порядок корректируется с уче­
том длины и смещения порядка получателя.
9—1021 241

В команде FIST получателем является переменная в памяти,
имеющая формат короткого целого или целого слова. Команда ок­
ругляет содержимое вершины стека до целого и передает результат
в получатель. При наличии в ST (0) отрицательного нуля он будет
запомнен как положительный нуль в виде 00...00.

Команды запоминания с извлечением из стека. Эти команды по­
мимо передачи содержимого ST (0) в получатель осуществляют
извлечение из стека: регистр, бывший вершиной стека, отмечается
как пустой и производится инкремент указателя стека:

вещественное: FSTP dst)
двоичное целое: FISTP dst У dsI-t-ST(O), ST-«-(ST)-J-l
десятичное целое: FBSTP dst J

Чтобы предотвратить аптипереполнение (опустошение) стека,
перед запоминанием проверяется тэг регистра, являющегося вер­
шиной стека. Если тэг показывает неинициализированное значение
(пустой регистр), генерируется особый случай недействительной
операции.

Действия команды FSTP очень похожи на действия команды
FST с добавлением, конечно, извлечения из стека. Однако она по­
зволяет передать в память число в любом вещественном формате,
даже во временном вещественном формате, чего не может делать
команда FST.

Команда FISTP, похожая на команду FIST, обеспечивает пере­
дачу в память числа в любом формате целого двоичного, включая
и длинное целое. Последний формат недопустим в команде FIST.
Некоторая асимметричность команд сопроцессора объясняется не­
достатком двоичных наборов для кодов операций.

Наконец, команда FBSTP преобразует операнд из вершины сте­
ка в упакованное десятичное число, передает его в память и про­
изводит извлечение из стека. Округление реализуется посредством
прибавления к исходному числу 0.5 и последующего отбрасывания
разрядов дробной части.

В командах запоминания обоих видов при преобразовании
формата может возникнуть несколько особых случаев. Если в про­
цессе округления число изменяется, генерируется особый случай
точности. Когда округленное число слишком велико для формата
получателя, фиксируется особый случай переполнения. Наконец,
при преобразовании в короткий или длинный вещественный формат
возникает особый случай антипереполнения, когда округленное
число не является нулем, но меньше порога антипереполнения со­
ответствующего формата.

Команда обмена. Команда обмена содержимого регистров
FXCH //dst ST (О) <----- > (dst)

обменивает содержимое получателя ST(i) и вершины стека ST(0).
В случае пустого поля операнда обменивается содержимое регист-
242

ров ST(1) и ST(0). Наличие команды FXCH объясняется тем, что
многие команды сопроцессора оперируют содержимым вершины
стека, а с помощью команды обмена их действия можно распрост­
ранить на все регистры стека. Отметим, что команда FXCH ST (0)
эквивалентна холостой команде.

4.4.2. АРИФМЕТИЧЕСКИЕ КОМАНДЫ

Набор арифметических команд сопроцессора включает в себя
разнообразные варианты основных арифметических операций, а
также удобные команды извлечения квадратного корня, масштаби­
рования, выделения частей вещественного числа и др. В табл. 4.2
приведены допустимые комбинации операций и операндов для
основных арифметических операций. В дополнение к четырем
обычным операциям команды двух обратных операций делают
вычитание и деление «симметричными», как сложение и умножение.

Таблица 4.2. Формы основных арифметических команд

Форма команды Мнемоника Операнды Пример записи

Стековая Fop {ST(1), ST} FSUB
Регистровая Fop ST(i), ST или ST,

ST(i)
FADD ST, ST (2)

Регистровая с из­
влечением из стека

FopP ST(i), ST FMULP ST(3), ST

Вещественные опе­
ранды (с памятью)

Fop {ST,} короткое/длин-
ное вещественное

FADD BETA

Целые операнды (с
памятью)

Flop {ST,} целое слово /
короткое целое

FIDIV GAMMA

Примечания: 1. Фигурные скобки обозначают неявные операнды, которые
в ассемблерных командах могут не указываться. 2. Обозначения

op = {dst,src} dst < — (dst) + (src)

SUB <dst,src) dst < — (dst) - (src)

SUBR <dst,src} dst < — (src) - (dst)

MUL (d5t,src} dst < — (dst) * (src)

DIV Cdst,src) dst <— (dst) / (src)

DIVR <dst,src) dst < — (src' / (dst)

Приведенные в табл. 4.2 пять основных форм команд могут быть
использованы для всех операций.

Стековая форма превращает сопроцессор в классическую стеко­
вую машину. В этой форме поле операнда пустое: под источником
подразумевается вершина стека ST(0), а получателя — следующий
регистр стека ST(1). Выполнив операцию, сопроцессор производит
9* 243

инкремент указателя стека и загружает результат в новую вершину
стека.

Регистровая форма представляет собой обобщение предыдущей:
одним из операндов является содержимое вершины стека, вто­
рым ■— произвольный регистр стека, а результат можно загрузить
на место любого из операндов. Указание получателем вершины
стека обеспечивает удобный доступ к константам из других ре­
гистров. Когда вершина стека служит источником, регистр-получа­
тель превращается в аккумулятор.

Часто операнд, находящийся в вершине стека ST(0), необходим
только для одной операции, а в дальнейшем не требуется. Регист­
ровая форма с извлечением из стека обеспечивает выбор вершины
стека в качестве источника и последующее уничтожение этого опе­
ранда посредством инкремента указателя стека. Задание операндов
в виде ST(1), S,T(0) с мнемоникой извлечения из стека эквивалент­
но классической стековой операции: содержимое вершины стека
удаляется, а результат помещается в новую вершину стека.

Две формы команд с обращением к памяти позволяют использо­
вать как источник вещественное или целое число, находящееся в
памяти. Это удобно в тех ситуациях, когда операнды привлекаются
редко и их хранение в регистрах нецелесообразно. Для указания
таких операндов применяются все режимы адресации памяти ЦП.
Необходимо отметить, что вещественные числа в памяти не могут
быть в формате временного вещественного, а целые числа — в фор­
мате длинного целого. Здесь вновь сказывается недостаточность
наборов кодов операций.

Команды сложения. Операция сложения реализуется команда­
ми со следующими формами:

вещественные числа: FADD //src/dst, src
вещественные числа (с извлечением из стека): FADDP dst, src
целые числа: » FIADD src
Отметим, что команда FADD ST, ST (0) удваивает содержимое

вершины стека.
Команды вычитания. Обычное вычитание dst+-(dst)— (src) осу­

ществляют команды:
вещественные числа: FSUB//src/ds', src
вещественные числа (с извлечением из стека): FSIJBP dst, src
целые числа: FISUB src
Для производства обратного вычитания rfsZ-e-(src) — (dst) пред­

назначены команды FSUBR, FSUBRP и FISUBR, имеющие анало­
гичные формы.

Команды умножения. Операция умножения реализуется следу­
ющими командами:

вещественные числа: FMUL//src/dsf, src
вещественные числа (с извлечением из стека): FMULP dst, src
целые числа: FIMUL src

244

Команды деления. Для выполнения операции обычного деления
предусмотрены команды:

вещественные числа: FDIV //srs/dst, src
вещественные числа (с извлечением из стека): FDIVP dst, src
целые числа: FIDIV src

Соответствукицие команды обратного деления FDIVR, FDIVRP
и FIDIVR загружают в получатель частное от деления источника
на получатель.

Хотя сопроцессор имеет полный набор команд целочисленной
двоичной арифметики, применять их в «массовом» порядке не реко­
мендуется, так как быстродействие сопроцессора в такой арифме­
тике значительно ниже быстродействия ЦП. Например, МП
К1810ВМ86 выполняет 16-битное сложение память — регистр при­
мерно за 20 тактов синхронизации, а аналогичная команда сопро­
цессора занимает 120 тактов. Объясняется такая несколько пара­
доксальная ситуация тем, что в сопроцессоре для обработки целых
чисел применяется временный вещественный формат, что требует
соответствующего преобразования операнда (и обратного преобра­
зования при передаче результата в память). Преимущества сопро­
цессора при обработке таких «малых» для него чисел проявляются
в вычислениях с привлечением вещественных и целых чисел. Бла­
годаря тому, что сопроцессор представляет любые числа в одном и
том же внутреннем формате, в вычислениях могут участвовать
числа различных форматов.

Сделаем замечание о явном и неявном указании регистровых
операндов. В стековой форме ST (0) всегда подразумевается источ­
ником, a ST(1) получателем, и они в командах явно не фигури­
руют. Отсутствующие операнды могут вызвать некоторую путани­
цу у неопытного программиста. Дело в том, что команда с двумя
неявными операндами имеет другой смысл, чем та же самая ко­
манда с явными операндами. По соглашению два неявных операн­
да сообщают ассемблеру о том, что после выполнения операции
следует произвести извлечение из стека. Например, команда FADD
подразумевает источником ST(0) и получателем ST(1). Ассемблер
транслирует эту команду как FADDP ST (I), ST, которая отли­
чается от команды FADD ST (1), ST. Поэтому целесообразно, хо­
тя бы на первых порах, явно указывать в командах оба операнда.

Отметим также, что во всех арифметических операциях могут
возникать особые случаи. Уникальна в этом отношении операция
деления, в которой могут возникнуть все шесть особых случаев, фик­
сируемых сопроцессором. .

Дополнительные команды. К арифметическим командам относят­
ся также семь дополнительных команд, имеющих «безоперандную»
форму.

245

Команда FSQRT извлечения квадратного корня заменяет число,
находящееся в вершине стека, значением квадратного корня:

FSQRT ST (О) <------ VST(O)

В этой команде, по определению, полагается, что —0=—0.
Относительно команды FSQRT отметим следующее. Во-первых, она
выполняется несколько быстрее команд деления, так как здесь не
нужно контролировать переполнение и антипереполнение. Во-вто­
рых, точность ее соответствует точности обычных арифметических
операций (ошибка результата равна 1/2 младшего'бита мантиссы).
Наконец, в команде FSQRT доступны режимы округления.

Команда FSCALE масштабирования интерпретирует содержи­
мое регистра ST(1) как целое двоичное число и прибавляет его к
смещенному порядку числа, находящегося в вершине стека:

V

FSCALE ST(O> <------ST(O) * 2'ST<1>

Таким образом, команда FSCALE осуществляет быстрое умно­
жение (когда ST(l)>0) или деление (когда ST(l)<0) содержимо­
го вершины стека на целую степень двух.

В этой команде предполагается, что масштабный коэффициент
в ST(1) является целым числом из диапазона —215<ST(1) <215.
Если же он не удовлетворяет этому ограничению, но находится в
указанном диапазоне и больше по абсолютной величине 1, в коман­
де принимается ближайшее целое, меньшее по абсолютной величи­
не исходного масштабного коэффициента. Другими словами, коман­
да FSCALE производит усечение к нулю. Когда же число в ST(1)
находится вне допустимого диапазона или является правильной
дробью, команда формирует непредсказуемый результат и не сиг­
нализирует об особом случае. Поэтому во избежание возможных
ошибок рекомендуется всегда позаботцться о задании масштабно­
го коэффициента в виде целого слова. Нахождение масштабного
коэффициента не в вершине стека, а в регистре ST(1) обеспечива­
ет удобное масштабирование последовательности чисел, например
элементов массива. На каждый элемент массива требуют три опе­
рации (загрузка, масштабирование и запоминание) без дополни­
тельных действий.

Команда FPREM вычисляет частичный остаток (смысл этого
термина будет понятен из описания команды) от деления числа,
находящегося в вершине стека ST(0), на следующий элемент сте­
ка ST (1) и загружает результат в ST(0):

FPREM ST<0> < ST(О) - (q * ST<1>>

где q — целое число. Другими словами, здесь содержимое ST(1)
выступает модулем в операции деления. Знак остатка совпадает со
знаком исходного делимого.
246

Команда FPREM предназначена в основном для приведения
аргумента (операнда) периодических трансцендентных функций в
диапазон, допустимый в соответствующих командах сопроцессора.
Например, команда FPTAN вычисления частичного тангенса тре­
бует, чтобы аргумент находился в диапазоне от нуля до л/4. Для
повышения точности вычисления функций необходимо, чтобы
команда FPREM давала точный результат. Этого можно достичь
только путем последовательных масштабированных вычитаний
модуля из делимого до достижения момента, когда вычитание без
получения отрицательной разности невозможно, т. е. когда очеред­
ная разность меньше модуля. Такой способ требует значительного
времени в тех ситуациях, когда исходное делимое намного больше
модуля с соответствующей задержкой ЦП. Чтобы предотвратить
«зависание» ЦП в продолжительной операции без реакции на за­
просы прерываний, когда FPREM рассчитана на повторяющееся
(итеративное) выполнение в программном цикле. Она производит
максимум 64 вычитания и возвращает полученный при этом резуль­
тат, даже если необходимы дальнейшие вычитания.

Когда команда FPREM дает остаток, меньший модуля, ее функ­
ция считается законченной и бит С2 кода условия в слове состоя­
ния сопроцессора будет содержать нуль. Если же приведение не за-
конечно, бит С2 содержит 1 и результат в вершине стека ST (0)
называется частичным остатком. Программа должна проверить со­
стояние С2 после выполнения команды FPREM и при необходимо­
сти инициировать ее повторное выполнение с использованием в
качестве делимого частичного остатка из ST (0).

Проверка состояния бита С2 осуществляется с привлечением
ЦП: слово состояния передается через память в регистр АХ, затем
команда SAHF пересылает код условия в регистр флажков и со­
стояние бита С2 показывает флажок PF. Другой способ определе­
ния завершения команды FPREM заключается в сравнении ST(0)
и ST(1): остаток получен, если ST (0) <ST(1).

Кроме остатка в ST (0) команда FPREM образует в битах СЗ,
С1, СО слова состояния три младших бита частного. Фактически по
своим весам они упорядочены как СО, СЗ, С1. Наличие трех битов
частного позволяет определить нахождение исходного угла в одном
из октантов. Следует иметь в виду, что точные младшие биты част­
ного получаются при производстве в команде FPREM не более 62
вычитаний.

Следующая команда FRNDINT осуществляет округление числа,
находящегося в вершине стека, до целого. Режим округления задан
соответствующим полем в слове управления сопроцессора.

Команда FXTRACT выделения-компонент числа с плавающей
точкой преобразует число, находящееся в вершине стека ST(0), в
два числа, представляющие собой фактические значения его поряд­
ка и мантиссы. Выделенный порядок заменяет исходный операнд в
вершине стека, а мантисса включается в стек. После выполнения

247

команды в ST (0) находится вещественное число, знак и мантисса
которого равны знаку и мантиссе исходного операнда, а истинный
порядок равен нулю (смещенный порядок равен 16 383). В регист­
ре ST(1) находится истинный порядок исходного операнда, также
выраженный в формате вещественного числа. Когда операнд равен
нулю, команда FXTRACT образует нули в ST (0) и ST(1) со знаком
исходного числа.

Две последние команды выполняют элементарные операции на­
хождения абсолютного значения и изменения знака числа, которое
содержится в вершине стека:

FOBS ST(O> <------ IST<O>I

FCHS ST(O> <------ -ST<O>

4.4.3. КОМАНДЫ СРАВНЕНИЯ

Команды этой группы предназначены для анализа числа в вер­
шине стека (иногда по отношению к другому числу) и формиро­
вания кода условия в слове состояния сопроцессора. К основным
операциям относятся сравнение, проверка (или сравнение с ну­
лем) и анализ (получение подробной информации о числе). Име­
ются специальные формы команд, допускающие сравнение с це­
лым и вещественным числами, находящимися в памяти, и извле­
чения из стека после сравнения. Проверить образованный код ус­
ловия может только ЦП.

Команда сравнения вещественных чисел имеет форму
FCOM //src и осуществляет сравнение содержимого вершины сте­
ка ST (0) и источника src. Источником может быть регистр стека
или вещественное число в памяти (в формате короткого или
длинного вещественного). Если поле операнда пустое, производит­
ся сравнение ST (0) и ST (1). Код условия отражает отношение
между числами-операндами в соответствии с табл. 4.3. Операнды
считаются несравнимыми (СЗ, С0=11), когда хотя бы один из
них является специальным числом.

Команда FCOMP // src сравнения и извлечения из стека дейст­
вует аналогично команде FCOM, но дополнительно осуществляет
извлечение из стека. Следующая команда FCOMPP сравнения
ST (0) и ST (1) и двойного извлечения из стека похожа на коман­
ду FCOMP ST (1), но дополнительно она производит еще одно
извлечение из стека, так что оба операнда оказываются «уничто­
женными».

При выполнении команды FICOM содержимое источника (па­
мять), интерпретируемое как целое слово или короткое целое,
преобразуется во временной вещественный формат и сравнивается
с ST (0). Команда FICOMP src производит такие же действия и
дополнительно реализует извлечение из стека.
248

Таблица 4.3. Интерпретация кода условия

Команда СЗ С2 С1 со Смысл

Сравнение и про- 0 X X 0 (ST) Жсточника (src) или 0
верка (НСОМ, 0 X X 1 (ST) <источника (src) или 0
FCOMP, FCOMPP, 1 X X 0 (ST) = источнику (src) или 0
FTST) 1 X X 1 Не сравнимы

Анализ (РХАМ) 0 0 0 0 Положительное, ненормализо­
ванное

0 0 0 1 Положительное, не-число
0 0 1 0 Отрицательное, ненормализован­

ное
0 0 1 1 Отрицательное, не-число
0 1 0 0 Положительное, нормализован­

ное
0 1 0 1 Положительная бесконечность
0 I I 0 Отрицательное, нормализован­

ное
0 1 1 1 Отрицательная бесконечность
1 0 0 0 Положительный нуль
1 0 0 1 Пустой регистр
1 0 1 0 Отрицательный нуль
1 0 1 1 Пустой регистр
1 1 0 0 Положительное, денормализо-

ванное
1 1 0 1 Пустой регистр

- 1 1 1 0 Отрицательное, денормализо-
ванное

1 1 1 1 Пустой регистр

Команда FTST производит проверку числа, находящегося в
вершине стека, посредством сравнения его с нулем. Результат
проверки фиксируется в коде условия в соответствии с табл. 4.3,
но с заменой источника (src) в команде сравнения на нуль.

Последняя в этой группе команда FXAM анализа содержи­
мого вершины стека формирует в битах СЗ — СО кода условия
подробное сообщение об особенностях операнда (см. табл. 4.3).

4.4.4. КОМАНДЫ ТРАНСЦЕНДЕНТНЫХ ФУНКЦИЙ

Команды настоящей группы выполняют базовые вычисления,
относящиеся к тригонометрическим, обратным тригонометриче­
ским, логарифмическим и показательным функциям. Операнды
команд находятся в одном или двух верхних регистрах стека и
результат также возвращается в стеке.

Предполагается, что операнды являются нормализованными
числами и находятся в допустимом для каждой из команд диапа­
зоне. Ответственность за удовлетворение этих требований возла­
гается на программиста. При нарушении их результат операции

непредсказуем; более того, сопроцессор не оповещает об этом ни­
каким особым случаем.

Команда FPTAN вычисления частичного тангенса, как резуль­
тат, формирует два числа X и Y, отношение которых дает тангенс
угла а в виде tga=Y/X. Значение угла а в радианах должно на­
ходиться в вершине стека ST (0) и быть в диапазоне от нуля до
зт/4 (0<а<л/4). После выполнения команды FPTAN значение Y
замещает аргумент, а значение X включается в стек. Допустимый
диапазон угла в команде FPTAN исключает нуль, поэтому tgO
должен фиксироваться программой и вычисляться как специаль­
ный случай. Особых сложностей это не вызывает, так как для ма­
лых а справедливо приближенное равенство tga«sa.

Несколько необычное представление результата команды
FPTAN (термин «частичный» показывает необходимость дополни­
тельной команды для получения истинного тангенса) предназна­
чено для удобного вычисления остальных тригонометрических
функций, которые получаются из значений X и Y на основе триго­
нометрических тождеств.

Команда FPATAN вычисления частичного арктангенса форми­
рует результат a=arctg(Y/X), причем значение X берется из вер­
шины стека ST (0), а значение Y —из регистра ST (1). Значения
исходных операндов должны удовлетворять требованию 0<Y<
<Х<оо, которое совместимо с результатами команды FPTAN.
При выполнении команды происходит извлечение из стека значе­
ний X и Y, а затем результат (значение а в радианах) помещает­
ся в новую вершину стека, замещая собой Y.

Обе тригонометрические команды FPTAN и FPATAN оказыва­
ются очень точными (ошибка результата составляет несколько
единиц младшего разряда) и выполняются довольно быстро —
всего в 3—4 раза медленнее деления. Эти команды, а также
команда TSQRT образуют основу для’вычисления всех остальных
тригонометрических и обратных тригонометрических функций.
Если, например, обозначить через z значение в ST (0) до выпол­
нения команды FPTAN, а через X и Y — значения в ST (0) и
ST (1) после деления z на 2 и последующего выполнения коман­
ды FPTAN, то

sin z— 2(Y/X)
1 +(Y/X)2 ’ cosz= 1 - (Y/X)2

1 + (Y/X)2 ’

tg(z/2)=Y/X, ctg(z/2)=X/Y,

1 — (Y/X)2
cosec +

2(Y/,X)
Здесь тригонометрические функции выражены через tg(z/2),

а не tgz, гак как при этом уменьшается ошибка округления.
Если обозначить через z аргумент обратной тригонометриче-

250

ской функции f, через X и Y значения в ST (0) и ST (1) до вы­
полнения команды FPATAN, то получение в ST (0) значений f(z)
осуществляется по следующим формулам:

arcsinz=arctg
V(1 -•?)(! +Z)

= arctg (Y/X),

arccosz=

arctg z—arctg (z/\)= arctg (Y/X),
arcctg z=arctg (l/z)=arctg (Y/X),

arcsec z = arctg (- - 'j = arctg(Y/X),

arccosecz=2

Отметим различие в вычислениях тригонометрических и об­
ратных тригонометрических функций. Первые находятся с перво­
начального выполнения команды FPTAN с последующими опера­
циями над операциями над двумя числами X и Y, полученными
этой командой. Во вторых функциях вначале производятся опера­
ции над аргументом, а затем выполняется команда FPATAN над
двумя результатами этих операций. Например, для вычисления
arcsinz необходимы следующие действия:

вычислить Х= К (1—z)(l+z) и Y=z,
включить Y и X в стек,
выполнить команду FPATAN.
Команда с несколько необычной мнемоникой F2XM1 вычисля­

ет значение функцииА=2х—1. В мнемонике как раз и завуали­
рована функция команды: два в степени X минус 1. Значение X
берется из вершины стека ST (0) и должно находиться в диапазо­
не О^Х^О.5. Результат операции замещает значение X в верши­
не стека.

На первый взгляд, более естественной кажется команда, вы­
числяющая 2х вместо 2х—1. Однако команда F2XM1 позволяет
получить очень точный результат, когда аргумент близок к нулю.
Например, значение 2°-00000; приблизительно равно 1.000000693.
Нетрудно убедиться в том, что вычитание единицы сохраняет в
результате больше значащих цифр.

Можно осуществить возведение в степень X любых чисел,
пользуясь формулами:

1qx__2xi°£=10 ех —2х,°£=е, Yx — 2xlcgaY.
Необходимые для таких вычислений константы log210 и log2e

251

встроены в сопроцессор, а рассматриваемая ниже команда вычис­
ляет двоичный логарифм любого числа.

Команда FYL2X предназначена для вычисления значения функ­
ции Z = Ylog2X. Аргумент X находится в вершине стека ST (0),
а аргумент Y — в регистре ST (1). Диапазоны аргументов состав­
ляют 0<Х<оо, —оо<У<оо. Команда производит извлечение из
стека аргументов и загружает Z в новую вершину стека, заменяя
Y. С помощью этой команды удобно вычисляются логарифмы чи­
сел по любому основанию с применением тождества lognX—
=logn2Xlog2X.

Последняя из трансцендентных команд FYL2XP1 вычисляет
значение функции Z=YIog2(X+ 1). Аргумент X берется из вер­
шины стека ST (0) и должен находиться в диапазоне 0< |Х| <
<1—У" 2/2, а аргумент Y из регистра ST (1) и должен быть в
диапазоне —qp<Y<oo. Команда производит извлечение аргумен­
тов из стека и загружает Z в новую вершину стека, т. е. на место
аргумента Y.

Команда FYL2XP1 обеспечивает большую точность по срав­
нению с предыдущей командой при вычислении логарифмов чи­
сел, близких к единице. Задание как аргумента функции числа
е (е<С1) вместо (1+е) позволяет сохранить в аргументе больше
значащих цифр.

4.4.5. КОМАНДЫ ЗАГРУЗКИ КОНСТАНТ

Простые команды загрузки наиболее часто встречающихся в
вычислениях констант приведены в табл. 4.4. Загрузка осущест­
вляется путем включения константы в стек, т. е. декремента ука­
зателя стека, и передачи в новую вершину стека значения кон­
станты, представленного во временном вещественном формате.
Так как в этом формате каждая из крнстант занимала бы десять
байтов памяти, двухбайтные команды загрузки констант обеспе­
чивают экономию памяти, повышение производительности и, кро­
ме того, упрощают программирование.

Таблица 4.4. Команды загрузки констант

Мнемоника Операция Мнемоника Операция

FLDZ Загрузить
+0.0

FLDL2E Загрузить
logs е

FLD.1 Загрузить
+ 1.0

FLDLG2 Загрузить
logjo 2

FLDPI
FLDL2T

Загрузить л
Загрузить
logs 10

FLDLN2 Загрузить
loge2

252

4.4.6. КОМАНДЫ УПРАВЛЕНИЯ СОПРОЦЕССОРОМ

Не будем подробно рассматривать команды этой группы, ори­
ентированные на операции системного уровня. Для прикладных
программистов. наибольший интерес представляют команды, опе­
рирующие словами управления и состояния, а также команда
инициализации процессора. С помощью этих команд можно за­
дать режим работы сопроцессора, а также проанализировать ре­
зультаты команд сравнения и проверки.

Команда FINIT инициализации сопроцессора функционально
эквивалентна сигналу сброса CLR, но она не влияет на синхрони­
зацию выборки команд ЦП и сопроцессора. Состояние сопроцес­
сора после команды инициализации приведено в табл. 4.5.

Таблица 4.5. Состояние сопроцессора после команды инициализации

Поле Состояние Интерпретация

Слово управления

Управление бесконечностью 0 Проектированная
Управление точностью 11 64 бита
Управление округлением 00 Округление к ближайшему
■Маска разрешения прерываний 1 Прерывания запрещены
Маски особых случаев 111111 Замаскированы

Слово состояния

Занятость 0 Не занят
Код условия хххх Не определен
Указатель стека ООО Начало стека
Запрос прерывания 0 Отсутствует
Флажки особых случаев 000000 »

Слово тэгов

Тэги 11 Пустые регистры

Регистры и указатели Не изменяются
особого случая

Основное назначение команды FLDCW src заключается в том,
чтобы загрузить в регистр управления сопроцессора новое содер­
жимое из источника src (им должно быть целое слово в памяти)
с целью установки или изменения режима работы, например ре­
жима управления округлением.

Команды FSTCW dst и FSTSW dst осуществляют запомина­
ние текущих слов управления и состояния соответственно в ячей­
ке памяти, определяемой получателем dst. Программист довольно

часто пользуется командой FSTSW для реализации условных пе­
реходов по результатам команд сопроцессора, определения заня­
тости сопроцессора, а также вызова процедур обработки особых
случаев в таких системах, где не применяются прерывания. Пос­
ле этой команды следует указать команду ожидания WAIT, что­
бы состояние сопроцессора, в частности код условия, было пере­
дано в память до продолжения программы. Получатель dsl дол­
жен иметь формат целого слова.

4.5. СПЕЦИАЛЬНЫЕ ЧИСЛА И ОСОБЫЕ СЛУЧАИ

В большинстве компьютеров каждый двоичный набор в кон­
кретном формате является действительным (допустимым) числом.
Однако в сопроцессоре К1810ВМ.87 большой класс двоичных на­
боров зарезервирован для представления специальных чисел и да­
же не-чисел, например значений неинициализированных перемен­
ных в программе. Прикладные программисты могут безопасно
игнорировать наличие этих наборов. Для специальных чисел в
вещественных форматах отведены максимальный (11... 11) и ми­
нимальный (00 ...00) смещенные порядки.

Вещественнце числа с нарушением нормализации. Ненулевые
вещественные числа обычно хранятся в нормализованной форме,
т. е. старший бит Fo мантиссы содержит 1. Следовательно, требо­
вание нормализации предполагает наличие в каждом формате ми­
нимального представимого числа с ненулевым смещенным поряд­
ком (далее в силу симметрии положительных и отрицательных
чисел будем обозначать знак символом X):

8:Х 00...01 1л00...00
В вычислениях могут возникать столь малые числа (меньшие

б), что их смещенный порядок должен- быть отрицательным. Та­
кая ситуация называется исчезновением порядка, или антипере­
полнением. В большинстве компьютеров оно ведет к возвращению
нуля как результата операции. Однако сопроцессор сдвигает ман­
тиссу вправо с одновременным инкрементом порядка до тех пор,
пока он не будет равным нулю. Такие числа с нулевым смещен­
ным порядком (истинный порядок равен минимальному ненулево­
му значению —126, —1022 и —16382 для различных веществен­
ных форматов) и ненулевой мантиссой называются денормализо-
ванными. Конечно, каждый старший нуль в мантиссе ведет к по­
тере значимости, поэтому расширение диапазона в область малых
чисел сопровождается потерей точности. Наличие в регистре де-
нормализованного числа отмечается тэгом специального числа.

При загрузке из памяти или использовании как операнда де-
нормализоваиное число превращается в эквивалентное ненорма­
лизованное число (с ненулевым смещенным порядком) путем
сдвига мантиссы вправо и инкремента порядка. Следовательно,
254

денормализованные числа допустимы в арифметических операци­
ях, хотя трансцендентные команды предполагают без проверки
нормализованные операнды, а при нарушении нормализации воз­
вращают непредсказуемый результат.

В сопроцессоре допускается еще один вид чисел с нарушением
нормализации. Это ненормализованные числа, в которых имеется
один или несколько старших нулей в мантиссе и произвольный,
но не равный нулю и максимальному значению порядок. Такие
числа существуют только во временном вещественном формате и
распознаются по нулю в старшем бите Fo мантиссы и ненулевому
смещенному порядку. Ненормализованные числа допускаются во
всех арифметических операциях, причем по возможности резуль­
тат операции нормализуется.

Для программиста наличие ненормализованных и денормали-
зова иных чисел удобно, так как иногда в вычислительных алго­
ритмах возникают очень малые промежуточные результаты. Вме­
сто сигнализации об антипереполпении сопроцессор разрешает
продолжить выполнение программы с поддержанием максималь­
но возможной точности. Расширение диапазона представимых чи­
сел на ненормализованные и денормализованные числа называет­
ся постепенным или плавным антипереполнением.

Число нуль имеет нулевой смещенный порядок и нулевую ман­
тиссу (так называемый истинный нуль) и обычно не учитывается
как специальное число. Однако необходимо знать, как сопроцес­
сор выполняет операции с нулевыми операндами. Вещественный
нуль может иметь положительный или отрицательный знак, но в
операциях (кроме деления) знак нуля игнорируется. Некоторые
операции с нулевыми операндами сопроцессор выполняет необыч­
но; например, результатом деления Х/0 будет бесконечность (X—-
ненулевое конечное число), а результатом 0/0 будет неопределен­
ность (см. далее). Отметим, что при необходимости с помощью
команды FXAM можно узнать знак нуля.

Во временном вещественном формате существует класс спе­
циальных чисел, называемых псевдонулями. Псевдонуль — это не­
нормализованное число с нулевой мантиссой и ненулевым сме­
щенным порядком. У псевдонулей не может быть максимального
смещенного порядка 11... 11, так как он отведен для других спе­
циальных чисел. Псевдонуль может возникнуть при умножении
двух ненормализованных чисел, в которых суммарное число стар­
ших нулевых битов сомножителей больше 64. Как операнды псев­
донули обрабатываются как ненормализованные числа, но в сле­
дующих ситуациях они аналогичны истинному нулю:

команды сравнения и проверки,
команда FRNDINT округления до целого,
операция деления, в которой делимое является истинным ну­

лем или псевдонулем, а делитель — псевдонулем.
Специальные числа с максимальным смещенным порядком.

255

В вещественных форматах предусмотрено представление специ­
альных чисел, называемых бесконечностями. Оии кодируются с
максимальным смещенным порядком 11... 11 и мантиссой
1Л00...00. От других специальных чисел, имеющих максимальный
смещенный порядок, бесконечности отличаются кодированием
мантиссы. Бесконечности допускаются как операнды во всех ариф­
метических операциях и обрабатываются по соответствующим
правилам.

В вещественных форматах существует класс специальных чи­
сел, называемых «не-числами» (NAN — Not A Number). Не-число
имеет любой знак, максимальный смещенный порядок и любую
мантиссу, кроме 1л00... 00. Наличие его в регистре сопроцессора
отмечается тэгом специального числа. Когда не-число оказывается
операндом, сопроцессор фиксирует особый случай недействитель­
ной операции. Бели этот особый случай замаскирован, сопроцес­
сор возвращает как результат не-число, а если оба операнда яв­
ляются не-числами, результатом будет не-число с большей ман­
тиссой. Таким образом, получившееся однажды не-число распро­
страняется в вычислениях и выдается как окончательный резуль­
тат. Однако в трансцендентных командах операнды не контроли­
руются и в случае операнда не-числа результат непредсказуем.

Для каждого типа чисел в сопроцессоре особый код зарезер­
вирован для представления специального числа, называемого не­
определенностью. Оно относится к классу не-чисел и возвращает­
ся как результат в таких операциях, когда никакой осмысленный
ответ невозможен (человек в таких ситуациях говорит «не знаю»).
Примерами могут служить извлечение квадратного корня из от­
рицательного числа, деление 0/0, умножение 0х°° и т. п. Неоп­
ределенность имеет отрицательный знак, максимальный смещен­
ный порядок 11 ...11 и мантиссу 1л1ОО...ОО.

Во всех трех форматах двоичных целых чисел наибольшее по
модулю отрицательное число, т. е. —215, —231 и —263, считается
неопределенностью. Предусмотрена также десятичная неопреде­
ленность с кодированием 1111 1111 1111 1111 ХХХХ...ХХХХ. Ис­
пользования «целых неопределенностей» следует избегать, так как
сопроцессор считает двоичные неопределенности максимальными
отрицательными числами, т. е. они не распространяются в вычис­
лениях, а при загрузке десятичной неопределенности в регистр
его содержимое оказывается непредсказуемым. Двойная интер­
претация кода неопределенности (как специального числа и мак­
симального по модулю отрицательного числа) является следстви­
ем отсутствия «особых» наборов в форматах целых чисел. Целая
двоичная неопределенность возникает только в одной недействи­
тельной операции при записи в память не-числа в целом формате.

Режимы работы и состояние. Сопроцессор имеет два про­
граммно доступных 16-битных регистра, содержимое которых оп­
ределяет его режим работы и текущее состояние. Форматы этих
256

регистров, хранящих слово управления CW (Control Word) и сло­
во состояния SW (Status Word), приведены на рис. 4.4, а, б.

Слово управления. Слово управления определяет для сопро­
цессора один из нескольких вариантов обработки чисел. Хотя про­
граммист может загрузить из памяти любое содержимое CW

Регистр управления
а)

15 14 13 12 11 10 5 в 7 6 5 4 3 2 10

XXX Ю ВС PC
1

IBM X PM им ОМ ZM им IM

в) Регистр состояния

15 14 13 12 11 10 9 в 7 6

Маски особых случаев

5 4 3 2 1 0

В 03 ST 02 01 со IB X РЕ UE ОЕ ТЕ BE IE
\'...... — -

Флажки особых случаев

CW

SVI

Рис. 4.4. Форматы регистров управления (а) и состояния (б):
IM, IE — недействительная операция; DM, DE — денормализованный операнд;
ZM, ZE— деление на нуль; ОМ, ОЕ— переполнение, UM, UE — антипереполне­
ние; РМ, РЕ — точность; IEM — маска разрешения прерываний; PC — управле­
ние точностью; RC — управление округлением; IC — управление бесконечностью;
UE — антипереиолнение; IR — запрос прерывания; СЗ ... СО — код условия; ST —
указатель стека; В — занятость

(имеется команда FLDCW), для подавляющего большинства при­
кладных программ наиболее благоприятно содержимое полей
CW, устанавливающееся при инициализации сопроцессора (см.
табл. 4.5).
Таблица 4.6. Режимы округления

Поле RC Режим Принимаемый результат

00 Округление к ближайшему Принимается то число из а и с,
которое ближе к &; при равенстве
расстояний берется число с нулевым
младшим битом (четное)

01 Округление вниз (к —оо) а
10 Округление вверх (к~роо) с
11 Отбрасывание (усечение к Берется меньшее по абсолютной

нулю) величине из чисел а и с

Шесть младших битов CW представляют собой индивидуаль­
ные маски особых случаев. Если любой из них установлен в 1, то
возникновение соответствующего особого случая не вызывает
прерывания ЦП, а если бит содержит 0 — сопроцессор устанав­

257

ливает в 1 бит запроса прерывания, относящийся к конкретному
особому случаю, в слове состояния и при общем разрешении пре­
рываний генерирует сигнал INT прерывания ЦП.

Особый случай денормализованного операнда фиксируется,
когда в операции встречается денормализованный операнд. При
попытке деления ненулевого конечного числа на нуль сопроцессор
регистрирует особый случай деления на нуль. Особый случай пе­
реполнения возникает, если порядок истинного результата больше
максимального допустимого порядка получателя. Если значение
порядка истинного результата слишком мало, фиксируется особый
случай антипереполнения. В типичных алгоритмах появление
очень больших или очень малых чисел характерно для промежу­
точных, а не окончательных результатов. При хранении промежу­
точных результатов во временном вещественном формате пере­
полнение и артипереполнение в сопроцессоре возникают очень
редко. Наконец, когда результат операции не может быть точно
представлен в формате получателя, сопроцессор производит его
округление и фиксирует особый случай (потери) точности. Он
возникает довольно часто и указывает лишь на то, что произошла
некоторая, обычно приемлемая, потеря точности.

Анализ раосмотренных особых случаев показывает, что для
каждого из них нетрудно предусмотреть возвращение математи­
чески приемлемого результата операции, вызвавшей особый слу­
чай:

денормализованный операнд — преобразовать его в эквива­
лентное число (ненормализованное) и продолжить операцию;

деление на нуль и переполнение — возвратить как результат
операции бесконечность с правильным знаком;

антипереполнение — возвратить как результат денор мализован-
ное число;

точность — не предпринимать никаких действий, т. е. возвра­
тить округленный результат.

Наиболее тяжелым является особый случай недействительной
операции, который, как правило, свидетельствует об ошибке в
программе. Он включает в себя много ситуаций, которые не име­
ют таких очевидных решений, как предыдущие особые случаи.
Например, без анализа вычислительных шагов, которые привели
к делению нуля на нуль, невозможно образовать приемлемый ре­
зультат. Это же относится к умножению и делению бесконечностей,
умножению бесконечности на нуль, сложению бесконечностей с
разными знаками, извлечению квадратного корня из отрицатель­
ного числа, любой операции с не-числом, загрузке в непустой ре­
гистр, считыванию из пустого регистра и т. п. Лучшее, что можно
сделать при возникновении особого случая недействительной опе­
рации,— это возвратить как результат операции не-число (если
одним или обоими операндами являются не-числа) и неопределен­
ность («не знаю»!) в остальных ситуациях.
258

Возникновение особого случая отмечается установкой в 1 со­
ответствующего флажка в слове состояния. Далее сопроцессор
проверяет маску в CW и определяет, следует ли только зареги­
стрировать особый случай или сформировать запрос прерывания
ЦП с вызовом процедуры обработки особого случая. В первом
варианте сопроцессор выполняет встроенную процедуру маскиро­
ванной реакции без прерывания программы, а во втором преры­
вает ЦП.

Маскированные реакции сопроцессора были тщательно разра­
ботаны так, чтобы образовать наиболее правильный результат для
каждого условия. Выше были приведены наиболее естественные
реакции для всех особых случаев (подробнее они изложены да­
лее). В большинстве прикладных программ рекомендуется маски­
ровать все особые случаи, за исключением недействительной опе­
рации.

Бит 7 слова управления содержит маску управления прерыва­
нием IEM (Interrupt Enable Mask), которая разрешает (IEM—0)
или запрещает (1ЕМ=1) прерывание ЦП. Если 1ЕМ=1, преры­
вания ЦП не будет даже при возникновении индивидуально не
замаскированного особого случая.

Двухбитное поле управления точностью PC (Precision Cont­
rol) определяет точность вычислений в 24 бит (РС=00), 53 бит
(РС= 10) или 64 бит (РС=11). По умолчанию вводится режим
с максимальной точностью в 64 бит. Остальные режимы преду­
смотрены только для совместимости с некоторыми языками про­
граммирования. При задании пониженной точности производитель­
ность сопроцессора не увеличивается.

Двухбитное поле управления округлением RC (Rounding Cont­
rol) определяет один из четырех вариантов округления результа­
тов операций. Интерпретация поля RC показана в табл. 4.6, где
принято, что а<2Ь<2с, причем числа а и с представимы в формате
сопроцессора, а результат операции b не представим. Округление
заключается в замене b на а или с.

Округление происходит в арифметических операциях, а также
при записи в память, если формат получателя не позволяет точно
представить истинный результат. Оно вносит ошибку, величина
которой не превышает единицы последнего младшего разряда, со­
храняемого в результате. По умолчанию принимается режим
округления к ближайшему, обеспечивающий наиболее точную и
статистически несмещенную оценку результатов.

Округления вверх и вниз применяются в интервальной ариф­
метике с целью получения достоверного результата независимо
от ошибок округления. Верхняя и нижняя границы интервала зна­
чений результата находятся путем реализации алгоритма два ра­
за— один раз с округлением вверх, а второй — с округлением
вниз. Режим округления с отбрасыванием применяется в цело­
численной арифметике.

259

Бит 12 управления режимом бесконечности IC (Infinity Cont­
rol) определяет одну из двух моделей интерпретации бесконечно­
сти: проективную (1С=0) или аффинную (1С=1). По умолчанию
вводится проективный режим, в котором сопроцессор обрабатыва­
ет два специальных числа «плюс бесконечность» и «минус беско­
нечность» как одно и то же число «бесконечность», не имеющее
знака. В аффинном режиме сопроцессор допускает положитель­
ную и отрицательную бесконечности.

Слово состояния. В слове состояния SW младшие 6 бит отве­
дены для регистрации рассмотренных выше особых случаев.
Бит 7 запроса прерывания IR (Interrupt Request) устанавливает­
ся в 1 при возникновении любого незамаскированного особого
случая, но генерирование прерывания ЦП зависит от состояния
бита IEM в слове управления. Биты СЗ — СО фиксируют код ус­
ловия в командах сравнения, проверки и анализа. Три бита ST
представляют собой указатель стека и показывают регистр, яв­
ляющийся текущей вершиной стека ST (0). Наконец, флажок за­
нятости В (BUSY) устанавливается в 1, когда' численное опера­
ционное устройство выполняет операцию. Состояние этого бита
выведено как сигнал BUSY.

При программировании важную роль играют биты кода усло­
вия, которые аналогичны арифметическим флажкам ЦП и фик­
сируют особенности результата операции. Коды условия привле­
каются для реализации условных переходов. Сопроцессор само­
стоятельно не может влиять на ход выполнения программы, по­
этому для условного перехода по результату операции сопроцес­
сора приходится вначале передавать код условия в память, а за­
тем загружать в регистр АН центрального процессора. После это­
го код условия передается в регистр флажков ЦП и производит­
ся условный переход. Интерпретация кода условия была приведе­
на в табл. 4.3. ,

Маскированные реакции на особые случаи. Сопроцессор реги­
стрирует особый случай, устанавливая в 1 бит флажка конкретно­
го особого случая в слове состояния. После этого он проверяет
соответствующую маску в слове управления и либо реализует
маскированную реакцию, дающую стандартный результат, либо
оповещает ЦП сигналом прерывания.

Маскированные реакции сопроцессора, приведенные в табл.
4.7, тщательно проработаны с тем, чтобы продолжить программу
с сохранением наиболее безопасных и осмысленных результатов.
Управляя масками, программист может возложить обработку
большинства особых случаев на сопроцессор, предусмотрев про­
граммную обработку наиболее серьезных ситуаций. Для большин­
ства прикладных программ маскирование всех особых случаев,
кроме недействительной операции, дает приемлемые результаты
с минимумом усилий. Особый случай недействительной операции
говорит о серьезной (фатальной) ошибке в программе, которую
260

Таблица 4.7. Маскирование реакции на особые случаи

Условие возникновения Маскированная реакция

Недействительная операция

Регистр-источник не отмечен как пус­
той

Регистр-получатель не отмечен как
пустой

Один или два операнда являются не-
числами

Один или два операнда в командах
проверки и сравнения являются не-чис-
лами

Операция сложения: указано аффин­
ное замыкание, а операндами являются
бесконечности с разными знаками; ука­
зано проективное замыкание, а операн­
дами являются бесконечности

Операция вычитания: указано аффин­
ное замыкание, а операндами являются
бесконечности с одинаковыми знаками;
указано проективное замыкание, а опе­
рандами являются бесконечности

Операция умножения: (оо)Х(О) или
(О)Х(оо)

Операция деления: (оо):(оо), (0):(0),
(0) : (псевдонуль), делитель ненормали-
зован или денормализован

Команда FPREM: модуль (делитель)
денормализован или ненормализован

Команда FSQRT: ненулевой отрица­
тельный операнд; денормализованный
или ненормализованный операнд; опе­
ранд (—оо) с аффинным замыканием
или (<») с проективным замыканием

Команды сравнения: указано проек­
тивное замыкание и (оо) сравнивается
с (0), (оо) или ненормализованным чис­
лом

Команда FTST: указано проективное
замыкание, а операндом является (оо)

Команды FIST, FISTP: регистр-источ­
ник отмечен как пустой, содержит не-
число, (то), денормализованное или не­
нормализованное число или его содер­
жимое превышает диапазон получателя

Команда FBSTP: регистр-источник яв­
ляется пустым, содержит не-число, (оо),
денормализованное или ненормализован­
ное число или его содержимое превы­
шает 18 цифр

Команды FST, FSTP: регистр-источ­
ник содержит ненормализованное чис-

Возвращает вещественную неоп­
ределенность

Возвращает (с записью в регистр)
вещественную неопределенность

Возвращает не-число с большей
мантиссой

Устанавливает условие «не срав­
нимы»

Возвращает вещественную неопре­
деленность

То же

Возвращает вещественную неопре­
деленность. Условие «остаток полу­
чен»

Возвращает вещественную неопре­
деленность

Устанавливает условие «не срав­
нимы»

То же

Запоминает целочисленную неоп­
ределенность

Запоминает
ленность

Запоминает
деленность

десятичную неопреде-

вещественную неопре-

»
»

261

Продолжение табл. 4.7

Условие возникновения Маскированная реакция

ло (порядок в диапазоне), а получатель
имеет короткий или длинный вещест­
венный формат

Команда FXCH: один или оба регист­
ра отмечены как пустые

Помещает в пустой(ые) регистр(ы)
вещественную неопределенность и
производит обмен

Денормализованный операнд

Команда FLD: операнд-источник де-
нормализован

Арифметические операции: один или
два операнда денормализованы

Операции сравнения и проверки: один
или два операнда денормализованы или
ненормализованы (но не псевдонуль)

Обычная загрузка

Преобразует операнд в эквивалент­
ное ненормализованное число и про­
должает

Преобразует денормализованное
число в эквивалентное ненормализо­
ванное число; по возможности чис­
ло нормализуется и операция про­
должается

Деление на нуль

Операции деления: делитель равен ну- I Возвращает бесконечность со зна-
лю I ком, учитывающим знаки операндов

Переполнение

Арифметические операции: указано
округление к ближайшему или усечение,
а порядок истинного результата больше
16383

Команды FST, FSTP: указано округ­
ление к ближайшему или усечение, а
порядок истинного результата больше
127 (короткий вещественный получа­
тель) или больше 1023 (длинный ве­
щественный получатель)

Возвращает бесконечность с пра­
вильным знаком и сигнализирует осо­
бый случай точности

То же

Антипереполнение

Арифметические операции: порядок
истинного результата меньше —16382

Команды FST, FSTP: получатель име­
ет короткий (длинный) вещественный
формат, а порядок истинного результа­
та меньше —126 (—1022)

Денормализует до тех пор, пока
порядок не станет —16382, округля­
ет мантиссу до 64 бит. Если дснор-
мализованная округленная мантисса
равна нулю, возвращает истинный
нуль; в противном случае возвраща­
ет денормализованное число

См. выше, но с учетом минималь­
ного допустимого порядка (—126 и
—1022) и длины мантиссы (24 и
53 бит)

262

Продолжение табл. 4.7

Условие возникновения Маскированная реакция

Точность

Возникает погрешность округления

Ранее в команде сопроцессор выпол­
нил маскированную реакцию на пере­
полнение

Операция продолжается без спе­
циальных действий

Операция продолжается без спе­
циальных действий

необходимо исправлять. Поэтому данный особый случай маскиро­
вать не рекомендуется, хотя сопропроцессор обеспечивает встроен­
ную реакцию и на этот особый случай.

Флажки в слове состояния как бы накапливают особые слу­
чаи, возникшие после того, как флажки были последний раз сбро­
шены. Установленные флажки можно сбросить только командой
FCLEX, посредством инициализации сопроцессора или «пере­
записью» флажков с помощью команд FRSTOR или FLDENV.
Следовательно, программист может замаскировать все особые
случаи (кроме недействительной операции), выполнить програм­
му, а затем проверить по слову состояния, были ли особые слу­
чаи.

Незамаскированный особый случай инициирует прерывание
ЦП. В ходе реакции на прерывание ЦП опрашивает программи­
руемый контроллер прерываний и «выходит» на процедуру обра­
ботки особого случая. Эта довольно сложная программа обычно
входит в состав системного программного обеспечения.

Действия типичной процедуры обработки особого случая:
передать в память среду сопроцессора на момент возникнове­

ния особого случая;
сбросить флажки особых случаев в слове состояния сопроцес­

сора;
разрешить восприятие прерываний центральным процессором

(они запрещаются в ходе реакции на прерывание);
идентифицировать особый случай, анализируя слова управле­

ния и состояния в запомненной среде;
предпринять некоторые системно-зависимые действия по ис­

правлению особого случая;
возвратиться в прерванную программу и возобновить ее вы­

полнение.
Иногда при выполнении команды могут возникнуть несколько

особых случаев. Сопроцессор сигнализирует о них в соответствии
со следующим старшинством: денормализованный операнд (неза­
маскированный особый случай), недействительная операция, деле­
ние на нуль, денормализованный операнд (замаскирован), пере-

9ГЛ

полнение/антипереполнение, потеря точности. Например, при де­
лении нуля на нуль возникает особый случай недействительной
операции, а не особый случай деления на нуль.

Упомянутые выше системно-зависимые действия определяются
требованиями конкретного применения. В наиболее простом ва­
рианте они состоят в следующем:

осуществить инкремент счетчика особых случаев для последую­
щей индикации;

показать диагностическую информацию, например среду и ре­
гистры сопроцессора;

запомнить диагностическое значение (не-число) как результат
операции и продолжить программу.

Чтобы исправить ошибку, вызванную особым случаем, про­
цедура его обработки должна иметь в своем распоряжении точ­
ное состояние*1 сопроцессора и «уметь» восстанавливать его перед
возникновением особого случая. Для восстановления состояния
программист должен четко понимать, когда фактически распозна­
ются особые случаи при выполнении команд сопроцессором.

Особые случаи недействительной операции, деления на нуль и
денормализованного операнда обнаруживаются до начала опера­
ции' а особые1 случаи переполнения/антипереполнения и потери
точности не фиксируются до получения истинного результата.
В первой ситуации регистры сопроцессора и память еще не моди­
фицировались и выглядят так, как будто «подозрительная» коман­
да не выполнялась. Во второй ситуации регистры сопроцессора и
память содержат такие значения, которые получены по окончании
команды. Однако в командах запоминания FST и запоминания с
извлечением из стека FSTP незамаскированные особые случаи
переполнения и антипереполнения генерируются так, как будто
команды не выполнялись, т. е. память не модифицирована и из­
влечения из стека не было.

4.6. АЛГОРИТМЫ И ПРОГРАММЫ ВЫЧИСЛИТЕЛЬНЫХ
ЗАДАЧ

Программирование системы с арифметическим сопроцессором
особых трудностей не вызывает. Здесь программисту доступны все
регистры и команды обоих процессоров, а также все режимы ад­
ресации памяти ЦП. Необходимо внимательно следить за синтак­
сисом команд сопроцессора и идентифицировать правильные фор­
маты его данных с помощью указателей PTR. Кроме того, в нуж­
ных местах следует вводить команды FWAIT. Приведенные в
этом параграфе ассемблерные программы призваны помочь чита­
телю разобраться в особенностях программирования сопроцессо­
ра и ускорить переход к разработке собственных прикладных про­
грамм. Вначале рассмотрим несколько элементарных программ с
подробными пояснениями.
264

Суммирование элементов массива (программа 4.1). Предполо­
жим, что в памяти находится массив чисел в коротком веществен­
ном формате (длина чисел 4 байт). Количество элементов масси­
ва равно N, а адрес первого элемента равен ARRAY. Необходимо
вычислить сумму всех элементов массива, представить ее в длин­
ном вещественном формате и поместить по адресу SUM (SUM —
это начальный адрес блока из 8 смежных байт).

Программа 4.1. Суммирование элементов массива:
; Адрес массива ARRAY, число элементов N, числа

; в коротком вещественном формате. Сумма в длинном

; вещественном формате помещается по адресу SUM.

MOV CX,N ; Образовать счетчик элементов

FLDZ ; Подготовить место для суммы

JCXZ DONE : Проверить., что массив не пустой

XDR SI ,SI ; Подготовить индекс элементов

MORE: FADD DWORD PTR ARRAY ESI3 ; Прибавить элемент

ADD SI ,4 : Перейти к следующему элементу

LOOP MORE , ; Повторять до завершения

DONE: FSTR DWORD PTR SUM ; Сохранить сумму

В этом фрагменте фигурируют три команды сопроцессора.
Команда FLDZ включает в его стек нуль, подготавливая ST (0)
к накоплению суммы элементов массива. Предполагается, что
стек имеет хотя бы один свободный (пустой) регистр. Если уве­
ренности в этом нет, нужно ввести команду FINIT, которая ини­
циализирует сопроцессор и, в частности, очищает стек.

Команда FADD прибавляет к ST (0) текущий элемент масси­
ва. Указатель типа DWORD PTR и мнемоника FADD означают,
что операндом является число с плавающей точкой в коротком ве­
щественном формате. После передачи в сопроцессор операнд пре­
образуется во временный вещественный формат и прибавляется
к ST (0).

Наконец, команда FSTP при выходе из цикла записывает в
ячейку SUM накопленную сумму. Последняя буква Р в мнемони­
ке FSTP сообщает, что после выдачи в память содержимого ST (0)
производится извлечение из стека. Следовательно, по завершении
этого фрагмента стек сопроцессора возвращается в первоначаль­
ное состояние.

Интересно проанализировать временные соотношения при вы­
полнении приведенного фрагмента. Ассемблер автоматически вве­
дет перед командой FADD команду WAIT, заставляющую ЦП
ожидать готовности численного операционного устройства к вы­
полнению команды FADD, и цикл несколько изменится (програм­
ма 4.2).

265

Программа 4.2. Действительная форма цикла:
MORE; WAIT

FADD DWORD PTR ARRAY CSI3

ADD SI,4

LOOP MORE

При входе в цикл действует сигнал BUSY=1, так как коман­
да FLDZ еще не закончена. Действительно, она выполняется
3 мкс, а команды JCXZ и XOR выполняются 1,6 и 0,8 мкс соот­
ветственно. Поэтому ЦП ожидает примерно в течение 1 мкс. От­
сюда следует, что команду FLDZ целесообразно поместить перед
командой MOV СХ, N, что гарантирует завершение команды
FLDZ перед входом в цикл.

Затем оба процессора одновременно дешифрируют и начинают
выполнение команды FADD. Центральный процессор «выполнит»
ее за 3 мкс, а' сопроцессору требуется 25 мкс. ЦП дешифрирует
команду ADD SI,4, выполняет ее за 1 мкс, переходит к команде
LOOP MORE и выполняет ее за 3.4 мкс (предполагается, что
осуществляется переход в начало цикла). Сопроцессор же продол­
жает выполнять команду FADD. После этого ЦП переводится в
состояние ожидания и по завершении сопроцессором команды
FADD оба процессора начинают выполнять новую команду FADD,
операндом которой будет следующий элемент массива. Таким об­
разом, одно прохождение цикла Занимает 25 мкс, а не 25+1 +
+ 3.4=29.4 мкс, как представляется без учета параллельной ра­
боты обоих процессоров. При этом сопроцессор занят на 100%,
так как он одну за другой (без промежутков) выполняет коман­
ды FADD с различными операндами, а ЦП занят только 33%
времени. Остальное время он бесполезно ожидает завершения вы­
полнения сопроцессором команды FADD.

Ассемблер введет команду WAIT,и перед командой FSTP.
Поэтому при выходе из цикла, когда (СХ)=0, ЦП подождет
окончания выполнения сопроцессором последней команды FADD
и оба процессора одновременно начнут выполнять команду FSTP.
Конечно, ЦП «выполнит» ее быстрее сопроцессора и, если его
следующая (или другая близкая) команда обращается к ячейке
SUM, перед ней необходимо указать команду FWAIT.

Рассмотренный фрагмент показывает практический прием ис­
пользования параллельной работы процессоров для повышения
скорости выполнения программы: после продолжительной коман­
ды сопроцессора следует по возможности ввести большее число
команд ЦП, не обращающихся к результату команды сопроцес­
сора.

Реализация условных переходов. Уже говорилось, что сопроцес­
сор не может непосредственно влиять на ход выполнения про­
граммы в зависимости от результатов его команд сравнения, про­
верки, анализа -и вычисления частичного остатка. Хотя эти коман-
266

ды формируют код условия в слове состояния сопроцессора, вы­
полнить условный переход может только ЦП. Для этого код ус­
ловия необходимо передать в регистр флажков МП КД810ВМ86.

Реализация условного перехода по результату операции со­
процессора включает в себя три этапа (рис. 4.5):

Регистр АН

Регистр рлажкоО
|х .ххх |77=

|б |cj| (5Т , |<7|с/[сО
Регистр состояния 5У/

Рис. 4.5. Реализация условных переходов

выполнить команду сопроцессора, формирующую код условия;
передать код условия через память в регистр флажков ЦП;
выполнить команду условного перехода ЦП. ,
МП К1810 не имеет четырех отдельных команд условных пере­

ходов, соответствующих четырем комбинациям СЗ и СО, т. е. тех
битов кода условия, на которые воздействуют команды сравнения
и проверки. Команда JB осуществляет переход, если С0=1 (т. е.
если CF=1), а команда JE — если С3=1 (т. е. если ZF=1).
Программный фрагмент, учитывающий все комбинации кода ус­
ловия, приведен в программе 4.3. Предполагается, что STATUS —
рабочее слово в памяти.

Программа 4.3. Полный анализ результата сравнения:

NDCDMP: ...

; Предполагается,

FSTSW STATUS

FWAIT
udv ahtstatus+i
SAHF
JВ LORNON

JE EQUL

что сравнение выполнено.
Z Передать код условия в память

.; Ожидать завершения передачи

; Код условия в регистре АН
- Передать его в регистр Флажков

; Перейти, если меньше или не сравним

; Перейти, если равны

EQUAL: Условие равенства

LDRNDN: JE NDCDMP Перейти, если не сравнимы

Продолжать, если меньше

; Не сравнимы

267

Как видно из рис. 4.5, бит условия С1 не попадает ни в один
из флажков ЦП. Поэтому для его проверки приходится приме­
нять две команды (считая, что код условия сопроцессора нахо­
дится в регистре АН):

СНР АН,1ОЕ : Выделить бит С1

JE C1OFF ; Перейти, если С1 = О
• Продолжать, если Cl = 1

CIDFF:
Статистическая обработка. При разработке прикладных про­

грамм для систем с сопроцессором необходимо стремиться к
максимальному использованию его регистрового стека и миними­
зации числа обращений к памяти, так как они выполняются го­
раздо медленнее, чем обращения к регистрам. Эту рекомендацию
иллюстрирует следующий пример.

Предположим, что требуется вычислить статистические вели­
чины для двух наборов данных (хь Х2,..., хп) и («д, р2,..., уп)'.

. Sxz, ту=Ъу2, sy—^yl, cxu=2xlyi.
В программ^ 4.4 каждый элемент наборов х,- и щ считывается

из Иамяти только один раз. Действие регистрового стека сопро­
цессора показано на рис. 4.6.

START:

Y(i) va)*?
X(i) Y(i) Yli) Y(i) Y(i)

Х(Ц Mi) X(i) xai xai X(i) X/t) xai X(i)
Схч Сху Cxy ri; Схч Cxy Cxg Cxy Cxg

Sv= 0 Sg Sg Sg Su Sv Sil 5g Su
5х-0 5х Sx ri 5x Sx*X(i)A2 Sx*X(ipZ $х+Х(1)л2 5х+Х(1)л2 Sx^XLi'AZ
Мч=0 Му My My Mg My «V Mg+Y(i> Mg+Y(i)
Мх=0 Мх Mx+m MKx XI11 Mx +X(i) Mx +X(iP Wx+XfiJ Mx+X(il Mx*X(i) Mx+X(i)

И
сх

од
но

е
со

ст
оя

ни
е

FL
O

 X
[S

1] к
'($) Д

 (№

FL
O

 $
T(

0)

__
__

__
__

__
_

FM
JL

 ST

S
T(

O
) •,

FA
D

O
P

S
T(

i/)
\

S
T

FL
U

 Y[S
1]

 ,
FA

D
D

 ST
(5

),
S

T \
FL

O
 ST

(O
) (o)is

‘is 7W
I1

Y(i)
X(i) X(i) Yli)
Cxy riv

5х+Х(Цл2 5х+Х(1)л2
Mg+Y(i) My + Y(i)
Mx+X(il Mx+X(i)

FA
D

D
P

 ST
(it

\
S

T

i ■

Cx4^№)Yll)

5х*Х(Ил2
My+Y(i)
Mxi-X(i)

FA
D

D

С
т

ек
 го

т
ов

к

об
ра

бо
т

ке

ж
ую

щ
их

эл

ем
ен

т
ов

Рис. 4.6. Действие регистрового стека в программе статистической обработки
268

Программа 4.4. Расчет статистических величин для двух на­
боров чисел:

; Заданы майоры <Х1,Х2,...,XN> и <Y1,Y2,...,YN> чисел

: в коротком вещественном Формате с начальными
; адресами X и Y■ Е^ычисляются • MX, MY, SX, SY, CXY

; и сохраняются в памяти в длинном вещественном

; формате.

FINIT : Инициализировать сопроцессор

FLDZ ; Подготовить место в стеке

FLDZ

FLDZ

FLDZ
MOV СХ,М 5 Образовать счетчик элементов

XOR SI,SI ; Начальный индекс наборов

; Подготовка закончена. i

START: FLD DWORD PTR XCSI3 ; Текущий элемент XI

FADD ST(5),ST » Накопление MX

FLD ST (И) 5 Продублировать XI

FMUL ST,ST(0) 5 Образовать XI**2

FADDP ST(4>,ST ? Накопление SX .

FLD DWORD PTR YtSIJ ; Текущий элемент YI

FADD ST(5),ST ? Накопление MY

FLD ST(0> i Продублировать YI

FMUL ST,ST(O> 5 Образовать YI**2

FADDP ST(4>,ST ? Накопление SY

FMUL : Образовать XI*YI

FADD ? Накопление CXY

ADD SI,4 ? Продвинуть индекс

LOOP START » Повторять до завершения

; Передать результат в память.

FSTP QWORD PTR CXY ; Сохранить CXY

FSTP DWORD PTR SY ; Сохранить SY

FSTP DWORD PTR SX ; Сохранить SX

FSTP QWORD PTR MY ; Сохранить MY

FSTP DWORD PTR MX ; Сохранить MX

Логарифмирование. Трансцендентная команда FYL2X вычисля­
ет значение Ylog2X, т. е. позволяет найти логарифм любого чис­
ла по основанию 2. Число X находится в вершине стека ST (0),
a Y — в следующем регистре стека ST (1). После извлечения из
стека, т. е. удаления X, результат помещается на место Y.

В вычислительных задачах часто требуется находить нату­
ральные и десятичные логарифмы. Переход от двоичных логариф­

269

мов к логарифмам по любому основанию осуществляется в соот­
ветствии с тождеством lognX=logn2Xlog2X. Необходимые для
вычисления натуральных и десятичных логарифмов константы
loge2 и iogi02 предусмотрены в командах загрузки констант.

В следующих двух программах 4.5 и 4.6 находятся logeX и
logioX числа X из вершины стека. Предполагается, что в стеке
сопроцессора есть минимум один свободный регистр.

Программа 4.5. Вычисление натурального логарифма:

; Подпрограмма вычисления натурального логарифма

z числа, находящегося в ST(0).

LN PROC FAR

FLDLN2 Включить e стек LN 2

FXCH 5 Обмен ять .с аргументом
W FYL2X > Вымис лить натуральный логарифм

RET 5 Возврат

LN ENDP

Программа 4.6. Вычисление десятичного логарифма:
• ^Чодлрограмма вычисления десятичного логарифма

; числа, находящегося в ST(0>.

LOG PROC FAR

FLDLG2 ; Вюпкчить в стек нужную константу

FXCH ; Обменять с аргументом

FYL2X ; Вычислить десятичный логарифм

RET ; возврат-

LOG ENLF

Возведение в степень. В арифметиче’ском сопроцессоре имеется
единственная команда FX2M.1 возведения в степень. Она воспри­
нимает аргумент X из диапазона 0<Х<Р 2/2 в вершине стека
ST (0) и вычисляет значение Y=2X—1, возвращая его на место
аргумента: ST (0)-e-2ST<0)—1. При необходимости вычисления об­
щей степенной функции Yx следует пользоваться основным тож­
деством для изменения основания степени: Yx=2x!°82Y. Из этого
тождества видно, что реализация общей степенной функции тре­
бует возведения 2 в произвольную степень. Здесь на помощь при­
ходит команда FSCALE умножения числа в вершине стека на це­
лую степень 2: ST (0)-<-ST (0) X2ST<I). Следовательно, произволь­
ный показатель степени Z целесообразно разбить на две части:
целое число Zi (для команды FSCALE) и правильную дробь Z2
(для команды F2XM1). Когда Z2>l/2, т. е. находится вне допу­
стимого диапазона аргумента команды F2XM1, следует вычесть
1/2 из Z2, а затем умножить результат на 21/2.
270

Алгоритм возведения 2 в произвольную степень Z состоит из
следующих этапов:

1. Образовать Zi— наибольшее целое, которое меньше или
равно Z. На этом этапе встречаемся с необходимостью изменения в
сопроцессоре режима округления. По умолчанию в нем принят
наиболее благоприятный для вычислений режим округления к
ближайшему (поле RC в слове управления содержит 00), а на­
хождение Zi требует округления вниз (поле RC=01).

Программа 4.7. Возведение 2 в произвольную степень:

; Показатель степени находится в STC0).
- Стек сопроцессора имеет два свободных регистра-

TWOZ PROC FAR

PUSH AX ; Сохранить содержимое AX
FSTCW CONTROL ; Сохранить слово управления
FSTCW
EWA IT

TEMP ; Передать слово управления
■ Ожидать завершения передачи

AND TEMP,0F3FFH ; Сбросить биты RC
OR ' ТЕМР,И4И0Н ; Задать округление вниз
FLDCW TEMP • Вернуть слово управления с RC-01
FLD ST СИ) ; Образовать копию Z
FRNDINT ; Образовать Z1
FLDCW CONTROL ; Восстановить режим округления
FSUB
FXCH

ST<1),ST ; Образовать Z2
5 Обменять местами Z1 и Z2

FLD
FXCH
FPREM

HALF ; Включить в стек И.5
। Обменять Z2 и И.5
5 При необходимости вычесть И.5

FST8W
FWAIT

STATUS ; Передать слово состояния в память
$ Ожидать завершения передачи.

FSTP
F2XM1
FLD1

ST<1) ; Удалить из стека И.5
; Образовать 2**Z2 — 1
; Прибавить к результату 1

FADD ST Cl),ST $ для коррекции
TEST BYTE PTR STATUS+1,ИИИ0И01ИВ

; Проверить бит Cl
JZ
FLD1

NQCORR ; Вычитания И-5 не было
। Включить в стек

FADD
FSQRT

ST.STCH) ; Образовать 2.. '
; Найти квадратный корень из 2

FMULP ST(l),ST ; Скорректировать результат

NDCDRRs FSCALE 5 Возвести в целую степень

FSTP STC1) 5 Удалить Z1

two?

POP
RET
ENDP

AX ; Восстановить АХ
Возврат

271

2. Сформировать правильную дробь Z2=Z—Zi, которая обя­
зательно будет положительной.

3. Если Z> 1/2, необходимо вычесть 1/2 из Z2 и отметить факт
вычитания.

4. Возвести 2 в степень Z2 (командой F2XM1) и масштабиро­
вать на 2Z1 (командой FSCALE).

5. Если из Z2 вычиталась 1/2, следует умножить результат
на 21/2.

В приведенной выше программе 4.7 возведения 2 в произволь­
ную степень Z предполагается, что Z находится в вершине стека
и определены следующие ячейки памяти:

STATUS—два байта для передачи в ЦП слова состояния со­
процессора;

CONTROL — два байта для сохранения текущего слова управ­
ления;

TEMP — рабочее слово;
HALF — двойное слово, инициализированное на 0,5 в корот­

ком вещественном формате.
Вычисление тригонометрических функций. Основой для вычисле­

ния сопроцессором всех тригонометрических функций является
команда FPTAN. Напомним, что она находит для угла а, который
содержит в вершине стека и лежит в диапазоне 0<а<л/4, два
таких числа X и Y, что tga=Y/X. При этом Y замещает значе­
ние аргумента, а X включается в стек. Если угол а находится в
требуемом диапазоне, вычисление tg.a не представляет трудно­
стей и реализуется всего двумя командами:

FPTAN > Образовать частичный тангенс
F9IVP 8T(1>,ST | Найти тангенс угла

После выполнения этих команд значение tga замещает собой
аргумент а в вершине стека.

Имея числа X и Y, на основе тригонометрических тождеств
нетрудно получить значения других тригонометрических функций.
Ниже приведен фрагмент вычисления sin а, если а по-прежнему
находится в диапазоне от 0 до п/4.

Программа 4.8. Вычисление синуса угла:
; Аргумент находится в вершине стека
; и удовлетворяет требованиям команды FPTAN.

FPTAN ? Образовать частичный тангенс
FMUL ST,ST(O) ; Образовать Х**2
FLP ST(1> ; Включить Y в стек
FMUL ST,ST(0) ; Образовать Y**2
FADD 5 Сложить квадраты X и Y
FSQRT Извлечь квадратный корень
FDI4'P ST(1),ST ; Найти синус угла

272

Если допустить произвольный угол а, а не ограничивать его
первым октантом, вычисление тригонометрических функций за­
метно усложняется. Во-первых, приходится учитывать знак ис­
ходного угла. Это не вызывает трудностей при использовании
тождеств вида tg(—а) ——tga, cos(—a)=cosa и др. Во-вторых,
угол требуется приводить в диапазон команды FPTAN, т. е. в
первый (а точнее — в нулевой) октант. Приведение реализуется
с помощью команды FPREM, которая ориентирована именно иа
эту задачу. Напомним, что она образует частичный остаток от
деления ST (0) на модуль из ST (1) и, кроме того, фиксирует в
коде условия (СО, СЗ, С1) три младших бита частного. Полное
приведение требует организации программного цикла, повторяе­
мого до тех пор, пока в бите С2 кода условия не будет зафикси­
рован нуль. Очевидно, в качестве модуля следует использовать
л/4, так как при этом биты (СО, СЗ, С1) определяют октант, в
котором находится исходный угол. К сожалению, команда FPREM
дает точные значения битов частного, если число вычитаний при
приведении не превышает 62. В-третьих, в зависимости от факти­
ческого октанта потребуется вычислять тригонометрические функ­
ции по различным формулам.

Покажем на примере функции тангенса, как можно вычислять
тригонометрические функции, не пользуясь тремя младшими би­
тами частного от команды FPREM. Обозначим произвольный ар­
гумент функции через г.

Если значение z отрицательно, тангенс вычисляется с привле­
чением тождества tg(—г) =—tgz. Следовательно, далее можно
считать, что аргумент z положителен. Если в команде FPREM за­
дать модуль л, то она сформирует остаток г в соответствии с ра­
венством

z=qXn+r, О^гСл,

где q — частное.
Благодаря тождеству tg(«n+x) =tgx при любых целых п по­

лучаем tgz=tgr и задача свелась к вычислению тангенса угла,
находящегося между Сил.

Если г>л/2, то можно воспользоваться тождеством lgz—
=—l/tg(z—л/2) и, следовательно, аргумент приведен в диапазон
между 0 и л/2. Наконец, если аргумент больше л/4, привлекается
тождество tg х— 1 /tg (л/2—х) и аргумент оказывается в диапазо­
не команды FPTAN.

Рассмотренные выше этапы приведения аргумента реализова­
ны в программе 4.9 вычисления тангенса.

Дадим некоторые пояснения программы. Последовательность
команд до метки REM осуществляет проверку знака аргумента z.
Кроме того, здесь же инициализируются два программных флаж­
ка в регистрах ВХ и СХ, состояния которых проверяются на за-
10—1021 273

Программа 4.9. Вычисление тангенса произвольного аргумента:
| Аргумент Z находится б вершине стека,
| тангенс также возвращается в вершине стека.
; Анализ аргумента на точные О и PI/4 не производится.

TANs FLDPI Включить в стек PI
FXCH ; Обменять аргумент и PI
FTST ? Проверить знак аргумента
MOV вх,и 5 флажок обратной величины
MOV CX,BX 5 флажок изменения знака
FSTSW STATUS 5 Передать состояние для проверка
FWAIT 5 Ожидать завершения передачи.
MOV AH,STATUS+1 5 Передать код условия в АН
SAHF ? Код условия в регистре флажков
JAE REM . S Аргумент положительный
FCHS S Аргумент отрицательный,
NOT ex — изменить знак и отметить

; Приведение аргумента в диапазон от ® до PI.
REM: FPREM $ Вычислить остаток R

FSfSW STATUS ; от деления
FWAIT ; аргумента на PI
MOV AH,STATUS+1
SAHF
JP REM : Повторять до завершения
»
; Привести аргумент в диапазон от И до PI/2.

LEPls FLD PINA2 ; Включить в стек PI/2
FSTP ST(2) ; R в 5Т(И>, PI в STC1)
FCOM ; Сравнить R с PI/2
FSTSW STATUS ; Проверить отношение
FWAIT ; между R и PI/2
MOV AH,STATUS+1
SAHF
JBE LEPI2 j R меньше PIZ2
FSUB ST (1) ? Вычесть PI/2 из R
NOT BX 5 Изменить Флажок обратной величины
NOT ex ? Изменить флажок знака

; Привести аргумент в диапазон от И до DPI/4.
LEPIZs FLD PINA4 5 Включить в стек PI/4

FCOMP Сравнить R c PI/4
FSISW STATUS s Проверить отношение
FWAIT между R и PI/4
MOV AH,STATUS+1
JAE LEPI4
FSUBR ST,ST(1> Вычесть PI/4 из R

274

NOT ВХ ; Изменить флажок обратной величины
; Приведение аргумента закончено.
; Заключительные действия по вычислению тангенса.

LEPI4: FPTAN ? Найти частичный тангенс
AND CX, CX ? Проверить Флажок знака
JZ NONEG 9 Изменять знак не нужно
FCHS 5 Изменить знак X

NONEG: AND BX,BX ? Проверить флажок обратной величины
JZ NOBR 5 Ее находить не нужно
FXCH ° Обменять числитель и знаменатель'

NDBRs FDIV 5 Вычислить тангенс

ключительном этапе нахождения тангенса. Нулевое содержимое
регистра ВХ показывает, что при вычислении тангенса не нужно
находить обратную величину; в противном случае потребуется
эта операция. Нулевое содержимое регистра СХ показывает, что
изменять знак тангенса не требуется; в противном случае знак
необходимо изменить.

Шесть команд, начиная с метки REM, осуществляют приведе­
ние аргумента в диапазон от 0 до л. Для этого применяется
команда FPREM с модулем л. Она находится в цикле, условием
повторения которого является получение С2=1.' При передаче
кода условия в регистр флажков ЦП битов С2 попадает во фла­
жок PF, поэтому зацикливание приведения осуществляет команда
JP (перейти, если PF=1).

Последовательности команд, начиная с меток LEPI1 и LEPI2,
выполняют примерно аналогичные действия по приведению аргу­
мента в диапазоны 0 — л/2 и 0 — л/4 соответственно. Здесь пред­
полагается, что требуемые для этого константы находятся в
ячейках с адресами PINA2 и PINA4. В процессе приведения при
необходимости модифицируются флажки нахождения обратной ве­
личины в регистре ВХ и изменения знака в регистре СХ.

Заключительные восемь команд, начиная с метки LEPI4, фор­
мируют в вершине стека значение тангенса исходного аргумента.
При этом учитываются состояния флажков в регистрах ВХ и СХ
и, когда это требуется, производятся корректирующие действия.

В программе 4.10 вычисления всех тригонометрических функ­
ций предположим, что в вершине стека ST (0) находится значе­
ние угла а, удовлетворяющее диапазону команды FPTAN. Необ­
ходимо вычислить значения всех тригонометрических функций и
поместить их в область памяти, адресуемую регистрам ВХ (в
длинном вещественном формате). Вычисления тангенса и котан­
генса производятся обычным образом, а для остальных функций
используются тождества, приведенные в п. 4.4.4.
10* 275

Программа 4.10. Вычисление всех тригонометрических функ­
ций:

; Аргумент находитсяввершине стека ST(И).
; Значения веек его тригонометрический функций
; передаются в область памяти, адресуемую регистром ВХ
; (в длинном вещественном формате)•

TFUNCs FLD ST(0) ; Продублировать аргумент •
FPTAN
FDI4'
FST QWORD PTR

; Вычислить частичный тангенс
; Образовать тангенс

ЕВХЗ ; и запомнить его
FLD1
FDIVR
FSTP DWORD PTR

; Включить в стек 1.И
; Образовать котангенс

СВХ+83 ■ ; и запомнить его
F^B4
FCHS
FXCH
FSCALE
FSTP ST(1)

; Включить в стек 1.И
Теперь в ST (0> -1.0

; Обменять ее с аргументом
; Поделить аргумент на 2
5 Удалить —1.0

FPTAN
ED IV
FLD ST (0)

; Вычислить частичный тангенс
; Вычислить Y/X
: и продублировать три раза

FLD
FLD

ST(0)
ST(0)

FADD ST(2),ST ; Образовать 2*(Y/X)
FADD ST(3),ST ; Образовать 2*(Y/X)
FMUL
FLD ST(0)

; Вычислить (Y/X>»»2
; и образовать копию

FLD1
FLD1
FADDP ST(2),ST

S Два раза
5 включить в стек 1.0
; Вычислит^ 1+(Y/X>**2

FSUBRP ST(2),ST ; Вычислить 1—(Y/Х)**2
FDIV ST(2),ST ; Вычислить синус
FDIV ST(3>,ST ; Вычислить косеканс
FDIV
FLD1
FDIV ST,ST(1)

; Вычислить косинус
; Включить в стек 1.0
; Вычислить секанс

FSTP DWORD PTR ГВХ+163 ; Запомнить секанс.
FSTP QWORD PTR ЕВХ+243 ; косинус,
FSTP QWORD PTR ЕВХ+323 синус,
FSTP QWORD PTR СВХ+403 ; косеканс

Вычисление обратных тригонометрических функций. Вычисле­
ние в сопроцессоре обратных тригонометрических функций осно­
вывается на команде FPATAN. Она находит aretgz, где z=Y/X,
причем X находится в вершине стека ST (0), a Y — в следующем
регистре стека ST (1). Числа X и Y должны удовлетворять тре-
276

бованию 0<Y<X<oo. Команда FPATAN производит извлечение
из стека и возвращает результат в новой вершине стека, т. е. он
замещает число Y.

Для вычисления арктангенса произвольного аргумента не­
обходимо проверить следующие варианты: z=0, z>0, z<l, \z\ —
= 1 и |z| >1. Приведение z в диапазон аргументов команды осу­
ществляется в соответствии с тождествами:

arctg z = — a rctg(—г), a ret g z—л/2 — arctg (1 /z).
Отсюда следует, что знак аргумента учитывается отдельно и

далее можно работать с абсолютным значением z. Если |z| <1,
то |z| принимается за X, a Y полагается равным 1. Когда же
|г|>1, за X принимается 1, а за Y—|z|, результат команды
FPATAN корректируется по второму тождеству.

Программа 4.11 вычисляет арктангенс произвольного аргумен­
та z, передаваемого в вершине стека ST (0). Предполагается, что
в стеке сопроцессора имеются минимум три свободных регистра.
Регистр СХ используется как флажок знака аргумента.

Особых пояснений эта программа не требует. Отметим только,
что в ней предусмотрена проверка аргумента на нуль и единицу.
При равенстве его одному из этих чисел результат будет абсолют­
но точным. Кроме того, необходимые константы л/2 и л/4 форми­
руются в программе из числа л, а не считываются из памяти.

Вычисление скалярного произведения векторов. Во многих за­
дачах линейной алгебры, например при умножении матриц, при­
ходится вычислять скалярное произведение двух векторов: Х=
= (Х1, х2,... ,хп) и Y= (t/b У2,..., Уп):

п

Г-1

Эту задачу решает элементарная программа 4.12, в которой
предполагается, что элементы векторов представлены в коротком
вещественном формате, а результат — в длинном вещественном
формате.

Рассмотрим теперь более общую подпрограмму для вычисле­
ния скалярного произведения, в которой используется одна инте­
ресная возможность сопроцессора. Автоматическое преобразова­
ние всех входных данных во временный вещественный формат, а
выходных данных в формат получателя позволяет разработать в
некотором смысле универсальные подпрограммы. В них тип обра­
батываемых данных передается как параметр и учитывается в
командах загрузки и запоминания, а внутренняя обработка в со­
процессоре оказывается одинаковой во всех типах данных.

Подпрограмма GINPR вызывается оператором
CALL GINPR (X,Y, TYPEX, TYPEY, N),

277

Программа 4.11. Вычисление арктангенса произвольного аргу
мента:

5 Аргумент Z намолится в вершин* стека,
; арктангенс также возвращается в вершине стека.
, Осуществляется проверка аргумента Z на 0 и 1.

ATANr ; Проверить . знак и равенство нулю исходного аргумента,
5. флажок изменения знакаMOV СХ,0

ZERO

NEB:

PLUS:

FTST
FSTSW STATUS
FWAIT
MOV AH,STATUS+1
SAHF
JA PLUS

ZERO
JMP NEO
FSTP ST(0)
FLDZ
JMP DONE
FCHS
NQT CX
; Сравнить аргумен!
FLD1
FCOM
FSTSW STATUS
FWAIT
MOV AH , STATUS-** 1
SAHF
JA LESS1
JC GRT1

9

?

;
5

5

5
§
5>
?

г
э
5
5
?

5

Проверить аргумент
Передать в память код условия
Ожидать завершения передачи

КСэд условия в регистре флажков
Аргумент положительный
Аргумент равен нулю
Аргумент отрицательный
Удалить аргумент из стека
Включить в стек 0.0
Результат готов - он равен И
Теперь аргумент положительный
Отметить отрицательный аргумент

с единицей.
Включить в стек 1.И
Произвести сравнение Z и 1
Передать в память код условия
Ожидать завершения передачи

Код условия в регистре флажков
Аргумент меньше единицы
Аргумент больше единицы

s Аргумент равен 1,
FCHS
FADI) ST(0),ST
FLDPI
FSCALE
FSTP STU)
•IMP SIGN

> 1
S
9

5

9

ч

5

результат равен PI/4.
В STC0) находится -1.0
Образовать -2.0
Включить в стек PI
Образовать PI/4
Удалить из стека —2.0
Перейти к учету знака

GRT1:
; Использовать тождество arctg Z = PI/2 - arctg U/Z)
FXCH ■ z в st (И), 1 в STU)
FPATAN ; Вычислить арктангенс

; Включить в стек 1.0
FCHS ; Образовать —1.0 в ST(И)
FLDPI. ; Включить в стек PI

FSCALE ; Образовать PI/2
FSTP STU) ■ Удалить из стека —1.0
FSUBRP ST(1),ST ; Образовать neavnr,TST

SIGNJMP 3 Перейти к учету знака

LESS15
; Аргументы в диапазона команды ЕРATAN.
FPATAN ; Вычислить арктангенс

SIGN: | Учесть знак Z-
TEST СХ,СХ ; Проверить знак аргумента Z
JZ DONE ; Аргумент положительный
FCHS ; Результат отрицательный

DONEi ; Результат я ST (И/

Программа 4.12. Вычисление скалярного произведения векто
ров:

; Начальный адрес вектора X находится в регистре SI ,
: вектора У — в регистре DI. Число элементов векторов N.
; Результат помещается в ячейку INPROD..

INPRs
-
FLDZ ; Подготовить в стеке место
MOV CX,N ; Образовать счетчик элементов
XDR ВХ,ВХ ; Подготовить ВХ для адресатам

PLODPs FLD DWORD PTR CBX3CSI3 ; Текущий элемент XI
FMUL DWORD PTR CBxJCDI] ; Умножить на YI
FADD ; Накапливать результат
LOOP PLODP ; Повторять до завершения
FSTP □WORD PTR INPROD $ Запомнить результат

который предполагает передачу
в стеке адресов векторов X и У,
типов элементов векторов TYPEX
и TYPEY, а также числа N эле­
ментов векторов. На рис. 4.7 по­
казано, как размещаются в стеке
параметры и как осуществляется

доступ к ним с помощью регистра
ВР.

Целочисленные параметры
TYPEX и TYPEY имеют значения
4 (элементы вектора представле­
ны в коротком вещественном
формате). Каждый из них опре­
деляется независимо друг от дру­
га.

Стек

____ _ 0
Смещения

от ВР
ВР SP ----- - Старый ВР 0

_ А Ире с
РозВрата

2

_ Чисм
элементов N

4

- Тип TYPEY 6

- Тип TYPEX - 8

- Айрес Y ю

- Адрес X 12

Рис. 4.7. Стек в подпрограмме
GINPR

979

Программа 4.13. Вычисление скалярного произведения с зада­
ваемыми типами элементов векторов:

; Параметры передаются подпрограмме в стеке.
; Результат возвращается в вершине стека сопроцессора.

BINPP PROC
PUSH
MOV

NEAR
BP
Bp,SP

; Образовать стековый кадр
; для доступа к параметрам

FLDZ ; Подготовить место для результата
MOV CX.EBP+43 ; Образовать счетчик элементов
MOV BI,CBP+123 ; В SI адрес вектора ,Х
MOV DI,EBP+10] ; В DI адрес вектора Y
MOV BX,EBP+63 ; ■ ВХ тип элементов Y
MOV AX,EBP+83 ; В АХ тип элементов X
JCX? DONE ; Проверить число элементов

PLOOP: CMP AX, 4 ; Проверить тип элементов X
ONE XDOUBL ; X. - длинный вещественный формат
FLD DWORD PTR CSI3 5 Текущий элемент XI (КВ)
JMP MULT 1 Перейти к умножению

XBOUBL: FLD QWORD PTR ESI3 ; Текущий элемент XI.CDBi
MULT: CMP BX.4 ; Проверить тип элементов Y

ONE YDOUBL 5 Y — длинный вещественный формат
FMUL DWORD PTR CDI3 ; Умножить на YI (КВ)
JMP NEXT ; Перейти к суммированию

YDOUBL: FMUL RWORD PTR EDI3 ; Умножить на YI (DB)
NEXT: FADD $ Накапливать результат

ADD Si ,AX ; Перейти к следующим элементам'
ADD DI,BX ; векторов X и Y
LOOP PLOOP ; Повторять до завершения
POP BP ; Восстановить старый ВР

DONE:
BINPR:

RET
ENDP

10 Возврат с удалением параметров

4.7. ОСОБЕННОСТИ ПРЕДСТАВЛЕНИЯ ЧИСЕЛ В ПЕРСОНАЛЬНЫХ
КОМПЬЮТЕРАХ

Профессиональные персональные компьютеры (ПК) можно
классифицировать на ПК с базовым микропроцессором
К1810ВМ86 (ЕС-1840, ЕС-1841, Искра-1030 и др.) и ПК с систе­
мой команд СМ ЭВМ (ДВК-3, ДВК-4 и др.). ПК внутри каждого
класса совместимы на уровне машинных команд, но совместимо­
сти между классами нет даже на уровне языков программирова­
ния высокого уровня. Рассмотрим особенности представления чи­
сел в ПК первого класса.

ПК оснащаются трансляторами с нескольких языков програм­
мирования. Среди них специально отметим язык Ассемблера и
280

язык Бейсик. Язык Ассемблера дает возможность программисту
разрабатывать наиболее компактные и «быстрые» программы,
обеспечивая доступ ко всем ресурсам ЦК. Кроме того, разработку
программ с привлечением арифметического сопроцессора
К1810ВМ86 пока можно вести только на языке Ассемблера. Этот
язык, по-видимому, будет сохранять свою актуальность еще дол­
гое время, по крайней мерс на нем будут разрабатываться крити­
ческие секции программ, для которых языки высокого уровня ока­
зываются неадекватными.

Версия Бейсика для ПК претерпела существенные изменения
по сравнению с его предыдущими версиями. Теперь Бейсик стал
довольно мощным языком и обладает некоторыми конструкциями
структурного программирования. Вместе с тем Бейсик сохранил
свою привлекательность в части простоты изучения и удобной от­
ладки программ. Наличие интерпретатора и компилятора Бейсика
позволяет совместить достоинства обоих способов трансляции.

В языке Бейсик применяются три типа числовых данных: це­
лые числа (INTeger) и числа с плавающей точкой в коротком и
длинном форматах, называемые числами с одинарной (SiNGIe)
и двойной (DouBLe) точностью. Имеется несколько способов оп­
ределения типов переменных и констант.

Явная идентификация типов переменных и констант осуществ­
ляется с помощью символов определения типа, которые заверша­
ют их имена: символ процента (%) обозначает-целое число, вос­
клицательный знак (!)—число с одинарной точностью и символ
номера (4М—число с двойной точностью. Примеры типизации с
помощью символов определения типа:

FI#, FUNC# - двойная точность,
MIN!, МАХ! - одинарная точность

LIMIT/., INDEX - целые числа.

Второй способ объявления типов переменных и констант за­
ключается в использовании оператора DEF/ppe, где fype = INT,
SNG или DBL. Этот оператор имеет следующий общий формат:

DEFtype букваС-букваJ С,буквйЕ-букваJ1..-

Здесь квадратные скобки ограничивают необязательные эле­
менты, а многоточие — возможность повторения предыдущей кон­
струкции любое число раз. Как видно из приведенного формата,
оператор DEF/ype может задавать либо отдельные буквы, либо
диапазоны букв латинского алфавита и устанавливает, что пере­
менные, имена которых начинаются с указанных букв, будут
иметь тип type. Примеры оператора DEFtype:

BEFINT I—N
PEFBBL

281

Первый оператор показывает, что всем переменным, имена ко­
торых начинаются с букв I, J, К, L, М, N, назначается тип INT;
второй оператор назначает тип DBL переменным, имена которых
начинаются с букв А, В, X, Y, Z.

Если тип переменной не объявлен ни символом определения
типа, ни оператором DEFtype, т. е. по умолчанию, принимается
тип SNG. Следует помнить, что символ определения типа «пере­
вешивает» указание оператора DEF/i/pe.

Операторы DEFtype рекомендуется размещать в начале про­
граммы. В частности, они должны предшествовать первым упо­
треблениям тех переменных, типы которых они определяют. Целе­
сообразно типизировать с помощью операторов DEFtype все пере­
менные, имеющиеся в программе.

Важно знать, в каком формате переменные разных типов
представляются в памяти и участвуют в операциях, а также ка­
кую точность обеспечивает каждый тип. Форматы чисел разных
типов показаны на рис. 4.8.

Рис. 4.8. Форматы чисел в языке Бейсик

кую разновидность формата слова, как

Целые числа занима­
ют два байта (слово) и
представлены в дополни­
тельном коде, имея диапа­
зон от —32 768 до + 32 767.
Этот формат полностью
аналогичен формату сло­
ва МП К1810ВМ86 и
формату целого слова
арифметического сопро­
цессора К1810ВМ87. Бей­
сик не поддерживает та-

целые беззнаковые числа,
которые применяются для адресов. Поэтому в операциях с адреса­
ми необходимо быть очень внимательным.

Числа с плавающей точкой типов SNG и DBL различаются
только длиной мантиссы. Тип SNG обеспечивает точность 7 деся­
тичных цифр, а тип DBL — точность 16—17 десятичных цифр
(хранятся 17 цифр, а выводятся 16 старших цифр). В обоих фор­
матах порядок Е занимает левый байт и представлен в смещен­
ной форме, причем смещение равно 128. Мантисса М считается
нормализованной правильной дробью с неявным старшим битом,
равным 1. Знаковый бит S занимает место неявного старшего
бита мантиссы. Таким образом, форматы чисел с плавающей точ­
кой в Бейсике не совпадают с «внешними» форматами аналогич­
ных чисел в сопроцессоре К.1810ВМ87. Это обстоятельство необ­
ходимо учитывать при разработке ассемблерных программ с при­
влечением сопроцессора.

Приведем четыре программы преобразований форматов чисел,
применяемых в Бейсике и арифметическом сопроцессоре
282

Программа 4.14. Преобразование числа с одинарной точностью
Бейсика в короткий вещественный формат сопроцессора:

J Регистр sf адресует исходное число,

; регистр DI адресует результат.

DONE: <Следующая команда>

MOV АХ,ESI1 ; Скопировать
MOV £DI3,AX ; младшее слово мантиссы
MOV DX,CSI+23 5 Старшее слово числа в DX

MOV AH,DL ; Выделить знаковый бит

AND АН,80Н ; в регистре АН
SUB DH,2 ; Учесть разницу Смещений

JBE ZERO1 ; Число равно нулю

SHR DH,1 ; Выдвинуть младший бит порядка

JC SET1 : Он равен единице

AND DL,7FH ; Он равен нулю
JMP L1 : Обойти формирование единицы

SET1: OR DL,80H ; Младший бит порядка равен единице

Lis OR DH,AH ; Знак числа на месте

MOV tDI+23,DX : Запомнить старшее слово числа
JMP DONE ; Преобразование закончено

ZEROIs MOV WORD PTR EDI 3,0 ; Результат

MOV WORD PTR CDI+23,0 j равен нулю

DONE: <Следуишая команда>
Программа 4.15. Преобразование короткого вещественного

формата сопроцессора в одинарный формат Бейсика:
: Регистр SI адресует исходное число,

: регистр DI адресует результат.

ZER02

MOV

MOV

MOV

MOV
AND

SHI-

TEST

JZ

OR

CMP

JE
ADD

AND

OR

MOV

JMP

S MOV

MOV

AX,ESI J : Скопировать

CDI1,AX ; младшее слово мантиссы

DX,ESI+23 ; Старшее слово числа в DX

AH,DH ; Выделить знаковый бит

АН,80Н : в регистре АН

DH,1 ; Убрать знаковый бит в порядке

DL,80H ; Проверить младший бит порядка

L2 ; Он равен нулю
DH,1 ; Он равен единице

DH,0 : Проверить число на нуль

ZERO2 ; Число равно нулю

DH,2 : Учесть разницу смещений

DL,7FH 5 Сформировать

DL,AH ; знаковый бит

£DI+23,DX ? Запомнить старшее слово числа

DONE ; Преобразование закончено

WORD PTR EDI1,0 5 результат
WORD PTR rDI+23,0 ; равен нулю

Программа 4.16. Преобразование числа с двойной точностью
Бейсика в длинный вещественный формат сопроцессора:

; Регистр SI адресует исходное число,
; ресйстр DI адресует результат.

DONE: ССледующая команда>

>
MDV AX,CSI1 ; Скопировать
MOV CDIl.AX ; ис ходкое число
MOV AX,[SI+21 j в получатель
MDV CDI+21,AX
MOV AX,[SI+41
MDV EDI+41,AX
MDV AX,[SI+61
MDV [DI+61,AX
MOV DH,CSI+61 ; Выделить знаковый бит
AND'y DH,80H ■; - ’ в регистре DH
MDV AL,CSI+71 у Передать порядок в AL-
XDR AH , AH ; Сбросить регистр АН
CMP AL,И ; Проверить исходное число
JE ZERD3 ; на нуль
ADD AX,(1023— 129) ; Учесть разницу смещений
MDV CL,4 ; Передать знаковый бит
SHR DH,CL ; в правильную позицию
DR AH,DH
AND BYTE PTR [DI+61.7FH : Сбросить старый
SHR AX , 1 ; знаковый бит и передать на его место.
JNC L3 у младший бит порядка
DR BYTE PTR EDI+61,80H

L3: MDV CX,3 ; Образовать счетчик сдвигов
SHIFT: SHR AX, 1 ; Сдвинуть число на 3 бита вправо

RCR BYTE PTR [DI+61,1
RCR WDRD PTR [DI+41,1
RCR WDRD PTR [DI+21,1
RCR WDRD PTR [Dll,1
LOOP SHIFT
MOV BYTE PTR [DI+71,AL ^Старший байт
JMP DONE ; Преобразование закончено

ZER03: MOV WORD PTR EDI1,0 у Результат
MDV WDRD PTR [DI+21,0 ; равен нулю
MDV WORD PTR [DI+41,0
MOV WDRD PTR EDI+61,0

К1810ВМ87. Приведенные фрагменты образуют основную
часть (тело) соответствующих подпрограмм, которые можно вы­
зывать из Бейсик-программы. Чтобы превратить их в подпрограм­
мы, потребуются некоторые обрамляющие директивы. Особых по-
284

Программа 4.17. Преобразование длинного вещественного фор­
мата сопроцессора в двойной формат Бейсика:

; Регистр SI адресует исходное число,
; регистр DI адресует результат-

DONE: <Следующая команда>

MOV AX,£SI3 ; Скопировать исходное число

MOV

MOV

MOV

MOV
MOV

MOV

MOV

EDI],AX

AX,ESI+21

£DI+21,AX

AX,£SI+41
EDI+4J,AX

AX,CSI+61

£DI+63,AX

; в получателе

MOV DH,CSI+73 : Выделить знаковый бит

AND DH,SOH ; в регистре DH

MOV AX,£SI+61 ; Передать старшее слово в АХ

AND AX,7FF0H ; Выделить пор ядок
MOV CL, 4 ; Сдвинуть пор ядок

SHR AX, CL ; вправо на 4 бита

CMP AX,(1023— 129) ; Проверить исходное число

JBE ZER04 ; на нуль

SUB AX,(1023- 129) ; Учесть разницу смешений

MOV CDI+73,AL ; Запомнить порядок

SHR DH, 1 ; Передать знаковый .бит

SHR

SHR

DH, 1

DH,1

; в правильную позицию

AND BYTE PTR EDI+61,0FH

OR LDI+63 ,DH ; Знак на месте

MOV CX,3 ; Образовать счетчик сдвигов

SHIFT: RCL WORD PTR EDI1,1 ;Сдвинуть мантиссу

RCL WORD PTR EDI+21,1 на 3 бита влево
RCL WORD PTR CDI+41,1
RCL

LOOP

BYTE PTR

SHIFT

EDI+61,1

JMP DONE ; Преобразование закончено

ZERD4: MOV WORD PTR EDI 3,0 ; Результат

MOV WORD PTR EDI+21,0 ; равен нулю

MOV WORD PTR EDI+41,0
MOV WORD PTR EDI+61,0

яснений программы не требуют, так как в них нет каких-либо
сложных операций. Отметим только необходимость учета разницы
в смещениях, участвующих в образовании смещенного порядка Е.
При этом приходится принимать во внимание, что в числах со­
процессора имеется бит Fo целой части мантиссы, а в числах Бей­
сика он отсутствует. Кроме того, Бейсик не рассчитан на какие-

285

либо специальные числа, за исключением нуля. Предполагается
также, что переполнение невозможно.

Контрольные вопросы и упражнения

1. Назовите достоинства и недостатки сопроцессорных конфигураций.
2. Перечислите несколько других прикладных областей, в которых могут

эффективно применяться сопроцессоры. .
3. Необходим ли сопроцессорной конфигурации специальный арбитр шииы,

«регулирующий» доступ к шине отдельных процессоров?
4. Можно ли применять сопроцессор К1810ВМ87 с центральным процессо­

ром, отличающимся от микропроцессора К1810ВМ86?
5. Поясните основные моменты синхронизации ЦП и сопроцессора по ко­

мандам н данным. Приведите примеры гипотетических программных фрагментов.
6. Каким образом сопроцессор считывает из памяти операнды, длина ко­

торых больше 16 бит?
7. Рассмотрите, какие форматы команд может иметь сопроцессор с уче­

том кода ESC (11011).
8. Изобразите^ круговую диаграмму, поясняющую принцип действия регист­

рового стека сопроцессора.
9. С какой целью в тэгах регистрового стека сопроцессора предусмотрен

специальный код, отмечающий пустой регистр?
10. Позволяет ли наличие тэгов повысить производительность сопроцессо­

ра?
11. Поясните причины применения в сопроцессоре стековой организации

вместо обычной организации с регистрами общего назначения.
12. Для каждого из форматов чисел сопроцессора покажите, как кодируются

минимальные и максимальные числа, и оцепите их величину.
13. Почему в формате упакованных десятичных чисел сопроцессора принят

прямой код, а не дополнительный?
14. В форматах вещественных чисел сопроцессора порядок имеет разную

длину, хотя обычно его длина фиксирована, а изменяется только длина ман­
тиссы. Назовите причины выбора порядков различной длины.

15. Приведите кодирование чисел —31 5, 2048, —3/512,- —16384 во всех
вещественных форматах сопроцессора.

16. Имеет ли смысл кодировать входные н выходные числовые данные во
временном вещественном формате?

17. В чем заключается особенность обратных форм команд вычитания и
деления? Как смоделировать эти формы, если -бы указанных команд не было?

18. Объясните необходимость наличия у сопроцессора команд загрузки
констант.

19. Покажите кодирование специальных чисел во всех форматах сопроцес­
сора.

20. Рассмотрите все особые случаи, которые могут возникнуть в каждой
арифметической команде.

21. Изучите табл. 4.7 и кратко сформулируйте смысл всех маскированных
реакций сопроцессора на особые случаи.

22. Какие изменения потребуются в программе 4.1 для того, чтобы сохра­
нить сумму элементов массива в коротком вещественном формате? во времен­
ном вещественном формате?

23. Исследуйте, что произойдет, если в программе 4.1 вместо команды
FSTP указана команда FST и эта программа несколько раз вызывается как
подпрограмма.

24. Разработайте такие рекомендации для программиста, которые обеспе­
чивают максимальный параллелизм работы ЦП и сопроцессора.

25. Составьте граф-схемы алгоритмов, реализованных в программах 4.7, 4.9
и 4.11.

26. При каких условиях получается минимальное и максимальное время вы­
полнения программы 4.13?

ПРИЛОЖЕНИЕ

СИСТЕМА КОМАНД АРИФМЕТИЧЕСКОГО
I СОПРОЦЕССОРА К1810ВМ87

1
I

Ниже дается описание системы команд арифметического со­
процессора К1810ВМ87. Команды сгруппированы по функцио­
нальному назначению. Для каждой команды приводятся ее мне
моника, машинное кодирование (объектный код), формат операн­
дов, время выполнения в тактах синхронизации (время вычисле­
ния эффективного адреса ЕА берется из табл. 3.3), возникающие
при выполнении команды особые случаи и символическое описа­
ние функции команды.

Приняты следующие условные обозначения:
src — операнд-источник, т. е. операнд, не изменяющийся при

выполнении команды,
dst — операнд-получатель, т. е. операнд, который замещается

результатом операции,
mod — режим адресации операнда,
г 1т — регистр-память (кодирование см. в табл. 3.2),
ESC — первые пять битов (ПОП) кода операции всех команд

сопроцессора,
disp — 8- или 16-битное смещение в команде (dispL — младший

байт, dispH — старший байт),
d — направление,
R — прямая (0) или обратная (1) операция вычитания и де­

ления;
П — память.
Обозначения форматов чисел:
КВ — короткое вещественное (32 бит),
ДВ — длинное вещественное (64 бит),
ВВ — временное вещественное (80 бит),
ЦС — целое слово'(16 бит),
КЦ — короткое целое (32 бит),
ДЦ — длинное целое (64 бит).
Обозначения особых случаев:
I — недействительная операция,
D — депормализованный операнд,
Z — деление на нуль,
О — переполнение,
U — антипереполпение,
Р — потеря точности.
Звездочка обозначает неявный операнд.

287

ьэ —Т....................... .00ОО
Мнемоника Объектный код Длина,

байт
Время,
тактов

Особые случаи

Операция
src dst I D Z о и р

Команды передач данных

FLD src ESC001
HOOOST(i)

ESC001
modOOOr/m

(dispL) (dispH)
ESC101

modOOOr/m
(dispL) (dispH)

ESC011
modlOir/m

(dispL') (dispH)

2

2, 3, 4

2, 3, 4

2, 3, 4

ST(O)*

ST(O)*

ST(O)*

ST(O)*

ST(O

п—kb

П—ДВ

П—BB

20

43+EA

46+EA

57+EA

X
X

X
X

X

X

X

ST4-(ST)—1
ST(O)-s-(src)

FILD src ESC111
modOOOr/m

(dispL) (dispH)
ESC011

modOOOr/m
(dispL) (dispH)

ESC111
modlOlr/m

(dispL) (dispH)

2, 3, 4

2, 3, 4

2, 3, 4

ST(O)*

ST(O)*

ST(O)*

П—ЦС

П-КЦ

П-ДЦ

50+E A

56+E A

64+EA

X

X

ST-HST)— 1
ST(O)^-(src)

FBLD src ESC111
mod 100r/m

(dispL) (dispH)

2, 3, 4 ST(O)* п-упк 300+EA X ST-t-(ST)—1
ST(O)*-(src)

FST dst ESC101
1101 OST (i)

ESC001
modOl Or/m

(dispL) (dispH)
ESC101

modOlOr/m
(dispL) (dispH)

2

2, 3, 4

2, 3, 4

ST(i)

П—KB

П—ДВ

FIST dst ESC111
modOlOr/m

(dispL) (dispH)
ESC011

modOlOr/m
(dispL) (dispH)

2, 3, 4

2, 3, 4

П—ЦС

П- ДЦ

FBSTP dst ESC111
mod 11 Or/m

(dispL) (dispH)

2, 3, 4 П—УПК

FSTP dst ESC101
11011 ST (i)

ESC001
modOl Ir/m

(dispL) (dispH)
ESC101

modOl Ir/m
(dispL) (dispH)

ESC011
modi 1 Ir/tn

(dispL) (dispH)

2

2, 3, 4

2, 3, 4

2, 3, 4

ST(i)

П—KB

П-ДВ

П—BB

ST(O)* 18 dsM-ST(O)

ST(O)* 87+EA X X X X

ST(O)* 100+EA X X X X

ST(O)* 86+EA X X +M-ST(0)

ST(O)* 88+EA X X

ST(O)* 530+EA X dsM-ST(O)
ST-s-(ST) + l

ST(O)*

ST(0)*

20

89+EA X X X X

ds£*-ST(0)
SI>-(ST) + 1

ST(O)* 102+EA X X X X

ST(O)*

Ьэ со о
Объектный код Длина,

байт
Время,
тактов

Особые случаи

Операция
опер

sre

анды

dst
Мнемоника

I D z о и p

FISTP dst ESC111
morfOl lr/m

(dispL) (dispH)
ESCO11

modOl lr/m
(dispL) (dispH)

ESC111
modi 1 lr/m

(dispL) (dispH)

2, 3, 4

2, 3, 4

2, :3, 4

П-ЦС

п-кц

П-ДЦ

ST(0)*

ST(0)*

ST(0)*

88+EA

904-EA

100+EA

X

X

X

X

X

X

dsM-ST(O)
ST-*-(ST) + l

FXCH //dst ESC001
11001ST(i)

2 ST(1)*
ST(i)

ST(0)*
ST(0)*

12
12

(ds/) *>ST(0)

Арифметические команды

FADD / /sre/dst,
sre

ESC110
11000001
ESCdOO

HOOOST(i)
ESC000

modOOOr/m
(dispL) (dispH)

ESC100
modOOOr/m

(dispL) (dispH)

2

2

2, 3, 4

2, 3, 4

ST(1)

ST(0
S(0)*
S(0)*

S(0)»

ST(O)*1’

ST(0)
ST(i)

П—KB

П-ДВ

85

85
85

105+EA

110+EA

X
X

X
X

X

X
X

X
X

X

X

X
X

X

X

X
X
X

X

X
X

X
X

X

dst+-(dst)-)-(src)

FADDP dst, sre ESC110 2 ST (1) ST(0) 90 X X X X X dst+-(dst)-)-(src)
l;1000ST(t) ST*-(ST) 4-1

FIADD src ESC110
modOOOr/tn

(dispL) (dispH)
ESCO1O

modOI Or /m
(dispL) (dispH)

2, 3, 4

2, 3, 4

S(O)*

ST(O)*

П—ЦС

n-KU

120+EA

125+EA

X

X

X

X

X

X

X

X

ST (O)«-ST(O) + (src)

FSUB //src/dst,
src

ESC11O
111OROO1
ESCdOO

111 COST (t)
ESCOOO

modlGRr/m
(dispL) (dispH)

ESC100
modl(jRr/m

(dispL) (dispH)

2

2

2, 3, 4

2, 3, 4

ST(1)*

ST(O
ST(O)*
ST(O)*

ST(O)*

ST(O)*1’

ST(0)
ST(i)

П—KB

П-ДВ

85

85
85

105+EA

110+EA X
 XXX

X X

X
X

X

X

X
X
X

X X
 XXX

X X

X
X

dst-<r-(dst)—(src)

FSUBP dst, src ESC11O
lllORST(i)

2 ST(O ST(O) 90 X X X X X dst-^-(dst) — (src)
ST^-(ST) + 1

FISUB src ESC11O
modlORr/m

(dispL) (dispH)
ESCO1O

modWRr/m
(dispL) (dispH)

2, 3, 4

2, 3. 4

ST(O)*

ST(O)*

П-ЦС

П-КЦ

120+EA

125+EA

X

X

X

X

X

X X

X ST (0)4-ST(0)—(src)

FSUBR //src/
dst, src

См. команду FSUB dst^-(src) — (dst)

ьоco bo
Мнемоника Объектный код Длина,

байт

Операнды

src dst

FSUBRP dst,
src
FISUBR src

См. команду

См. команду

FSIJBP

FISUB

FMUL2/[src/
dst, src

ESC110
11001001
ESCrfOO

11001 st (о
ESC000

mod001r/m
(dispL) (dispH)

ESC100
modGOlr /m

(dispL) (dispH)

2

2

2, 3, 4

2, 3, 4

ST(1)*

ST(i)
ST(0)*
ST(0)*

ST(0)*

ST(O)*1)

ST(0)
ST(r)

П—KB

П-ДВ

FMULP dst,
src

ESC110
11001 ST (I)

2 ST(i) ST(0)

FIMUL src ESC110
modOOlr/m

(dispL) (dispH)
ESC010

mod001r/m
(dispL) (dispH)

2, 3. 4

2, 3, 4

ST(0)*

ST(0)*

П—ЦС

П-КЦ

FDIV l/srcl
dst, src

ESC110
1111R001

2 ST(1) ST(O)*1)

Время,
тактов

Особые случаи

Операция
I D Z о и р

dst-*- (src) — (dst)
ST*-(ST) 4-1
ST(0)^(src)—ST(0)

97 X X X X X dst-*- (dst) X(src)

97 X X X X X
97 X х X X X

118+ЕА X X X X X

160+ЕА х X X X X

142 X X X X X dst-*-(dst) X (src)
ST*-(ST) 4-1

130+ЕА X X X X X ST(0)*-ST(0)X(s«)

1364-ЕА X X X X X

198 х X X X X X dsf-<-(&/) / (src)

ESCdOO
11 llRST(t)

ESC000
modiIRr/m

(dispL) (dispH)
ESC100

modi IRr/m
(dispL) (disH)

2

2, 3, 4

2, 3, 4

ST(i)
ST(i)

ST(O)*

ST(O)*

ST(O)
ST(i)

П-КВ

П-ДВ

FDIVP dst, src ESC110
1 lllRST(i)

2 ST(O) ST(O)

FIDIV src ESC110
modi IRr/m

(dispL) (dispH)
ESC010

modiiRr/m
(dispL) (dispH)

2, 3, 4

2, 3, 4

ST(O)*

ST(O)*

П—ЦС

П-КЦ

FDIVR //src/
dst, src

См. команду FDIV

FDIVRP dst,
SfC
FIDIVR src

См. команду FDIVP

См. команду FIDIV

FABS

FCHS

ESC001
11100001
ESC001
11100000

2

2

ST(O)*

ST(O)*

ST(O)*

ST(O)*

198
198

220+EA

X

225+ЕА

ST (0)*-1 ST (0)|

202 X X X X X X dst^~(dst) / (src)
ST^-(ST) + 1

230+EA X X X X X X ST(0)+-ST(0)/(src)

236+EA X X X X X X

dst+-(src) /(dst)

dst+-(src)/(dst)
ST^-(ST)+1
ST(0)-*-(src)/ST(0)

14

15 ST(0p—ST(0)

Мнемоника Объектный код Длина,
байт

FPREM

FRNDINT

FSCALE

FSQRT

FXTPACT

ESC001
11111000
ESC001
11111100
ESC001

.11111101
ESC001
11111010
ESC001
11110100

2

2

2

2

2

FCOM//src ESC000
11011001
ESCOOO

11010ST(i)
ESCOOO

mod0lGr/m
(dispL) (dispH)

ESC100
modCAGr/m

(dispL) (dispH)

2

2, 3, 4

2, 3, 4

2, 3, 4

FCOMP //src ESCOOO
11011001
ESCOOO

11011ST(f)
ESCOOO

modOllr/m
(dispL) (dispH)

2

2

2, 3, 4

Операнды
Время,
тактов

Особые случаи

Операция
I D z О и psrc dst

ST(0)* 125 X X X ST (0)-«-ST (0) MOD ST(1)

ST(0)*

ST(0)*

ST(0)* ,45

35

X
X

X X

X 5Т(0)*-целая часть
ST(0)
ST(0)-«-ST(0)X2ST(l)

ST(0)* ST(0)* 183 X X X ST(0)*-y ST(0)

ST(0)* X ST (0)-«-порядок ST(0)
5Т(1)-«-мантисса ST(6)

Команды сравнения
ST(0)* ST(1)* 45 X X

ST (0)-(src)
ST(0)* ST(0 45 X X

ST(0)* n—kb 654-EA X X

ST(0)* П-ДВ 70+EA X X

ST(0)* ST(1) 45 X X ST (0)—(src)
ST+-(ST)4-1

ST(0)* ST(0 45 X X

ST(0)* П-КВ 65+EA

ESC100
modOl Ir/m

(dispL) (dispH)

2, 3, 4

FCOMPP ESC110
11011001

2

FICOM src ESC110
modOldr/m

(dispL) (dispH)
ESCO 10

mod01Gr/m
(dispL) (dispH)

2, 3, 4

2, 3, 4

FICOMP ESC110
modOlOr/m

(dispL) (dispH)
ESC010

modOl Ir/m
(dispL) (dispH)

2, 3, 4

2, 3, 4

FTST

FXAM

ESC001
11100100
ESC001
11100101

2
2

F2XM1 ESC001
11110000

ST(O)* п-дв 70+EA

ST(O)* ST(1)* 50 X X ST(0)—ST(I)
ST^(ST)+2

ST(O)*

ST(O)*

П—ЦС

П—КЦ

80+EA

85+EA

X

X

X

X

ST(0)—(src)

ST(O)*

ST(O)*

П—ЦС

П-КЦ

82+EA

87+EA

X X ST(0)—(src)
ST*-(ST) + 1

ST(O)* o.q
ST(0)*

42

17

X X ST (0)—0.0

Установить C3—CO

Транс

ST(O)*

^ендентны

ST(0)*

e командъ

500 X X ST(0)*-2ST<°)—1

Команды управления сопроцессором

ьэ со

Мнемоника Объектный код Длина,
байт

Операнды
Время,
тактов

Особые случаи

Операция
src dst I D z о и p

FPATAN ESC001 2 ST(0)* ST(0)* 650 x X Частичный арктангенс
11110011 ST(lj* e=arctg(ST(l)/ST(O))

ST*—(ST)-J-l
ST(0)*-z

FPTAN ESC001 2 ST(0)* ST(0)* 450 X X Частичный тангенс
11110010 ST(0)* tg ST(0)=Y/X

ST(0)*-Y, ST*-(ST) —1
ST(0)*-X

FYL2X ESC001 2 ST(0)* ST(0)* 950 X z=ST(l)log2ST(0)
11110001 ST(1)* ST*-(ST)+1, ST(0)*-z

FYL2XP1 ESC001 2 ST(0)* ST(0)* 850 X z=ST(l)log2(ST(0)+l)
11111001 ST(1)* ST*-(ST) + 1, ST(0)*-z

Команды загрузки констант
FL.DZ ESC001 2 ST(0)* 14 X ST*-(ST)—1

ИЮНЮ ST (0)*--1-0.0
FLDI ESC001 2 - ST(0)* 14 X ST*-(ST)—1

11101000 ST (0)*-+1.0
FLDP1 ESC001 2 ST(0)* 19 X ST*-(ST)— 1

11101011 ST(0)*-n
FLDL2T ESC001 2 ST(0)* 19 х ST*-(ST)—1

11101001
ST(0)*

ST(0)*-log210
FLDL2E ESC001 2 18 X ST*-(ST)—1

11101010
ST(0)*

ST(0)*-log2e
FLDLG2 ESC001 2 21 X ST*-(ST)—1

11101100 ST(0)*-logio2
FLDLN2 ESC001 2 ST(0)* 20 х ST*-(ST)—1

11101101 ST(0)*-loge2

FINIT3 1 ESC011 1 2 1 5 | Инициализировать со­
11100011 процессор

Примечания: 1) В безоперандном формате команд FADD, FSUB, FSUBR, FMIJL, FDIV производится извлечение
из стека.

2) Время выполнения команды FMIJL может быть несколько меньше, если мантисса имеет нулевые младшие биты.
3) Команды допускают мнемонику в форме «без ожидания».

FENI3 ESC011
11100000

2 5 Разрешить прерывания

FDISI3 ESC011
11100001

2 5 Запретить прерывания

FLDCW src ESC001 2, 3, 4 CW src 104-EA CW*- (src)
modlOlr/m

(dispL) (dispH)
dst+-(CW)FSTCW3 dst ESC001 2, 3, 4 dst CW 15+EA

modi 1 \r /m
(dispL) (dispH)

Сбросить флажки oco-FCLEX ESC011 2 5
11100010 бых случаев

FINCSTP ESC001
11110111

2 ST* 9 ST*-(ST) 4-1

FDECSTP ESC001
11110110

2 ST* 9 ST*-(ST)—1

FFREE ESC101
llOOOST(t)

2 Тэг ST (i) 11 Тэг ST(i)*-ll

Холостая командаFNOP ESC001
11010000

2 13

FLDENV src ESC001
modOOlrlm

2, 3, 4 src 40+EA Загрузить среду

(dispL) (dispH)
Запомнить средуFSTENV3 dst ESC001 2, 3, 4 dst 45+EA

modi 1 Or/m
(dispL) (dispH)

Восстановить полноеFRSTOR src ESC101 2, 3, 4 src 2104-EA
modlOOr/m

(dispL) (dispH)
состояние

Запомнить полное со-FSAVE dst ESC101 2, 3, 4 dst 210fEA
modi lOr/m

(dispL) (dispH)
стояние

Запомнить слово со-154-EAFSTSW3 dst ESC101 2, 3, 4
modlllr/m

(dispL) (dispH)
стояния

ЗАКЛЮЧЕНИЕ

В учебном пособии рассмотрены алгоритмы и программы ариф­
метических операций в 8- и 16-битных микропроцессорах, а так­
же в арифметическом сопроцессоре К.1810ВМ87. Для автономного
изучения пособия приведены необходимые сведения по двоичной
системе счисления, современным форматам числовых данных и
особенностям выполнения арифметических операций в микропро­
цессорах.

Расширение применения микропроцессоров в сложных систе­
мах управления, интеллектуальных роботах, графических стан­
циях и т. д., требующих математической обработки больших объ­
емов данных в условиях дефицита времени, будет стимулировать
интерес к мащинной арифметике. Этому будет способствовать
разработка 32-битных микропроцессоров и совместимых с ними
арифметических сопроцессоров. За рубежом такие устройства уже
появились — это микропроцессор 80386 и сопроцессор 80387, вы­
пущенный фирмой Intel. В них предусмотрена архитектурная
совместимость с 16-битными предшественниками. Поэтому мате­
риал гл. 3 и 4 настоящего учебного пособия будет способствовать
освоению студентами новых микропроцессорных средств и внедре­
нию их в новые разработки.

Так как микропроцессор 80386 и сопроцессор 80387 уже широ­
ко применяются в зарубежных персональных компьютерах, при­
ведем основные сведения, относящиеся к этим микросхемам. Ес­
тественно, главное архитектурное отличие МП 80386 от рассмот­
ренного в данном учебном пособии МП К1810ВМ86 заключается
в расширении длины внутренних регистров до 32 бит. Вместе с
тем значительно увеличено и число этих регистров: в составе МП
80386 имеется 16 пользовательских регистров и 15 системных ре­
гистров. Среди новых регистров отметим два дополнительных сег­
ментных регистра FS и GS, системные регистры глобальной и ло­
кальной дескрипторных таблиц GDTR и LDTR, регистр дескрип­
торной таблицы прерываний IDTR, регистр задачи TR, три регист­
ра управления CRi, 6 регистров отладки DRi и два регистра про­
верки TRi.

В составе МП имеется очень гибкое устройство управления па­
мятью, поддерживающее сегментную и страничную организацию
памяти,. и развитые средства защиты по 4 уровням привилегий.
Конвейерная архитектура, включающая в себя 6 параллельно ра-
298

ботающих устройств, позволила повысить производительность МП
до 4—5 млн. операций в секунду.

МП 80386 может работать в нескольких режимах. В одном из
них, называемом режимом реального адреса или R-режимом, он
полностью моделирует МП К1810ВМ86. Поэтому практически все
программное обеспечение, разработанное для МП К1810ВМ86, мо­
жет быть использовано для МП 80386. Более того, еще в одном
из своих режимов (режим виртуального МП 8086 или V-режим)
МП 80386 одновременно может выполнять несколько задач МП
К1810ВМ86.

О расширенных возможностях МП 80386 свидетельствует крат­
кий обзор его системы команд, большинство из которых могут опе­
рировать байтами, словами и двойными словами:

— команды передач данных (MOV, XCHG и др.);
— команды ввода — вывода (IN/OUT, INS/OUTS);
— стековые команды (PUSH/POP, PUSHA/POPA);
— команды преобразований данных (XLAT, MOVSX, MOVZX,

CBW, CWD, CDQ);
— команды арифметических операций (ADD, SUB, MUL, DIV);
— команды десятичной коррекции (AAA, AAS, AAM, AAD,

DAA, DAS);
— команды логических операций (AND, OR, XOR, TEST, NOT);
— команды сдвигов (SHR/SHL, SAR/SAL, ROR/ROL, RCR/

RCL, SHRD/SHLD);
— команды манипуляций битами (BT/BTC/BTR/BTS, BSF/

BSR);
— команды управления флажками (CLD/STD, CLI/STI, CLC/

CMC/STC, LAHF/SAHF, PUSHF/POPF);
— команды операций с цепочками (MOVS, CMPS, STOS,

LODS, SCAS);
— команды передачи управления (JMP, Jcc, CALL/RET, LOOP,

LOOPcc, INT, INTO, IRET);
— команды поддержки языков высокого уровня (BOUND,

ENTER, LEAVE);
— команды загрузки адресов (LEA, Lsreg);
— системные команды (LGDT/SGDT, LIDT/SIDT и др.);
— команды загрузки и сохранения содержимого регистров уп­

равления, отладки и проверки.
Освоение и умелое использование системы команд процессора

80386 позволит разрабатывать эффективные прикладные прог­
раммы.

В сопроцессоре 80387 сохранена архитектурная совместимость
с сопроцессором К1810ВМ87. Вместе с тем в нем реализованы сле­
дующие усовершенствования:

— улучшен интерфейс с центральным процессором (с примене­
нием дополнительного сигнала ошибки ERROR);

— значительно повышена производительность сопроцессора как
299

за счет увеличения частоты синхронизации, так и благодаря но­
вым алгоритмам выполнения операций;

— во многих трансцендентных командах ослаблены ограниче­
ния на диапазоны аргументов;

— введено несколько новых команд, например вычисления си­
нуса FSIN, косинуса FCOS и одновременно синуса и косинуса
FSINCOS;

— от программиста или программы-ассемблера не требуется
вставлять команду ожидания WAIT перед каждой командой со­
процессора; она требуется только для синхронизации по данным
(когда сопроцессор записывает в память результат, требующийся
близкой последующей команде центрального процессора).

Отметим также, что совсем недавно фирма Intel выпустила
МП 80486. На его кристалле, который содержит около 1 млн. тран­
зисторов, совмещены центральный процессор и арифметический
сопроцессор. Появление этого микропроцессора будет стимулиро­
вать дальнейший интерес к численной обработке данных и способ­
ствовать разработке новых систем с очень широкими возможно­
стями.

СПИСОК ЛИТЕРАТУРЫ

1. Григорьев В. Л. Программное обеспечение микропроцессорных систем.—
М.: Энергоатомиздат, 1983.

2. Григорьев В. Л. Программирование однокристальных микропроцессо­
ров.— М.: Энергоатомиздат, 1987.

3. Левенталь Л., Сэйвилл Д. Программирование на языке ассемблера для
микропроцессоров 8080 и 8085. — М.: Радио и связь, 1987.

4. Савельев А. Я. Прикладная теория цифровых автоматов. — М.: Высшая
школа, 1987.

5. Вгеу В В. The 8085 microprocessor. Software, programming and
architecture. — Prentice—Hall, 1984.

6. Morse S. P„ Albert D. J. The 80286 architecture.—Wiley, 1986.
7. Palmer J. F., Morse S. P. The 8087 primer. — Wiley, 1984.
8. Proposed standard for floating point arithmetic. — Computer, v. 14, № 3,

1981, p. 52—62.
9. Scanlon L. J. 8086/8088 assembly Language programming. Prentico —Hall,

1984.

В.К.ЗЛОБИН
ЁЗЛ.ГРИГОРЬЕВ

Программирование
арифметических
операции
в микро­
процессорах

Допущено Государственным комитетом СССР
по народному образованию в качестве учебного пособия
для студентов высших учебных заведений

Москва
Высшая школа» 1991

ББК 32.973—01
3-68

УДК 681.3

Рецензенты:
кафедра вычислительной техники

Московского института электронной техники;
проф. Б. М. Каган (Московский институт инженеров транспорта)

Злобин В. К., Григорьев В. Л.
3-68 Программирование арифметических операций в ми­

кропроцессорах: Учеб, пособие для технических вузов.—
М.: Высш, шк., 1991. — 303 с.: ил.

ISBN 5-06-002052-5
Приведены форматы числовых данных для современных микропроцес­

соров и профессиональных персональных компьютеров. Рассмотрены алго­
ритмы выполнения арифметических операций и особенности их программной
реализации в микропроцессорных системах.

3 .2405000000(4309000000)—393
001(01)—91 ~91

ББК 32.973—01
6Ф7.8

ISBN 5-06-002052-5 © В. К. Злобин, В, Л, Григорьев, 1991

